RPF (CONSTABLE) MOCK TEST - 9 (SOLUTION)

51. (B)

Let the side of the original square $=x$ unit So, area of this square $=x^{2}$ unit 2
\therefore Diameter of circle $=x$ unit
Now, the diagonal of square cut from this circle $=x$ unit

So, the side of this square $=\frac{x}{\sqrt{2}}$ unit
\therefore Required area $=\frac{\frac{x^{2}}{2}}{x^{2}} \times 100=50 \%$
Therefore, the area of the new square will be 50% of the area of the original square.
52. (C) When $\left(x^{5}-3 x^{4}+x^{3}+5 x-1\right)$ divided by $(x-2)$ Remainder
$=2^{5}-3 \times 2^{4}+2^{3}+5 \times 2-1$
$=32-48+8+10-1$
$=1$
53. (C)

Ratio of the CP $=21: 35=3: 5$
ATQ,
8 units $\rightarrow 1600$
1 unit $\rightarrow 200$
CP of the $1^{\text {st }}$ article $=₹ 600$
CP of the $\mathrm{II}^{\text {nd }}$ article $=₹ 1000$
The SP of the IInd article

$$
=1000 \times \frac{79}{100}=₹ 790
$$

54. (A) Let they meet after t hour.

ATQ,
time $(\mathrm{t})=\frac{835}{150+50}=\frac{835}{200}$ hours
\therefore Lines written by Ist boy
$=150 \times \frac{835}{200}=\frac{2505}{4}=626 \frac{1}{4}$ times
Therefore, they meet at $627^{\text {th }}$ line.
55. (D) CP of the total mixture

$$
=60 \times \frac{100}{125}=₹ 48 \mathrm{per} \mathrm{~kg}
$$

Ratio of their quantity $=12: 15$

$$
=4: 5
$$

ATQ,
5 units $=30$
1 unit = 6
So, the quantity of Basmati rice $=4 \times 6$

$$
=24 \mathrm{~kg}
$$

56. (B) Ram does 60% work in 12 days He completes the whole work
$\begin{aligned} & =\frac{12 \times 100}{60}\end{aligned}=20$ days Efficiency 4 : 2 : 1
Total work $=20 \times 4=80$ units
They complete rest 40% work

$$
=\frac{80 \times \frac{40}{100}}{7}=\frac{32}{7}=4 \frac{4}{7} \text { days }
$$

57. (C) Let the side of the square $=$ a unit ATQ,
Base perimeter of cylinder $=$ Side of the square
$\Rightarrow 2 \pi \mathrm{r}=\mathrm{a}$
$\Rightarrow \frac{r}{a}=\frac{1}{2 \pi} \Rightarrow \mathrm{r}: \mathrm{a}=1: 2 \pi$
58. (C) Let the original speed of the cyclist $=x \mathrm{~km} / \mathrm{hr}$ We have,

Distance $=\frac{S_{1} \times S_{2}}{\left(S-S_{2}\right)} \times$ time
$\Rightarrow 52=\frac{x \times(x-1)}{1} \times \frac{20}{60}$
$\Rightarrow x(x-1)=52 \times 3$
$\Rightarrow x(x-1)=13 \times 12$
$\Rightarrow x=13$
So, the original speed will be $13 \mathrm{~km} / \mathrm{hr}$.

$1 K D$
 Campus

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
59. (A) Given number
$\mathrm{N}=90 \times 66 \times 441 \times 324 \times 77$
$\mathrm{N}=3^{2} \times 10 \times 3 \times 22 \times 3^{2} \times 49 \times 3^{4} \times 4 \times 77$
$\mathrm{N}=3^{9} \times 10 \times 22 \times 49 \times 4 \times 77$
\therefore This number N is divisible by 3^{n}.
So, n should be 9 .
60. (C) ATQ,

Speed of B $=\frac{100}{10}=10 \mathrm{~m} / \mathrm{sec}$
Time taken by B to cover 1000 m
race $=\frac{1000}{10}=100 \mathrm{sec}$
\therefore Time taken by A to complete the race
$=100-10=90 \mathrm{sec}$
Now, time taken by B till injured

$$
=\frac{570}{10}=57 \mathrm{sec}
$$

And, time taken by B after he gets injured

$$
=\frac{430}{5}=86 \mathrm{sec}
$$

\therefore Total time taken by B $=57+86$

$$
=143 \mathrm{sec}
$$

So, A beats $B=143-90=53 \mathrm{sec}$
61. (A) $\sqrt{\frac{x}{y}}=6-\sqrt{\frac{y}{x}}$
$\Rightarrow \sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=6 \Rightarrow \frac{x+y}{\sqrt{x y}}=6$
$\Rightarrow \frac{x^{2}+y^{2}+2 x y}{x y}=36$
Now we have, $x-y=8$
$x^{2}+y^{2}=64+2 x y$
Now, the expression becomes,

$$
\begin{aligned}
\frac{64+4 x y}{x y}=36 & \Rightarrow \frac{64}{x y}=36-4=32 \\
& \Rightarrow x y=2
\end{aligned}
$$

62. (D) ATQ,
$55 \frac{5}{9} \%=\frac{500}{900}=\frac{5}{9}$

Required ratio $=8: 9$
63. (D)

\therefore There are 9 ribs in an umberella.
The angle between two consecutive ribs
$=\frac{360^{\circ}}{9}=40^{\circ}$
\therefore Area between two consecutive ribs of the circle $=\frac{40^{\circ}}{360^{\circ}} \times \pi r^{2}$
$=\frac{1}{9} \times \frac{22}{7} \times 18 \times 18=113.14 \mathrm{~cm}^{2}$
64. (B) If we take one number is 1 and other number should be anything else, then we find-
$(1,2) \Rightarrow 1 \times 2=2$
$(1,3) \Rightarrow 1 \times 3=3$
$1+3=4$
$(1,5) \Rightarrow 1 \times 5=5$

$$
1+5=6
$$

So, one of the numbers must be 1 .
65. (B) Let rate and quantity of petrol $100 /$ litre and ₹ 100 litre respectively.
So, rate \times quantity $=$ consumption

Now, $x=\frac{11500}{125}$
$\Rightarrow x=92$ litres
Percentage change in quantity of petrol

$$
=\frac{100-92}{100} \times 100 \%=8 \%
$$

66. (B) Given,
$x=5-2 \sqrt{6}$
$\Rightarrow x-5=-2 \sqrt{6}$
$\Rightarrow(x-5)^{2}=(-2 \sqrt{6})^{2}$
$\Rightarrow x^{2}+25-10 x=24$
$\Rightarrow x+\frac{1}{x}=10$
$\Rightarrow x+\frac{1}{x}+2=10+2$
$\Rightarrow\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}=2$
$\Rightarrow \sqrt{x}+\frac{1}{\sqrt{x}}=2 \sqrt{3}$
67. (A) Percentage of candidates who passed in the examination $=(72+75-60) \%$
= 87\%

Then, percentage of candidates who failed in examination $=(100-87) \%=13 \%$ ATQ,
$13 \% \rightarrow 5200$
$1 \% \rightarrow 400$
Then, total number of candidates, $=100 \%$

$$
=400 \times 100=40000
$$

68. (C) Area of a square playground $=992.25 \mathrm{~m}^{2}$ $\Rightarrow(\text { Side of ground })^{2}=992.25$
\Rightarrow Side $=31.5 \mathrm{~m}$
Perimeter of this playground

$$
=4 \times 31.5 \mathrm{~m}=126 \mathrm{~m}
$$

Time to walk one round around the ground

$$
=\frac{126}{\frac{29}{10}}=\frac{126 \times 10}{29}=43.45 \mathrm{~min}
$$

69. (B) Let second discount is $x \%$

ATQ,
$1800 \times \frac{(100-15)}{100} \times \frac{(100-x)}{100}=1178.1$
$\Rightarrow 100-x=\frac{117810}{18 \times 85}$
$\Rightarrow 100-x=77$
$\Rightarrow x=100-77$
$\Rightarrow x=23 \%$
70. (B) Let average runs till 14 innings be x.

ATQ,
$14 x+126=15(x+6)$
$\Rightarrow 14 x+126=90+15 x$
$\Rightarrow x=36$
Average after $15^{\text {th }}$ innings $=36+6=42$
71. (C)

Reflection of the point $\mathrm{P}\left(\frac{-10}{3},-5\right)$
is $\mathrm{Q}\left(\frac{-10}{3}, 5\right)$.
72. (C) Amountafter $2^{\text {nd }}$ year and $3^{\text {rd }}$ year is $₹ 1650$ and ₹ 1815 .

Interest when amount ₹ 1650 to ₹ 1815
$=1815-1650=₹ 165$
\therefore Rate of interest $=\frac{165}{1650} \times 100 \%$
$=10 \%$ (per annum)
73. (A) Let the two numbers be $5 x$ and $5 y$.

Then, LCM, $5 x y=100$
$\Rightarrow x y=20$
ATQ,
$5 x+5 y=45$
$x+y=9$
So, we take $x=5, y=4$
We get numbers are 25 and 20 .
Their difference $=25-20=5$
74. (B) Given expression

$$
\begin{aligned}
& x^{2}+\frac{1}{x^{2}}-11 \\
& =x^{2}+\frac{1}{x^{2}}-2-9 \\
& =\left(x-\frac{1}{x}\right)^{2}-3^{2} \\
& =\left(x-\frac{1}{x}+3\right)\left(x-\frac{1}{x}-3\right)
\end{aligned}
$$

So, the difference between these two factors $=x-\frac{1}{x}+3-\left(x-\frac{1}{x}\right)+3=6$
75. (A) Number of books in each stack
$=\mathrm{HCF}$ of $336,240,96=48$
240) $336(1$
96) $\frac{240}{240(2}$

192
$4 8 \longdiv { 9 6 } (2$
$\frac{96}{x}$
\therefore Total number of stacks
$=\frac{336}{48}+\frac{240}{48}+\frac{96}{48}$
$=7+5+2=14$
76. (B) We know that,
$\frac{M_{1} D_{1} H_{1}}{W_{1}}=\frac{M_{2} D_{2} H_{2}}{W_{2}}$
ATQ,
$\frac{60 \times 6}{1}=\frac{40 \times D_{2}}{2}$
$\Rightarrow \mathrm{D}_{2}=18$
\therefore Required number of days $=18$ days
77. (A) Let loss on selling the watch at ₹ $600=₹ x$ ATQ,
$x+600=765-2 x$
$\Rightarrow x+600=765-2 x$
$\Rightarrow 3 x=165$
$\Rightarrow x=55$
\therefore Cost price of watch $=₹ 655$
78. (D) ATQ,

Population of city after 3 years

$$
\begin{aligned}
& =80000\left(1+\frac{5}{100}\right)^{3} \\
& =80000 \times \frac{21}{20} \times \frac{21}{20} \times \frac{21}{20} \\
& =92610
\end{aligned}
$$

79. (B) First six prime number greather than 30 $=31,37,41,43,47,53$
ATQ,
Required average
$=\frac{31+37+41+43+47+53}{6}=\frac{252}{6}=42$
80. (B) LCM of 3,4 and $5=60$

The number divisible by 60 is also divisible by 3,4 and 5
\therefore Three digits number $=15$
81. (D) ATQ,

$$
\begin{aligned}
& \frac{400 \times 90}{100}+\frac{240 \times 25}{100}-x=270 \\
& \Rightarrow x=360+60-270=150
\end{aligned}
$$

82. (A) Required percentage

$$
=\frac{211-138}{138} \times 100=52.89 \%
$$

83. (C) Bank 1, Bank 4 and Bank 5
84. (B) $I=\frac{265}{143}=1.85$

II $=\frac{211}{109}=1.93$
$\therefore \mathrm{I}<\mathrm{II}$
85. (C) Required average amount

$$
\begin{aligned}
& =\frac{109+123+125+142+157}{5} \\
& =131.2
\end{aligned}
$$

86. (C) Plumbline is used by Manson for determining the vertical on an upright surface. While scalpel is used by surgeon for surgery.
87. (A) As,

Similarly,

88. (B) As, $(16)^{2} \Rightarrow(16+1)^{2}+1=290$ Similarly,
$(31)^{2} \Rightarrow(31+1)^{2}+1=\mathbf{1 0 2 5}$
89. (B) As, $16+\frac{16}{2}=24$

Similarly, $90+\frac{90}{2}=\mathbf{1 3 5}$
90. (B)

Similarly

91. (C)
92. (D)

93. (C) Except 2198, all others are the perfect cubes.
94. (D) Except G, all others are vowel.
95. (C)

96. (C) $5+6=11,11+6=17,17+11=28$ $28+17=45,28+45=73,73+45=118$
97. (B) As, $9+4+6-(5+3)=11$ and, $8+6+4-(4+2)=12$ Similarly, $5+4+5-(2+3)=\mathbf{9}$
98. (C)
99. (C)

100. (B)

So, Hour Hand will be in North-west direction
101. (A) From figures,

N	B	S
N	Q	T

Hence, Q is opposite to the face containing B .
102. (A)
103. (D)
104. (B)

105. (C)

106. (A)

107. (B)

108. (D)

109. (A) accab/accab/accab
110. (D)

I. \times
II. \times

Hence, Neither conclusion (I) non (II) follows
111. (C) As,

Similarly,

112. (A) 56 B 14 C 7 D 18 A $12=34$

After changing the signs,
$56 \div 14 \times 7+18-12=34$
$\Rightarrow 28+18-12=34$
$\Rightarrow 34=34$
113. (B) ATQ,
$9+27 \div 3>4 \times 3$
$\Rightarrow 18>12$
114. (D)
115. (D)
116. (B)

Required distance $=\sqrt{6^{2}+8^{2}}=10 \mathbf{m}$
117. (A)
118. (B)
119. (D) Total number of triangles $=\mathbf{1 5}$
120. (A) $\begin{array}{cccc}T & O & M & B \\ \downarrow & \downarrow & \downarrow & \downarrow \\ & 77 & 69 & 43 \\ & 22\end{array}$

Answer key

1. (C)	16. (B)	31. (B)	46. (B)
2. (C)	17. (A)	32. (A)	47. (C)
3. (D)	18. (A)	33. (A)	48. (D)
4. (A)	19. (B)	34. (A)	49. (D)
5. (C)	20. (B)	35. (A)	50. (D)
6. (C)	21. (C)	36. (B)	51. (B)
7. (C)	22. (A)	37. (A)	52. (C)
8. (A)	23. (C)	38. (A)	53. (C)
9. (B)	24. (A)	39. (A)	54. (A)
10. (B)	25. (D)	40. (C)	55. (D)
11. (B)	26. (A)	41. (B)	56. (B)
12. (C)	27. (C)	42. (B)	57. (C)
13. (C)	28. (D)	43. (C)	58. (C)
14. (C)	29. (C)	44. (D)	59. (A)
15. (A)	30. (D)	45. (A)	60. (C)

61. (A)	76. (B)	91. (C)	106.(A)
62. (D)	77. (A)	92. (D)	107.(B)
63. (D)	78. (D)	93. (C)	108.(D)
64. (B)	79. (B)	94. (D)	109.(A)
65. (B)	80. (B)	95. (C)	110.(D)
66. (B)	81. (D)	96. (C)	111.(C)
67. (A)	82. (A)	97. (B)	112.(A)
68. (C)	83. (C)	98. (C)	113.(B)
69. (B)	84. (B)	99. (C)	114.(D)
70. (B)	85. (C)	100.(B)	115.(D)
71. (C)	86. (C)	101.(A)	116.(B)
72. (C)	87. (A)	102.(A)	117.(A)
73. (A)	88. (B)	103.(D)	118.(B)
74. (B)	89. (B)	104.(B)	119.(D)
75. (A)	90. (B)	105.(C)	120. (A)

