QUANTITATIVE ABILITY - 71 (SOLUTION)

1. (B)
$$x^3 + y^3 + z^3 - 3xyz = \frac{1}{2} (x + y + z) [(x - y)^2 + (y - z)^2 + (z - x)^2]$$

$$= \frac{1}{2} (332 + 333 + 335) [(332 - 333)^2 + (333 - 335)^2 + (335 - 332)^2]$$

$$= \frac{1}{2} \times 1000[(-1)^2 + (-2)^2 + (3)^2] = \frac{1}{2} \times 1000[1 + 4 + 9]$$

Required time =
$$\frac{xy}{y-x}$$

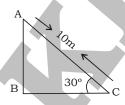
Let first number be 6, second be 10, third be 14 and fourth be 18.

$$6 + 5 = 10 + 1 = 14 - 3 = 18 - 7 = 11$$

So, all are equal

4. (B) Quantity of milk =
$$729 \times \frac{7}{9} = 567 \text{ ml}$$

Quantity of Water = 162 ml

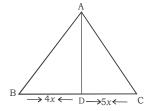

Let x ml water be added.

ATQ,

$$\frac{567}{162+x} = \frac{7}{3}$$

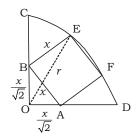
$$162 + x = 243$$

$$x = 81 \text{ ml}$$


In \triangle ABC,

$$\cos 30^{\circ} = \frac{BC}{AC}$$

$$\frac{\sqrt{3}}{2} = \frac{BC}{10}$$


$$BC = 8.66 \text{ m}$$

6. (B)

Area of
$$\triangle$$
 ADC = $\left(\frac{5}{4} \times 60\right)$ sq. cm = 75 sq. cm

(D)

Radius = OE

$$OB = OA = \frac{x}{\sqrt{2}}$$

$$\angle EBO = 90^{\circ} + 45^{\circ}$$

$$\cos \angle EBO = \cos (90 + 45)^{\circ}$$

$$\cos (90+45^{\circ}) = \frac{BE^2 + OB^2 - OE^2}{2 \times BE \times OB}$$

$$-\sin 45^{\circ} = \frac{x^2 + \left(\frac{x}{\sqrt{2}}\right)^2 - OE^2}{2 \times x \times \frac{x}{\sqrt{2}}}$$

$$-\frac{1}{\sqrt{2}} = \frac{x^2 + \frac{x^2}{2} - OE^2}{\sqrt{2} \times x^2}$$

$$OE^2 = \frac{5x}{2}$$

$$OE = \sqrt{\frac{5}{2}} x$$

8. (B) Total C.P of the rice = $30 \times 70 + 20 \times 70.75 = 2100 + 1415 = 3515$

Total S.P of rice =
$$50 \times 80.50 = ₹4025$$

So, profit =
$$4025 - 3515 = ₹510$$

9. (C) tan4°.tan43°.tan47°.tan86°

$$= \tan(90^{\circ}-86^{\circ}). \tan(90^{\circ}-47^{\circ}). \tan 47^{\circ}. \tan 86^{\circ}$$

=
$$\cot 86^{\circ}$$
. $\cot 47^{\circ}$. $\tan 47^{\circ}$. $\tan 86^{\circ}$ = 1

10. (A) $x \cos \theta - \sin \theta = 1$

Let
$$\theta = 0^{\circ}$$

$$x \cos 0^{\circ} - \sin 0^{\circ} = 1$$

$$x \times 1 - 0 = 1$$

$$x = 1$$

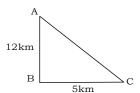
$$x^2 + (1 + x^2) \sin \theta^{\circ}$$

$$= x^2 + (1 + x^2) \sin 0^\circ$$

$$= x^2 + (1 + x^2) \times 0$$

$$= x^2 \text{ or } (1)^2 = 1$$

11. (A) Area A = πr^2 (i)

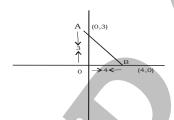

 $C = 2 \pi r$

Dividing equation (i) by (ii),
$$\frac{A}{C} = \frac{\pi r^2}{2\pi r}$$

$$\frac{A}{C} = \frac{r}{2}$$

$$2A = Cr$$

12. (D)



In
$$\triangle$$
 ABC,

$$AC = \sqrt{12^2 + 5^2} = \sqrt{144 + 25}$$

$$=\sqrt{169}$$
 = 13 km

13. (B)

$$AB = \sqrt{3^2 + 4^2} = \sqrt{9 + 16}$$

$$=\sqrt{25}$$
 = 5 units

14. (C) $\frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{3-\sqrt{8}}$

$$=\frac{1}{\sqrt{7}-\sqrt{6}}\times\frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}\times\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}+\frac{1}{\sqrt{5}-2}\times\frac{\sqrt{5}+2}{\sqrt{5}+2}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{\sqrt{8}+\sqrt{7}}{\sqrt{8}+\sqrt{7}}+\frac{1}{3-\sqrt{8}}\times\frac{3+\sqrt{8}}{3+\sqrt{8}}$$

$$=\frac{\sqrt{7}+\sqrt{6}}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{6}\right)^{2}}-\frac{\sqrt{6}+\sqrt{5}}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{5}\right)^{2}}+\frac{\sqrt{5}+2}{\left(\sqrt{5}\right)^{2}-2^{2}}-\frac{\sqrt{8}+\sqrt{7}}{\left(\sqrt{8}\right)^{2}-\left(\sqrt{7}\right)^{2}}+\frac{3+\sqrt{8}}{3^{2}-\left(\sqrt{8}\right)^{2}}$$

$$= \sqrt{7} + \sqrt{6} - \sqrt{6} - \sqrt{5} + \sqrt{5} + 2 - \sqrt{8} - \sqrt{7} + 3 + \sqrt{8} = 5$$

K D Campus Pvt. Ltd 1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

15. (A) Required percentage =
$$\frac{10 + 5 + 4 + 3}{9 + 15 + 18 + 22 + 14 + 10 + 5 + 4 + 3} \times 100$$
$$= \frac{22}{100} \times 100 = 22\%$$

16. (C) Required percentage =
$$\frac{4+3}{9+15+18+22+14+10+5+4+3} \times 100$$

= $\frac{7}{100} \times 100 = 7\%$

17. (B) Required percentage =
$$\frac{18 + 22}{9 + 15 + 18 + 22 + 14 + 10 + 5 + 4 + 3} \times 100$$
$$= \frac{40}{100} \times 100 = 40\%$$

18. (A)
$$x + y = 2z$$

 $x = 2z - y$
 $x - z = 2z - y - z$
 $x - z = z - y$

$$\therefore \frac{x}{x-z} + \frac{z}{y-z}$$

$$= \frac{x}{x-z} - \frac{z}{z-y}$$

$$= \frac{x}{x-z} - \frac{z}{x-z}$$

$$= \frac{x-z}{x-z} = 1$$

19. (B) Length of train =
$$\frac{350}{27-9} \times 9 = \frac{350 \times 9}{18} = 175 \text{ m}$$

So, length of PA =
$$\sqrt{(PO)^2 - (OA)^2}$$

= $\sqrt{(10)^2 - (6)^2}$ = 8 cm

21. (C)
$$\tan \theta = \frac{p}{q}$$
 [Given]

$$\therefore \frac{p\sin\theta - q\cos\theta}{p\sin\theta + q\cos\theta} = \frac{\frac{p}{q}\tan\theta - 1}{\frac{p}{q}\tan\theta + 1}$$

$$=\frac{\frac{p}{q} \times \frac{p}{q} - 1}{\frac{p}{q} \times \frac{p}{q} + 1} = \frac{p^2 - q^2}{p^2 + q^2}$$

- 22. (A) Weight of the new man = $42 + 15 \times 1.6$ = 42 + 24.0 = 66.0 kg
- 23. (C) Let the number of students appeared in school X = 100

Number of students qualified in school X = 70

According to question,

Number of students appeared in School Y = 120

Number of students qualified in School Y = 70 + 50% of 70 = 70 + 35 = 105

$$\therefore \quad \text{Required percentage} = \frac{105 \times 100}{120} = 87.5\%$$

24. (C)
$$\frac{\cos^2 45^\circ}{\sin^2 60^\circ} + \frac{\cos^2 60^\circ}{\sin^2 45^\circ} - \frac{\tan^2 30^\circ}{\cot^2 45^\circ} - \frac{\sin^2 30^\circ}{\cot^2 30^\circ}$$

$$= \frac{\left(\frac{1}{\sqrt{2}}\right)^2}{\left(\frac{\sqrt{3}}{2}\right)^2} + \frac{\left(\frac{1}{2}\right)^2}{\left(\frac{1}{\sqrt{2}}\right)^2} - \frac{\left(\frac{1}{\sqrt{3}}\right)^2}{\left(1\right)^2} - \frac{\left(\frac{1}{2}\right)^2}{\left(\sqrt{3}\right)^2}$$

$$= \frac{\frac{1}{2}}{\frac{3}{4}} + \frac{\frac{1}{4}}{\frac{1}{2}} - \frac{\frac{1}{3}}{\frac{1}{4}} - \frac{\frac{1}{4}}{\frac{1}{3}} = \frac{2}{3} + \frac{1}{2} - \frac{1}{3} - \frac{1}{12}$$

$$= \frac{8+6-4-1}{12} = \frac{14-5}{12}$$

$$=\frac{9}{12}=\frac{3}{4}$$

25. (D) If equations have no solution,

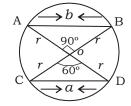
then,

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$\frac{2}{6} = \frac{-k}{-12} \neq \frac{15}{15}$$

$$6k = 24$$

$$k = 4$$


26. (C) Required time =
$$\frac{4 \times \frac{165}{60}}{16.5}$$
 hour

$$=\frac{4\times165}{16.5\times60}\times60=40$$
 minutes

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

27. (B)

- $\cdot \cdot \cdot \wedge$ COD is a equilateral triangle.
- $\cdot \quad a = r$
- \therefore \triangle AOB is an isosceles triangle.

So,
$$\angle$$
OBA = 45°

$$\sin 45^{\circ} = \frac{r}{b}$$

$$\frac{1}{\sqrt{2}} = \frac{r}{b}$$

$$b = \sqrt{2} r o r \sqrt{2} a$$

- 28. (B) Arithmetic mean of first *n* natural number = $\frac{n+1}{2}$
- 29. (A) One side of cube = $\frac{20}{4}$ = 5 cm Area of cube = 5^3 = 125 cm³

30. (D)
$$\left[\sqrt{6} + \sqrt{2}\right]^2 < \left[\sqrt{5} + \sqrt{3}\right]^2$$

$$(\sqrt{6})^2 + (\sqrt{2})^2 + 2\sqrt{6} \times \sqrt{2} < (\sqrt{5})^2 + (\sqrt{3})^2 + 2 \times \sqrt{5} \times \sqrt{3}$$

$$6+2+2\sqrt{12} < 5+3+2\sqrt{15}$$

$$8 + 2\sqrt{12} < 8 + 2 + 2\sqrt{15}$$

So, Statement (i) and (iii) are incorrect.

31. (C) Rate =
$$12\frac{1}{2}\% = \frac{1}{8}$$

Amount Instalment

8×9	9 7 ,,
64	81^
136	81
×50	•
₹6800	₹4050

32. (C) Total maximum marks in four subjects = 120 + 140 + 100 + 180 = 540

60% of total maximum marks =
$$\frac{3}{5}$$
 × 540 = 324

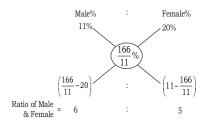
Marks obtained in three subjects =
$$120 \times \frac{2}{5} + 140 \times \frac{11}{20} + 100 \times \frac{9}{20}$$

$$= 48 + 77 + 45 = 170$$

Required Marks in Maths = 324 - 170 = 154

Rate =
$$\frac{156 \times 100}{800 \times 3}$$
 = 6.5% per annum

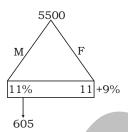
New rate = 10.5%


∴ S.I =
$$\frac{800 \times 3 \times 10.5}{100}$$
 = ₹ 252

Amount = 800 + 252 = ₹ 1052

34. (A) Population of the village = 5500

After increment new population of the village = 6330


Percentage increment =
$$\frac{(6330 - 5500)}{5500} \times 100 = \frac{166}{11}\%$$

According to the question,

Number of females = $500 \times 5 = 2500$

Short trick:-

Number of females =
$$\frac{225}{9} \times 100 = 2500$$

35. (C) Let the total valid votes be 100%.

Then second candidate got = (100 - 52 - 12)% = 36%

According to the question,

$$100\% = 28800 \times \frac{100}{36} = 800,00$$

Hence total valid votes = 80,000

Total votes polled = 80,000 + 10,000 = 90,000

Total number of votes = $\frac{10}{9} \times 90,000 = 1,00,000$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

36. (B) Total weight of section $A = 42 \times 25 = 1050 \text{ kg}$

Total weight of group B = $28 \times 40 = 1120 \text{ kg}$

Total weight of whole class = 2170 kg

Average weight of whole class = $\frac{2170}{70}$ = 31 kg

37. (C) According to the question,

$$n \times \frac{90}{100} \times \frac{80}{100} \times \frac{75}{100} = 270$$

$$n = \frac{270 \times 10 \times 10 \times 100}{9 \times 8 \times 75}$$

n = 500 chocolates

Short trick:-

$$10\% = \frac{1}{10}$$
, $20\% = \frac{1}{5}$, $25\% = \frac{1}{4}$

ATQ,

Quantity	Remaining				
10	9				
5	4				
4	3				
200	108				
×2.5	×2.5				
500	270				

38. (C) According to the question,

Man: Woman: Girl

Efficiency $\rightarrow 6$: 3 : 1

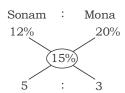
Money received by (woman + girl) = $\frac{10000}{10}$ × 4 = ₹ 4000

39. (C)

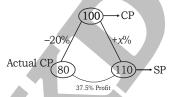
Let R is a point where both the trains meet.

Till 2 : 45 pm the distance covered by the second train=
$$\frac{70}{60}$$
 × 60 = 70 km

Remaining distance = 510 – 70 = 440 km


Now relative speed of both trains = 50 + 60 = 110 km/h

Required time of meeting = $\frac{440}{110}$ = 4 hours


Distance from Delhi to meeting point $R = 4 \times 50 = 200 \text{ km}$

- 40. (C) $4\% = \frac{1}{25}$, $5\% = \frac{1}{20}$, $6\% = \frac{3}{50}$
 - 25 26 20 — 21
 - 50 53

 - CI = 57876 50000 = ₹ 7876
- 41. (A)
- C.P S.P $100 \qquad 110$ $5\% \text{ less} \rightarrow 95 \xrightarrow{20\% \text{ Profit}} 114 \rightarrow 4 \text{ more}$ 7 (given)
- ∴ C.P of suitcase = $\frac{7}{4} \times 100 = ₹ 175$
- 42. (A) They left with 85% money it means they spent 15%. By alligation method,

- Amount of Sonam = $\frac{1200}{8} \times 5 = 750$
- Amount of Mona = $\frac{1200}{8}$ × 3 = ₹ 450
- After spending of 12%, amount left with Sonam = $\frac{750 \times 88}{100}$ = ₹ 660
- 43. (D) The remainder will be same.
 On dividing 9 by 6, remainder = 3
 On dividing 81 by 6, remainder = 3
- 44. (A)

Let the initial weight = 100 unit and the cost price of 1 unit weight is ₹ 1. According to the question,

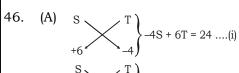
Gain% =
$$37\frac{1}{2}$$
% = $\frac{3}{8} \rightarrow Profit$

$$C.P = 8$$
 units $S.P = 11$ units

$$x\% = \frac{(110 - 100)}{100} \times 100 = 10\%$$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

45. (D) No. of Pen


Buy
$$\begin{bmatrix} 4 & \longrightarrow & 15 \\ \text{or } 12 & \longrightarrow & 45 \end{bmatrix}$$

$$Sell \begin{bmatrix} 6 & \longrightarrow & 25 \\ or & 12 & \longrightarrow & 50 \end{bmatrix}$$

Profit Number of Pens

- 12
- ↓×5 ↓×5
- 25 60

Profit percentage = $\frac{50-45}{45} \times 100 = 11\frac{1}{9}\%$

From equation (i) and (ii)

$$-4S + 6T = 24$$

$$4S - 4T = 16$$

$$2T = 40$$

T = 20 hours

Put the value of T in equation (ii),

$$4S - 80 = 16$$

$$S = 24 \text{ km/h}$$

Distance = $24 \times 20 = 480 \text{ km}$

- A : B
- Efficiency \rightarrow

According to the question,

Both A and B take 4 days to complete the work

Total work = $(2 + 1) \times 4 = 12$ units

Time taken by B = $\frac{12}{1}$ = 12 days

(D) Total Distance = $240 \times 5 = 1200 \text{ km}$

Then required speed to cover the same distance in $1\frac{2}{3}$ hours, i.e. is in $\frac{5}{3}$ hrs = $\frac{1200}{5}$

$$= \frac{1200 \times 3}{5} = 720 \text{ km/hr}.$$

(B) Discount offered by Sonu = $25 + 5 - \frac{25 \times 5}{100} = 28.75\%$

Discount offered by Monu = $16 + 12 - \frac{16 \times 12}{100} = 26.08\%$

Buying from Sonu is more preferable.

50. (B) Height of pole = 100 m

Work done by spiderman in 2 minutes = 1 m

Time taken by spiderman to climb 96 m

i.e.
$$96 + 4 = 100$$
 meter

$$= 96 \times 2 + 1 \min = 3 \text{ hrs } 13 \min$$

51. (C) Water: Milk

$$same \begin{pmatrix} 30 & : & 170 \longrightarrow 200 \\ 1 \times 30 & : & 7 \times 30 \longrightarrow 240 \end{pmatrix}$$

$$87.5\% \rightarrow \frac{7}{8}$$

Additional milk required = (210 - 170) = 40 l

52. (A) Total surface area of tank without top = $30 \times 20 + 2(12 \times 20) + 2(30 \times 12) = 1800 \text{ m}^2$ Area of iron sheet = T.S.A without top

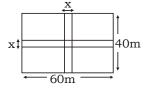
Length \times width = 1800

Length =
$$\frac{1800}{3}$$
 = 600 m

53. (B) 4x - 3y = 13

Cubing both sides,

$$(4x - 3y)^3 = (13)^3$$


$$64x^3 - 27y^3 - 3 \times 4x \times 3y (4x - 3y) = 2197$$

$$64x^3 - 27y^3 - 36(14)(13) = 2197$$

$$64x^3 - 27y^3 = 2197 + 6552$$

$$64x^3 - 27y^3 = 8749$$

54. (A)

Total area of park = $60 \times 40 = 2400 \text{ m}^2$

Area of lawn = 2109 m^2 (given)

Area of the cross roads = $2400 - 2109 = 291 \text{ m}^2$

ATQ,

$$x(60 + 40 - x) = 291$$

$$x^2 - 100x + 291 = 0$$

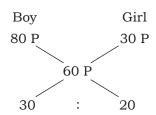
$$(x - 97)(x - 3) = 0$$

$$x = 3 \text{ or } 97$$

x = 3 [x = 97 is not possible]

55. (C) Water Poured by the man = $\frac{4}{3}$ litres/min

Water Poured by the woman = $\frac{3}{4}$ litres/min


Required time to fill 200 litres of water = $\frac{200}{\frac{4}{3} + \frac{3}{4}} = \frac{200 \times 12}{25}$

= 96 min = 1 hour 36 min.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

(C) Average $\sqrt[7]{\text{student}} = \frac{3900P}{65} = 60 \text{ paise}$

Then number of girls = $\frac{2}{5} \times 65 = 26$

57. (D)

 Δ ABC is equilateral,

$$\angle$$
BCD = \angle DCA = 30° (CD bisects \angle ACB)

$$ACE = 180^{\circ} - 30^{\circ} = 150^{\circ}$$

$$AC = CE$$

$$\angle CAE = \angle CEA = \frac{30}{2} = 15^{\circ}$$

(A) Larger Radius (R) = 14 + 7 = 21 cm Smaller Radius (r) = 7 cm

∴ Area of shaded portion =
$$\pi \frac{30^{\circ}}{360^{\circ}} (21 \times 21 - 7 \times 7)$$

$$= \frac{22}{7} \times \frac{1}{12} \times 392 = 102.67 \text{ cm}^2$$

(D) Ratio of A, B and C = $\frac{1}{2} : \frac{1}{4} : \frac{5}{16}$

$$\begin{array}{c}
8:4:5 \longrightarrow 17 \\
\downarrow & \downarrow \times 4000
\end{array}$$
Difference 4
 4×4000
 16000

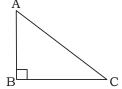
$$x + \frac{1}{x} = \sqrt{3}$$

$$x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right)^{3} - 3\left(x \times \frac{1}{x}\right)\left(x + \frac{1}{x}\right)$$

$$= 3\sqrt{3} - 3\sqrt{3} = 0$$

$$x^6 + 1 = 0$$

$$\therefore \quad x^{206} + x^{200} + x^{90} + x^{84} + x^{18} + x^{12} + x^6 + 1$$


$$= x^{200}(x^6 + 1) + x^{84}(x^6 + 1) + x^{12}(x^6 + 1) + (x^6 + 1) = 0 \qquad [\because x^6 + 1 = 0]$$

$$[\because x^6 + 1 = 0]$$

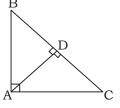
(B) Maximum value of $(2 \sin\theta + 3 \cos\theta) = \sqrt{a^2 + b^2}$

$$= \sqrt{4+9} = \sqrt{13}$$

62. (C) A

In Δ ABC,

$$AB \times BC = \frac{AC^2}{2}$$


$$AC^2 = 2AB \times BC$$

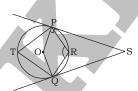
$$AB^2 + BC^2 = 2AB \times BC$$

$$(AB - BC)^2 = 0$$

$$\therefore$$
 $\angle BAC = \angle ACB = 45^{\circ}$

63. (C)

In ΔABC,


$$AD \perp BC$$

The Ratio of area of two similar triangles = Ratio of square of their corresponding sides.

Hence,
$$\frac{ar(BAC)}{ar(ADC)} = \frac{BC^2}{AC^2} = \frac{64}{36}$$

$$= \frac{16}{9} = 16:9$$

64. (D)

$$\angle OPS = \angle OQS = 90^{\circ}$$

$$\angle PSQ = 20^{\circ}$$
 (Given)

$$[\angle PSQ + \angle POQ = 180^{\circ}]$$

$$PTQ = 80^{\circ}$$

PRQT is a cyclic quadrilateral

$$\therefore$$
 $\angle PRQ = 180^{\circ} - 80^{\circ} = 100^{\circ}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

65. (D)
$$a - b = x + y - x + y = 2y$$

$$b - c = x - y - x - 2y = -3y$$

$$c - a = x + 2y - x - y = y$$

ATQ,

$$a^2 + b^2 + c^2 - ab - bc - ca = \frac{1}{2} [(a-b)^2 + (b-c)^2 + (c-a)^2]$$

$$= \frac{1}{2} \Big[(2 y)^2 + (-3 y)^2 + y^2 \Big] = \frac{1}{2} \times 14y^2 = 7y^2$$

66. (A)
$$\sec^2\theta + \tan^2\theta = 7$$

$$1 + \tan^2\theta + \tan^2\theta = 7$$

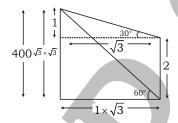
$$2\tan^2\theta = 6$$

$$tan^2\theta = 3$$

$$\tan\theta = \sqrt{3}$$

$$\theta = 60^{\circ}$$

67. (C)
$$5\tan\theta = 4$$


$$\tan\theta = \frac{4}{5}$$

$$\therefore \frac{5\sin\theta - 3\cos\theta}{5\sin\theta + 2\cos\theta} = \frac{5 \cdot \frac{\sin\theta}{\cos\theta} - \frac{3\cos\theta}{\cos\theta}}{5 \cdot \frac{\sin\theta}{\cos\theta} + \frac{2\cos\theta}{\cos\theta}}$$

$$5 + 2n = 3$$
 $5 \times \frac{4}{3} = 3$

$$= \frac{5 \tan - 3}{5 \tan \theta + 2} = \frac{5 \times \frac{4}{5} - 3}{5 \times \frac{4}{5} + 2}$$

$$= \frac{4-3}{4+2} = \frac{1}{6}$$

1 unit
$$-\frac{400}{3}$$

$$\therefore \text{ The height of the pillar} = \frac{400}{3} \times 2 = \frac{800}{3} \text{ m}$$

70. (A)
$$\sqrt{x} + \frac{1}{\sqrt{x}} = 3$$

$$\therefore \quad x + \frac{1}{x} = 7$$

$$x^2 + \frac{1}{x^2} = 47$$

71. (A)
$$\sec x + \cos x = 3$$

square both sides,

$$\sec^2 x + \cos^2 x + 2 \sec x \cdot \cos x = 9$$

$$= \sec^2 x + \cos^2 x = 9 - 2 = 7$$

Now, $\tan^2 x - \sin^2 x$

$$= \sec^2 x - 1 - (1 - \cos^2 x)$$

$$[\because \sec^2 x - \tan^2 x = 1]$$

$$= \sec^2 x + \cos^2 x - 2$$

$$= 7 - 2 = 5$$

72. (B)
$$\frac{x^2}{by+cz} = \frac{y^2}{cz+ax} = \frac{z^2}{ax+by} = 1$$

So,
$$x^2 = by + cz$$
; $y^2 = cz + ax$, $z^2 = ax + by$

$$\therefore \quad \frac{a}{a+x} + \frac{b}{b+y} + \frac{c}{c+z} = \frac{ax}{ax+x^2} + \frac{by}{by+y^2} + \frac{cz}{cz+z^2}$$

$$=\frac{ax}{ax+by+cz}+\frac{by}{by+cz+ax}+\frac{cz}{cz+ax+by}=\frac{ax+by+cz}{ax+by+cz}=1$$

Short trick:-

Let
$$a = b = c = 1$$
 and $x = y = z = 2$

Because these value satisfy
$$\frac{x^2}{by + cz} = \frac{y^2}{cz + ax} = \frac{z^2}{ax + by} = 1$$

$$\therefore \quad \frac{a}{a+x} + \frac{b}{b+y} + \frac{c}{c+z} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

73. (B)
$$\cos\theta = \frac{15}{17}$$

$$\sec\theta = \frac{1}{\cos\theta} = \frac{17}{15}$$

$$\therefore \cot(90 - \theta) = \tan\theta$$

$$= \sqrt{\sec^2 \theta - 1} = \sqrt{\left(\frac{17}{15}\right)^2 - 1}$$

$$=\sqrt{\frac{289}{225}-1}=\sqrt{\frac{289-225}{225}}$$

$$=\sqrt{\frac{64}{225}}=\frac{8}{15}$$

$$a = b = c = d = \frac{1}{4}$$

$$\therefore (1 + a) (1 + b) (1 + c) (1 + d) = \left(\frac{5}{4}\right)^4$$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

- 75. (B) $12 \times 12 \times 12 = 1728 = 1728 1720 = 8$
 - ∴ Required number = 8
- 76. (B) Total grain production of state:

$$P = 45 + 103 + 27 + 29 = 204$$
 lakh tonnes

$$Q = 48 + 86 + 73 + 19 + 15 = 241$$
 lakh tonnes

$$R = 59 + 32 + 67 + 14 + 31 = 203$$
 lakh tonnes

$$S = 41 + 37 + 59 + 21 + 15 = 173$$
 lakh tonnes

Obviously, State Q had the highest grain production.

- 77. (C) Total rice Production = 393 lakh tonnes

 Total wheat Production = 331 lakh tonnes
 - Required Ratio = 393 : 331 = 1.2 : 1
- 78. (A) In the states Q, R and S, Jowar recorded highest production.
- 79. (D) Required percentage = $\frac{103}{331} \times 100 \approx 30\%$
- 80. (C) Average per hectare yield of rice = 30 tonnes

 Total rice production = 393 lakh tonnes
 - \therefore Required area = $\frac{393}{30}$ = 13.1 = 13 lakh hectare
- 81. (A) $100 \times 35 = 3500$

$$200 \times 5 = 1000$$

Total work =
$$4500$$

$$200 \times 5 = 100 \times x$$

$$10 \text{ days} = x$$

Total days =
$$35 + 10 = 45$$
 days

Extra days =
$$45 - 40 = 5$$
 days

82. (C) Let the income of Ram = ₹ 100

Expenditure on food =
$$100 \times \frac{25}{100} = ₹25$$

After increase of 20%, income =
$$100 \times \frac{120}{100}$$
 = ₹ 120

ATQ,

Expenditure is same in both cases.

$$\therefore \quad \text{Expenditure} = \frac{25}{120} \times 100 = \frac{250}{12}$$

Percentage expenditure = 20.833%

Percentage decrease in expenditure = 25 – 20.833 = 4.16%

83. (D) Interest after 10 years at the rate of 5% = ₹ 500

Time =
$$\frac{500 \times 100}{1500 \times 5}$$
 = $6\frac{2}{3}$ years

 \therefore Required time = $\left(10 + 6\frac{2}{3}\right)$ years = $16\frac{2}{3}$ years

84. (B) Let the required number be x.

$$x^2 + 5^2 = 386$$

$$x^2 = 386 - 25$$

$$x^2 = 361$$

$$x = \sqrt{361} = 19$$

85. (B) Let the minimum score be x.

Maximum score =
$$x + 100$$

ATQ,

$$28 \times 38 + x + x + 100 = 30 \times 40$$

$$1064 + 2x + 100 = 1200$$

$$2x = 1200 - 1164 = 36$$

$$x = 18$$

- 86. (D) $A \rightarrow 12 \text{ days}$ 12 units/day $B \rightarrow 16 \text{ days} \xrightarrow{9} 144 \text{ Total work}$
 - $C \rightarrow 24 \text{ days}$ units
 - $D \rightarrow 36 \text{ days}$ 4 units/day

Work done on first day = 12 units

On second day = 12 + 9 = 21 units

On third day = 21 + 6 = 27 units

On fourth day = 27 + 4 = 31 units

On fifth day = 31 units and so on.

Work done in five days = 91 + 31 = 122 units

Remaining work = 144 - 122 = 22 units

- \therefore Total time = $5\frac{22}{31}$ days
- 87. (D) Required number of students = L.C.M of 6, 8, 12 and 16 = 96
- 88. (A) 1 cow: 1 calf

Old cost
$$\rightarrow$$
 4000 : 2800

New Cost \rightarrow 4800 3640

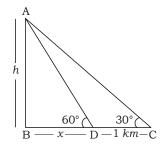
ATQ,

Price of 1 dozen cows = $4800 \times 12 = 57600$

Price of 2 dozen calves = 3640 × 24 = 87360

Total cost = 57600 + 87360 = ₹ 144960

89. (D) Simple interest of 2 years = 20%


Compound interest of 2 years = 21%

Difference between simple and compound interest = 1%

130

∴ Principal = 130 × 100 = ₹ 13000

90. (A)

Height of balloon = AB = h kmBD = x km, CD = 1 kmIn ΔABD,

$$\tan 60^{\circ} = \frac{AB}{BD}$$

$$\sqrt{3} = \frac{h}{x}$$

$$x = \frac{h}{\sqrt{3}}$$
 km

In ΔABC,

$$\tan 30^{\circ} = \frac{AB}{BC}$$

$$\frac{1}{\sqrt{3}} = \frac{h}{\frac{h}{\sqrt{3}} + 1}$$

$$\sqrt{3}h = \frac{h}{\sqrt{3}} + 1$$

$$\sqrt{3}h - \frac{h}{\sqrt{3}} = 1$$

$$\frac{3h-h}{\sqrt{3}}=1$$

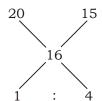
$$2h = \sqrt{3}$$

$$h = \frac{\sqrt{3}}{2} \text{km}$$

91. (C) S.I. =
$$\frac{6000 \times 5 \times 2}{100}$$
 = ₹ 600

C.I. =
$$5000 \left[\left(1 + \frac{8}{100} \right)^2 - 1 \right] = 5000 \left[\left(\frac{27}{25} \right)^2 - 1 \right]$$

$$= 5000 \left[\left(\frac{729 - 625}{625} \right) \right] = 5000 \times \frac{104}{625} = ₹832$$



1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

92. (D)
$$\sqrt{24010000} = 4900$$

Again
$$\sqrt{4900} = 70$$

$$\therefore \sqrt[4]{24010000} = 70$$

94. (A) Average height =
$$\frac{6 \times 1.15 + 8 \times 1.10 + 6 \times 1.12}{20} = \frac{6.9 + 8.8 + 6.72}{20}$$

$$=\frac{22.42}{20}$$
 = 1 m 12.1 cm

95. (A)
$$P + Q \rightarrow 90 \text{ Minutes}$$
 2 units/min $Q + R \rightarrow 60 \text{ Minutes}$ 3 180 Total capacity (in units) $P + R \rightarrow 45 \text{ Minutes}$ 4 units/min

Efficiency of (P + Q + R) =
$$\frac{2+3+4}{2}$$
 = 4.5 units/min

Efficiency of
$$P = (4.5 - 3) = 1.5$$
 units/min

Efficiency of
$$Q = (4.5 - 4) = 0.5$$
 units/min

Efficiency of
$$R = (4.5 - 2) = 2.5$$
 units/min

Required time for P =
$$\frac{180}{1.5}$$
 = 120 min

Required time for Q =
$$\frac{180}{0.5}$$
 = 360 min

Required time for R =
$$\frac{180}{2.5}$$
 = 72 min

$$\downarrow \times 2$$
 $\downarrow \times 2$ 1,60,000 1,77,366

Hence, Present population = 1,77,366

97. (D)

Required total of B and D = ₹ 3060

98. (A) Work done by A in 1 day = Work done by B in 3 days

 A
 :
 B

 Time
 1
 :
 3

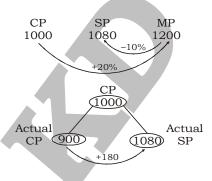
 Efficiency
 3
 :
 1

Now total work = $3 \times 2 + 9 \times 1 = 15$ units

Required time for A to complete the work = $\frac{15}{3}$ = 5 days

Required time for B to complete the work = $\frac{15}{1}$ = 15 days

99. (A) A + B + C earns in one day = $\frac{2700}{18}$ = ₹ 150


A + C earns in one day = ₹ 94

B + C earns in one day = ₹ 76

Earning of A = 150 - 76 = ₹ 74

Earning of C = 94 - 74 = ₹20

100. (C) Let the initial price = ₹ 1000 the price of 1 gm weight is ₹ 1. ATQ,

Percentage profit = $\frac{180}{900} \times 100 = 20\%$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

QUANTITATIVE ABILITY - 71 (ANSWER KEY)

1.	(B)	26.	(C)	51.	(C)	76.	(B)
2.	(D)	27.	(B)	52 .	(A)	77.	(C)
3.	(D)	28.	(B)	53.	(B)	78.	(A)
4.	(B)	29.	(A)	54.	(A)	79.	(D)
5.	(A)	30.	(D)	55.	(C)	80.	(C)
6.	(B)	31.	(C)	56.	(C)	81.	(A)
7.	(D)	32.	(C)	57 .	(D)	82.	(C)
8.	(B)	33.	(C)	58.	(A)	83.	(D)
9.	(C)	34.	(A)	59.	(D)	84.	(B)
10.	(A)	35.	(C)	60.	(A)	85.	(B)
11.	(A)	36.	(B)	61.	(B)	86.	(D)
12.	(D)	37.	(C)	62.	(C)	87.	(D)
13.	(B)	38.	(C)	63.	(C)	88.	(A)
14.	(C)	39.	(C)	64.	(D)	89.	(D)
15.	(A)	40.	(C)	65.	(D)	90.	(A)
16.	(C)	41.	(A)	66.	(A)	91.	(C)
17.	(B)	42.	(A)	67.	(C)	92.	(D)
18.	(A)	43.	(D)	68.	(B)	93.	(D)
19.	(B)	44.	(A)	69.	(C)	94.	(A)
20.	(D)	45.	(D)	70.	(A)	95.	(A)
21.	(C)	46.	(A)	71.	(A)	96.	(B)
22.	(A)	47.	(A)	72.	(B)	97.	(D)
23.	(C)	48.	(D)	73.	(B)	98.	(A)
24.	(C)	49.	(B)	74.	(D)	99.	(A)
25.	(D)	50.	(B)	75 .	(B)	100	. (C)