Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

SSC TIER II (MATHS) MOCK TEST - 34 (SOLUTION)

1. (B) Last two digits of 7^{n}
$7^{1}-07$
$7^{2}-49$
$7^{3}-43$
$7^{4}-01$
Cyclicity of 7^{n} is 4 .
$145=4 \times 36+1$
$7^{145} \rightarrow 7^{4 \times 36+1} \rightarrow 7^{1} \rightarrow 07$
\Rightarrow Last two digits of 7^{n} is 07
$\therefore \quad$ Required sum $=0+7=7$
2. (D) Let Ajay and Vijay's present age be $2 x$, $3 x$.
4 years ago their age was $2 x-4,3 x-4$ A.T.Q.,
$2 x-4: 3 x-4=3: 5$
$\frac{2 x-4}{3 x-4}=\frac{3}{5}$
$10 x-20=9 x-12$
$x=20-12=8$
$\therefore \quad$ Vijay's present age $=3 x=24$ years
3. (C) Let the installments be $\frac{a}{r}$, a, $a r$

Total payment $=3584$
$\therefore \quad \frac{a}{r}+a+a r=3584$
$\Rightarrow \frac{a}{r}\left(1+\mathrm{r}+\mathrm{r}^{2}\right)=3584$

$\mathrm{R}=14 \frac{2}{7} \%=\frac{1}{7}$
$1+\mathrm{R}=1+\frac{1}{7}=\frac{8}{7}$
Shifting all installment back to point A and equating
$\frac{a}{r} \times \frac{7}{8}+a \times \frac{7}{8} \times \frac{7}{8}+a r \times \frac{7}{8} \times \frac{7}{8} \times \frac{7}{8}=₹ 2604$
$\frac{a}{r}\left[\frac{448+392 r+343 r^{2}}{512}\right]=2604$
$\frac{a}{r}\left[448+392 r+343 r^{2}\right]=2604 \times 512$
Dividing equation (i) by equation (ii)
$\Rightarrow \frac{1+r+r^{2}}{448+392 r+343 r^{2}}=\frac{3584}{2604 \times 512}=\frac{1}{372}$
$\Rightarrow 372+372 r+372 r^{2}=448+392 r+343 r^{2}$
$\Rightarrow 29 r^{2}-20 r-76=0$
$\Rightarrow 29 r^{2}-58 r+38 r-76=0$
$\Rightarrow 29 r(r-2)+38(r-2)=0$
$\Rightarrow r=2$ as $r \neq \frac{-38}{29}$
(G.P is increasing)

Now, $\frac{a}{2}\left(1+r+r^{2}\right)=3584$
$\frac{a}{2}(1+2+4)=3584$
$\frac{a}{2}=\frac{3584}{7}=512$
$2 a=512 \times 4=₹ 2048$
$\therefore \quad$ Last installment $=a r=2 a=₹ 2048$
4. (A)

Let the height of tower be H . In $\triangle \mathrm{ABE}$
$\frac{\mathrm{H}}{\mathrm{AB}}=\tan 60^{\circ}=\sqrt{3}$
$\Rightarrow \quad \mathrm{AB}=\frac{\mathrm{H}}{\sqrt{3}}$
In $\triangle \mathrm{ACE}$
$\frac{\mathrm{H}}{\mathrm{AC}}=\tan 45^{\circ}=1$
$\Rightarrow \mathrm{AC}=\mathrm{H}$
In $\triangle \mathrm{ADE}$
$\frac{\mathrm{H}}{\mathrm{AD}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\Rightarrow \mathrm{AD}=\sqrt{3} \mathrm{H}$
ATQ, speed of car is constant,
So, Distance α time
$\frac{C D}{B C}=\frac{T_{C D}}{T_{B C}}$
$\frac{C D}{B C}=\frac{173 \mathrm{sec}}{\mathrm{T}_{\mathrm{BC}}}$
$\frac{C D}{B C}=\frac{A D-A C}{A C-A B}=\frac{\sqrt{3} H-H}{H-\frac{H}{\sqrt{3}}}=\frac{173}{T_{B C}}$
$\frac{\frac{\sqrt{3}-1}{\sqrt{3}-1}}{\sqrt{3}}=\frac{173}{\mathrm{~T}_{\mathrm{BC}}}$

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\sqrt{3}=\frac{173}{\mathrm{~T}_{\mathrm{BC}}}$
$\mathrm{T}_{\mathrm{BC}}=\frac{173}{\sqrt{3}}=\frac{173}{1.73}=100 \mathrm{sec}$
As, $B C=500 \mathrm{~m}$
and $T_{B C}=100 \mathrm{sec}$
$\therefore \quad$ Speed of car $=\frac{B C}{T_{B C}}=\frac{500 \mathrm{~m}}{100 \mathrm{sec}}=5 \mathrm{~m} / \mathrm{s}$
5. (D) Divisors

Step1. $7 \times 1+2=9$
Step2. $9 \times 6+3=57$
Step3. $57 \times 5+4=289$
\Rightarrow least such number $=289$
Generalized number
$\mathrm{N}=n$ (product of divisors) + least such number.
where $n=0,1,2, \ldots \ldots$.
$\Rightarrow \mathrm{N}=n(5 \times 6 \times 7 \times 8)+289$
$\Rightarrow \mathrm{N}=n(5 \times 2 \times 3 \times 7 \times 4 \times 2)+289$
$\mathrm{N}=\mathrm{n}(5 \times 2 \times 2 \times 3 \times 7 \times 4)+289$
$\mathrm{N}=\mathrm{n}(20 \times 84)+289$
On division by $84, \mathrm{~N}$ will always have same remainder
$\therefore \quad$ Required remainder $=$ Remainder $\left(\frac{289}{84}\right)$
$=37$
6. (B) Let $x=\mathrm{H} a$ and $y=\mathrm{H} b$
where $\mathrm{H}=\mathrm{HCF}(x, y)$
and x, y are coprime
\Rightarrow LCM $=\mathrm{Hab}$
A.T.Q,
$\operatorname{HCF}(x, y)+\operatorname{LCM}(x, y)=\mathrm{H}+\mathrm{Hab}=91$
$\Rightarrow \mathrm{H}+\mathrm{Hab}=13 \times 7$
$\Rightarrow \mathrm{H}(1+a b)=13 \times 7$
when $\mathrm{H}=1,1+a b=91$
$\Rightarrow a b=90=2 \times 3 \times 3 \times 5$
Total possible pairs $=2^{3-1}=2^{2}=4$
when $\mathrm{H}=7,1+a b=13$
$\Rightarrow a b=12=2 \times 6=2 \times 2 \times 3$
Total possible pairs $=2^{2-1}=2^{1}=2$
when $\mathrm{H}=13,1+a b=7$
$\Rightarrow a b=6=2 \times 3$
Total possible pairs $=2^{2-1}=2^{1}=2$
when $\mathrm{H}=91,1+a b=1$
$\Rightarrow a b=0$
No pair possible in this case
Hence total possible pairs $=4+2+2$
\therefore Required no. of pairs $=8$ pairs
7. (A) $1080=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5=2^{3} \times 3^{3} \times 5^{1}$

m	n	p
2^{0}	3^{0}	5^{0}
2^{2}	3^{2}	

No of all possible perfect square factors
$=m \times n \times p=2 \times 2 \times 1=4$
8. (B) A.T.Q.,

$$
\begin{aligned}
& x+\frac{6}{x}=5 \Rightarrow x^{2}-5 x+6=0 \\
\Rightarrow & x=2 \text { and } 3 \\
& \text { and },(y-x)^{3}=(y-2)^{3}=1 \\
\Rightarrow & (y-2)^{3}=1^{3} \\
\Rightarrow & y-2=1 \\
\Rightarrow & y=3 \\
\Rightarrow & (x+y)^{2}=(2+3)^{2} \\
\Rightarrow & (x+y)^{2}=5^{2}=25 \\
\therefore & (x+y)^{2}=25
\end{aligned}
$$

9. (D) A,B and C can Complete the entire work in 20, 25 and 100 days respectively.
Let the total work be $\operatorname{LCM}(20,25,100)$
$=100$ units
A's efficiency $=\frac{100 \text { units }}{20 \text { days }}=5$ units $/$ day
B's efficiency $=\frac{100 \text { units }}{25 \text { days }}=4$ units $/$ day
C's efficiency $=\frac{100 \text { units }}{100 \text { days }}=1$ unit $/$ day
A, B and C were supposed to do the work together
$\therefore \quad$ Scheduled time $=\frac{100 \text { units }}{(5+4+1) \text { unit } / \text { days }}$
$=10$ days
\Rightarrow B left after 6 days
Drawing worker's-Time line
60units
$100-(60+4)=36$ unit 4 units
$A+B+C=5+4+1 \quad A+C=5+1$

6 day's A, B, C work $=(5+4+1) \times 6=60$ units
4 day's C's work $=1 \times 4=4$ units
Remaining work $=100-(60+4)=36$ units As, this remaining work was done by A \& C
Time taken by A \& C to complete 36 units
$=\frac{36 \text { units }}{6 \text { unit } / \text { days }}=6$ days
Now,
A works for $=6+6=12$ days
B works for $=6$ days
C works for $=6+6+4=16$ days
Ratio of A, B \& C work $=12 \times 5: 4 \times 6: 16 \times 1$ $=60: 24: 16=15: 6: 4$
$\therefore \quad$ C's share $=₹ 15000 \times \frac{4}{(15+6+4)}=₹ 2400$

$K D$

 Campus

 Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
10. (C) Let the number be $10 x+y$
A.T.Q.,
$\frac{10 x+y}{10 y+x}=\frac{4}{7}$
$\Rightarrow 70 x+7 y=40 y+4 x$
$\Rightarrow 66 x=33 y \Rightarrow \frac{x}{y}=\frac{1}{2}$
\Rightarrow Possible numbers, $x y=12,24,36,48$ and its reverse $y x=21,42,63,84$
\therefore Required sum $=12+21+24+42+$ $36+63+48+84=330$
11. (B) Average of 9 consecutive numbers is 5 th number $=$ let $a_{5}=\mathrm{T}$
Average of 12 consecutive numbers
$=\frac{a_{6}+a_{7}}{2}$
$a_{6}=a_{5}+1=\mathrm{T}+1$
$a_{7}=a_{5}+2=\mathrm{T}+2$
$\therefore \quad$ New average $=\frac{a_{6}+a_{7}}{2}=\frac{\mathrm{T}+1+\mathrm{T}+2}{2}$

$$
=\frac{2 \mathrm{~T}+3}{2}=\mathrm{T}+1.5
$$

$\therefore \quad$ Required increase in average $=1.5$
12. (C) $8 \cos \mathrm{~A}+15 \sin \mathrm{~A}+15$
$=17\left(\frac{8}{17} \cos A+\frac{15}{17} \sin A\right)+15$
$=17(\sin B \cos A+\cos B \cdot \sin A)+15$
$\left[\operatorname{Let} \frac{8}{17}=\sin B \& \frac{15}{17}=\cos B\right]$
$=17 \sin (\mathrm{~A}+\mathrm{B})+15$
Now,
$[+1<\sin (\mathrm{A}+\mathrm{B}) \leq-1]$
$\Rightarrow[\sin (\mathrm{A}+\mathrm{B})]_{\min }=-1$
$\Rightarrow[\sin (A+B)] \max =1$
$\therefore \quad$ Required max value $=17 \times 1+15=32$
\& Required min value $=17 \times-1+15=-2$
13. (A)

	A	B	$\mathrm{A}+\mathrm{B}$
TIME	x	$x+12$	$x-4$

$\frac{1}{x-4}=\frac{1}{x}+\frac{1}{x+12}$
Let $y=x-4$
$\Rightarrow \frac{1}{y}=\frac{1}{y+4}+\frac{1}{y+16}$
$\Rightarrow y=\sqrt{4 \times 16}=8 \mathrm{hrs}$
$\Rightarrow x=y+4=8+4=12 \mathrm{hrs}$
$\Rightarrow x-4=12-4=8 \mathrm{hrs}$
$\mathrm{A}+\mathrm{B}$ will take 8 hr to complete the work
$\therefore \quad \mathrm{A}+\mathrm{B}$ will take 16 hr to complete twice difficult work.
14. (A) $\left(3^{33}+3^{33}+3^{33}\right) \cdot\left(2^{33}+2^{33}\right)=6^{x}$
$3^{33}(1+1+1) \cdot 2^{33}(1+1)=6^{x}$
$\Rightarrow\left(3.3^{33}\right) \cdot\left(2 \cdot 2^{33}\right)=6^{x}$
$\Rightarrow 3^{34} .2^{34}=6^{x}$
$\Rightarrow 6^{34}=6^{x} \Rightarrow x=34$
15. (C) Case A:

In $\triangle A B C$
$\frac{\mathrm{AB}}{\mathrm{H}}=\cot 30^{\circ}$
$\Rightarrow \mathrm{AB}=\sqrt{3} \mathrm{H}$
In $\triangle \mathrm{BDC}$
$\frac{\mathrm{DB}}{\mathrm{H}}=\cot 60^{\circ}$
$\Rightarrow \mathrm{BD}=\frac{\mathrm{H}}{\sqrt{3}}=20$
$\mathrm{AD}=\mathrm{AB}-\mathrm{BD}=20$
$\Rightarrow \sqrt{3} H-\frac{H}{\sqrt{3}}=20$
$\Rightarrow \frac{3 H-H}{\sqrt{3}}=20$
$\Rightarrow 2 \mathrm{H}=20 \sqrt{3}$
$\Rightarrow \mathrm{H}=10 \sqrt{3} \mathrm{~km}$
Case B:

In $\triangle \mathrm{ADC}$

$$
\begin{aligned}
\frac{\mathrm{AD}}{\mathrm{H}} & =\cot 30^{\circ} \\
\Rightarrow \mathrm{AD} & =\mathrm{H} \sqrt{3}
\end{aligned}
$$

$$
\text { In } \triangle \mathrm{BDC}
$$

$$
\begin{aligned}
\frac{\mathrm{BD}}{\mathrm{H}} & =\cot 60^{\circ} \\
\Rightarrow \mathrm{BD} & =\frac{\mathrm{H}}{\sqrt{3}} \\
\mathrm{AB} & =\mathrm{AD}+\mathrm{BD}=20
\end{aligned}
$$

$\Rightarrow \sqrt{3} \mathrm{H}+\frac{\mathrm{H}}{\sqrt{3}}=20 \Rightarrow \frac{3 \mathrm{H}+\mathrm{H}}{\sqrt{3}}=20$

Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\Rightarrow 4 \mathrm{H}=20 \sqrt{3} \Rightarrow \mathrm{H}=5 \sqrt{3} \mathrm{~km}$
16. (B) $t=\frac{2 \sin x}{1+\cos x+\sin x}$
$\Rightarrow \frac{2 \sin x}{1+\cos x+\sin x} \times \frac{(1+\sin x-\cos x)}{(1+\sin x-\cos x)}$
$\Rightarrow \mathrm{t}=2 \sin x \times \frac{1+\sin x-\cos x}{\left((1+\sin x)^{2}-\cos ^{2} x\right)}$
$\Rightarrow \mathrm{t}=2 \sin x\left(\frac{1+\sin x-\cos x}{1+\sin ^{2} x+2 \sin x-\cos ^{2} x}\right)$
$\Rightarrow \mathrm{t}=2 \sin x \times \frac{1+\sin x-\cos x}{\left(\cos ^{2} x+\sin ^{2} x\right)+\sin ^{2} x+2 \sin x-\cos ^{2} x}$
$\Rightarrow \mathrm{t}=2 \sin x\left(\frac{1+\sin x-\cos x}{2 \sin ^{2} x+2 \sin x}\right)$
$\Rightarrow \mathrm{t}=2 \sin x \times \frac{(1+\sin x-\cos x)}{2 \sin x(1+\sin x)}$
$\Rightarrow \mathrm{t}=\frac{1-\cos x+\sin x}{1+\sin x}$
17. (C)

B's efficiency $=(3-2)=1$ unit/day
\therefore Time taken by $\mathrm{B}=\frac{24}{1}$ days $=24$ days
18. (B) $\cos \mathrm{A}+\cos ^{2} \mathrm{~A}=1$
$\Rightarrow \cos \mathrm{A}=\sin ^{2} \mathrm{~A}$
$\Rightarrow \cos ^{2} \mathrm{~A}=\sin ^{4} \mathrm{~A}$
$\Rightarrow 1-\sin ^{2} \mathrm{~A}=\sin ^{4} \mathrm{~A}$
$\Rightarrow 1=\left(\sin ^{4} \mathrm{~A}+\sin ^{2} \mathrm{~A}\right)$
$\Rightarrow 1^{3}=\left(\sin ^{4} \mathrm{~A}+\sin ^{2} \mathrm{~A}\right)^{3}$
$\Rightarrow 1=\sin ^{12} \mathrm{~A}+\sin ^{6} \mathrm{~A}+3 \sin ^{8} \mathrm{~A}+\sin ^{10} \mathrm{~A}$
$\Rightarrow \sin ^{12} A+\sin ^{6} A+3 \sin ^{8} A+3 \sin ^{10} A-1=0$
$\Rightarrow \sin ^{12} \mathrm{~A}+3 \sin ^{10} \mathrm{~A}+3 \sin ^{8} \mathrm{~A}+\sin ^{6} \mathrm{~A}-1=10$
On comparing with given equation
$a=1, b=3, c=3, d=1$
Now, $a+\frac{2 b}{c}+d=1+\frac{2 \times 3}{3}+1=1+2+1=4$
19. (B) Let the distance between cities be $=x$

Time taken by car $\mathrm{A}=\frac{x}{72}$
Time taken by car $\mathrm{B}=\frac{x}{90}$
A.T.Q.,
$\frac{x}{72}-\frac{x}{90}=1$
$\operatorname{LCM}(72,90)=360$

Value of x may be 360 or its multiple. Verification :

$$
\frac{360}{72}-\frac{360}{90}=5-4=1
$$

$\therefore \quad x=360 \mathrm{~km}$
20. (C) A.T.Q,

$$
12 \mathrm{~A}=16 \mathrm{~B}=15 \mathrm{C}
$$

$\Rightarrow \mathrm{A}: \mathrm{B}: \mathrm{C}=\frac{1}{12}: \frac{1}{16}: \frac{1}{15}$
$\Rightarrow A: B: C=16 \times 15: 12 \times 15: 12 \times 16$

$$
=4 \times 5: 3 \times 5: 4 \times 4
$$

$\Rightarrow \mathrm{A}: \mathrm{B}: \mathrm{C}=20: 15: 16$
21. (B) $\tan \phi+\sin \phi=m$
$\tan \phi-\sin \phi=n$
Adding both equation, we get
$\tan \phi=\frac{(m+n)}{2}$
$\Rightarrow \cot \theta=\left(\frac{2}{m+n}\right)$
Substracting both equation, we get
$\sin \phi=\frac{m-n}{2}$
$\Rightarrow \operatorname{cosec} \theta=\frac{2}{m-n}$
As, $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$
$\Rightarrow\left(\frac{2}{m-n}\right)^{2}-\left(\frac{2}{m+n}\right)^{2}=1$
$\Rightarrow \frac{4\left[(m+n)^{2}-(m-n)^{2}\right]}{\left(m^{2}-n^{2}\right)^{2}}=1$
$\Rightarrow \frac{4(4 m n)}{\left(m^{2}-n^{2}\right)^{2}}=1$
$\Rightarrow\left(m^{2}-n^{2}\right)^{2}=4(4 m n)$
$\Rightarrow\left(m^{2}-n^{2}\right)=\sqrt{4 \times 4 m n}$
$\Rightarrow\left(m^{2}-n^{2}\right)=4 \sqrt{m n}$
22. (B) $\sin \theta+\sin ^{2} \theta=1$
$\Rightarrow \sin \theta=1-\sin ^{2} \theta$
$\Rightarrow \sin \theta=\cos ^{2} \theta$
$\Rightarrow \frac{\sin \theta}{\cos \theta}=\cos \theta$
$\Rightarrow \tan \theta=\cos \theta$
Putting value of $\sin \theta$ from eq(ii) to eq(i)
$\cos ^{2} \theta+\left(\cos ^{2} \theta\right)^{2}=1$
Putting value of $\cos \theta$ from eq(iii) to eq(iv)
$\tan ^{2} \theta+\left(\tan ^{2} \theta\right)^{2}=1$
$\Rightarrow\left(\sec ^{2} \theta-1\right)+\left(\sec ^{2} \theta-1\right)^{2}=1$
$\Rightarrow \sec ^{2} \theta-1+\sec ^{4} \theta+1-2 \sec ^{2} \theta=1$
$\Rightarrow \sec ^{4} \theta-\sec ^{2} \theta=1$
Squaring both sides
$\sec ^{8} \theta+\sec ^{4} \theta-2 \sec ^{6}=1$

K

 Campus

 Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

Multiplying both side by 3
$3 \sec ^{8} \theta+3 \sec ^{4} \theta-6 \sec ^{6} \theta=3$
Adding equation (v)
$\Rightarrow 3 \sec ^{8} \theta+3 \sec ^{4} \theta-6 \sec ^{6} \theta+\sec ^{4} \theta-\sec ^{2} \theta$
$=3+1=4$
$\Rightarrow 3 \sec ^{8} \theta-6 \sec ^{6} \theta+4 \sec ^{4} \theta-\sec ^{2} \theta+1=4+1$
$\Rightarrow 3 \sec ^{8} \theta-6 \sec ^{6} \theta+4 \sec ^{4} \theta-\sec ^{2} \theta+1=5$
$\therefore \quad 3 \sec ^{8} \theta-6 \sec ^{6} \theta+4 \sec ^{4} \theta-\sec ^{2} \theta+1=5$
23. (B)

According basic proportionality theorem ($\mathrm{DE}|\mid \mathrm{BC}$)

$$
\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{DE}}{\mathrm{BC}}
$$

$\Rightarrow \frac{8}{28}=\frac{\mathrm{DE}}{20}$
$\Rightarrow \mathrm{DE}=\frac{8 \times 20}{28}=\frac{2 \times 20}{7}=\frac{40}{7} \mathrm{~cm}$
Now,
Area of $\triangle \mathrm{ADE}=\frac{1}{2} \times \mathrm{AD} \times \mathrm{DE}$

$$
=\frac{1}{2} \times 8 \times \frac{40}{7}=\frac{160}{7} \mathrm{~cm}^{2}
$$

$\therefore \quad$ Required Area $=\frac{160}{7} \mathrm{~cm}^{2}$
24. (A) $x=\frac{4 \sqrt{a b}}{\sqrt{a}+\sqrt{b}}$
$\Rightarrow \frac{x}{2 \sqrt{a}}=\frac{2 \sqrt{b}}{\sqrt{a}+\sqrt{b}} \& \frac{x}{2 \sqrt{b}}=\frac{2 \sqrt{a}}{\sqrt{a}+\sqrt{b}}$
Applying componendo \& dividendo
$\frac{x+2 \sqrt{a}}{x-2 \sqrt{a}}=\frac{2 \sqrt{b}+\sqrt{a}+\sqrt{b}}{2 \sqrt{b}-\sqrt{a}-\sqrt{b}}=\frac{3 \sqrt{b}+\sqrt{a}}{\sqrt{b}-\sqrt{a}}$
and $\frac{x}{2 \sqrt{b}}=\frac{2 \sqrt{a}}{\sqrt{a}+\sqrt{b}}$
$\frac{x+2 \sqrt{b}}{x-2 \sqrt{b}}=\frac{2 \sqrt{a}+\sqrt{a}+\sqrt{b}}{2 \sqrt{a}-\sqrt{a}-\sqrt{b}}=\frac{3 \sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$.
Adding (i) and (ii)
$\frac{x+2 \sqrt{a}}{x-2 \sqrt{a}}+\frac{x+2 \sqrt{b}}{x-2 \sqrt{b}}=\frac{3 \sqrt{b}+\sqrt{a}}{\sqrt{b}-\sqrt{a}}+\frac{3 \sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$
$=\frac{3 \sqrt{b}+\sqrt{a}}{\sqrt{b}-\sqrt{a}}-\frac{3 \sqrt{a}+\sqrt{b}}{\sqrt{b}-\sqrt{a}}$

$$
=\frac{2(\sqrt{b}-\sqrt{a})}{\sqrt{b}-\sqrt{a}}=2
$$

25. (A) Cummulative surface area of two pieces $=25 \%$ more than surface area of sphere.
\Rightarrow Area of two pieces $=1.25 \times 4 \pi r^{2}=5 \pi r^{2}$
\Rightarrow Extra Area $=5 \pi r^{2}-4 \pi r^{2}=\pi r^{2}$ Now,
Extra Area $=$ Area of 2 new equal circles created
\Rightarrow Area of each new circle $=\frac{\pi r^{2}}{2}$
let the radius of new circle be r_{1}
Now, $\pi r_{1}{ }^{2}=\frac{\pi r^{2}}{2}$
$\Rightarrow r_{1}=\frac{r}{\sqrt{2}}$

Now, r_{1}, h and r are sides of right angle triangles
$\Rightarrow h^{2}+r_{1}^{2}=r^{2}$
$\Rightarrow h^{2}+\left(\frac{r}{\sqrt{2}}\right)^{2}=r^{2}$
$\Rightarrow h^{2}=\frac{r^{2}}{2}$
$\Rightarrow h=\frac{r}{\sqrt{2}}$
26. (C) Average of n (odd) number in $\mathrm{AP}=$ middle number
Average of $n=35$ even numbers (AP) $=$ $18^{\text {th }}$ term.
$\Rightarrow 18^{\text {th }}$ term $=44$
let first term (smallest term) be $=a$
$\mathrm{T}_{n}=a+(n-1) d$
$44=a+(18-1) \times 2$
$44=a+34$
$a=44-34=10$
27. (B)

$K D$
 Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

Sum of all internal angle of pentagon $=(5-2) \times 180^{\circ}=540^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}=540^{\circ}$
$\therefore \quad$ Required area $=\frac{540^{\circ}}{360^{\circ}} \times \pi r^{2}$

$$
=1.5 \pi r^{2}
$$

28. (A) Area of $\Delta=\frac{1}{2} \times 8 \times 15 \times \sin \theta$
angle between sides ($8 \mathrm{~cm} \& 15 \mathrm{~cm}$)
Maximum value of $\theta=90^{\circ}$
(Area) max $=\frac{1}{2} \times 8 \times 15=60 \mathrm{~cm}^{2}$
\therefore Required Area $\angle 60 \mathrm{~cm}^{2}$
$\therefore \quad$ option (A) is correct.
29. (B) Let r be the circumradius of $\triangle \mathrm{ABC}$,
$\therefore \quad \mathrm{R}=2+r$
We know from the properties of equilateral triangle.
$r=\frac{\text { sides }}{\sqrt{3}}=\frac{4}{\sqrt{3}}$
\therefore Radius of circle circumcribing the figure
$=R=2+\frac{4}{\sqrt{3}}=\frac{(2 \sqrt{3}+4)}{\sqrt{3}}$
$\therefore \quad$ Required area $=\pi \cdot \mathrm{R}^{2}=\pi \cdot \frac{(2 \sqrt{3}+4)^{2}}{(\sqrt{3})^{2}}$
$=\frac{\pi}{3}(4+2 \sqrt{3})^{2}$
30. (D) Let x be number of boys
$\& y$ be number of girls
A.T.Q.,
$\frac{\frac{x}{2}+y}{\frac{x}{2}}=\frac{3}{2}$
$\Rightarrow \frac{x}{2}+y=\frac{3}{2} \cdot \frac{x}{2}$
$\Rightarrow 2 x+4 y=3 x$
$\Rightarrow 4 y=x$
$\therefore \quad$ Required percentage $=\frac{y}{x+y} \times 100$

$$
=\frac{y}{4 y+y} \times 100
$$

$=\frac{1}{5} \times 100=20$
31. (D) Let the number be N
A.T.Q,
$\mathrm{N}=6 \mathrm{q}_{1}+5$
$\mathrm{N}=5 \mathrm{q}_{2}+3$

Multiplying equation (i) by 5
and equation (ii) by 6
$5 \mathrm{~N}=30 \mathrm{q}_{1}+25$
$6 \mathrm{~N}=30 \mathrm{q}_{2}+18$
Substracting equation (iii) from eq(iv) $6 \mathrm{~N}-5 \mathrm{~N}=30\left(\mathrm{q}_{2}-\mathrm{q}_{1}\right)+18-25$
$\Rightarrow \mathrm{N}=30\left(\mathrm{q}_{2}-\mathrm{q}_{1}\right)-7$
Adding and substrating 30
$\Rightarrow \mathrm{N}=30\left(\mathrm{q}_{2}-\mathrm{q}_{1}-1\right)+30-7$
$\Rightarrow \mathrm{N}=30 x+23$ [where $x=\left(\mathrm{q}_{2}-\mathrm{q}_{1}-1\right)$]
For least value of N, $x=0$
$\Rightarrow \mathrm{N}=23$
$\therefore \quad$ Required number $=23$
$\therefore \quad$ Required sum of digits of number $=2+3$ $=5$
32. (A) Let the efficiency of a man $=2$ units / day efficiency of a woman(minimum) =1unit/day efficiency of a woman(maximum) $=2$ units / day

Case A

when efficiency of a woman =1 unit/day Total work $=(4 \times 2+6 \times 1) 24=14 \times 24$ units
$\therefore \quad$ Required time $($ maximum $)=\frac{14 \times 24}{(2 \times 2+6 \times 1)}$

$$
=\frac{14 \times 24}{10}=33.6 \text { days }
$$

Case B

when efficiency of a woman $=2$ units / day Total work $=(4 \times 2+6 \times 2) \times 24$ units
$=20 \times 24$ units
$\therefore \quad$ Required time $($ minimum $)=\frac{20 \times 24}{(2 \times 2+6 \times 2)}$
$=\frac{20 \times 24}{16}$ days $=30$ days
\therefore Required range $=30$ to 33.6 days
33. (A) $5^{x}=30^{-y}=6^{z}=k$
$5=k^{\frac{1}{x}}$
$30=k^{\frac{-1}{y}}$
$6=k^{\frac{1}{z}}$
Now, $5 \times 6=30$
$\Rightarrow k^{\frac{1}{x}} \cdot k^{\frac{+1}{z}}=k^{\frac{-1}{y}}$
$\Rightarrow k^{\frac{1}{x}+\frac{1}{z}}=k^{\frac{-1}{y}}$
$\Rightarrow \frac{1}{x}+\frac{1}{z}=\frac{-1}{y}$
$\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$

$K>$
 Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

$$
\begin{aligned}
& \Rightarrow \frac{x y+y z+z x}{x y z}=0 \\
& \Rightarrow \frac{x y+y z+z x}{3 x y z}=0
\end{aligned}
$$

34. (A)

Sum of opposite angles of cyclic quadrileteral $=180^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
\& $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
A.T.Q.,
$\angle \mathrm{A}=\angle \mathrm{C} \& \angle \mathrm{~B}=\angle \mathrm{D}$
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$
$\Rightarrow \mathrm{ABCD}$ is a rectangle.
Now, in right angle $\triangle \mathrm{BCD}$
$\Rightarrow \mathrm{d}^{2}=(6)^{2}+(8)^{2}$
$\Rightarrow d^{2}=36+64$
$\Rightarrow \mathrm{d}^{2}=100$
$\Rightarrow \mathrm{d}=10 \mathrm{~cm}$
$\Rightarrow r=5 \mathrm{~cm}$
$\therefore \quad$ Area of circle $=\pi r^{2}=\pi(5)^{2}=25 \pi$ sq. cm.
35. (C) Let $\mathrm{CP}=₹ 100$
$\mathrm{MP}=100+25 \%$ of $100=₹ 125$
S.P = ₹ $125-10 \%$ of 125
$=₹ 125-12.5=112.5$
$\therefore \quad$ profit $\%=\frac{12.5}{100} \times 100=12.5$
36. (B) CP:15 mango \rightarrow ₹ 20
$\Rightarrow 60$ mangos \rightarrow ₹ 80
SP:20 mango $\rightarrow ₹ 15$
$\Rightarrow 60$ mangos $\rightarrow ₹ 45$
As, SP < CP \Rightarrow loss
$\operatorname{Loss} \%=\frac{80-45}{80} \times 100=\frac{35}{80} \times 100$
$\therefore \quad$ Loss $=43 \frac{3}{4} \%$
37. (D)

In equilateral triangle, or the centre, centroid and incentre all lies at one point.
\Rightarrow Point O is also centroid for centriod: $\quad \mathrm{AO}: O D=2: 1$
$\Rightarrow \mathrm{AO}: \mathrm{AD}=2: 3$
Now, In $\triangle \mathrm{ADC}, \angle \mathrm{D}=90^{\circ}$
$\mathrm{AD}^{2}=\mathrm{AC}^{2}-\mathrm{DC}^{2}=10^{2}-5^{2}=100-25=75$
$\Rightarrow \mathrm{AD}=5 \sqrt{3}$
$\Rightarrow \mathrm{AO}=5 \frac{\sqrt{3}}{3} \times 2=\frac{10 \sqrt{3}}{3} \mathrm{~cm}$.
38. (C) Let the number of males $=x$
\Rightarrow Number of females $=9800-x$
A.T.Q,
$\frac{108}{100} x+(9800-x) \times \frac{105}{100}=10458$
$\Rightarrow 108 x+9800 \times 105-105 x=1045800$
$\Rightarrow 3 x+1029000=1045800$
$\Rightarrow x=\frac{1054800-1029000}{3}=\frac{16800}{3}=5600$
39. (B) Let the principal be $₹ x$ and time in y years
A.T.Q.,
$\frac{x \times 10 \times y}{100}=35-x$
$\Rightarrow y=\frac{35-x}{x} \times 10$
$\& \frac{x \times 8 \times y}{100}=30-x$
$\Rightarrow y=\frac{(30-x)}{x} \times 12.5$
Equating (i) and (ii)

$$
\begin{aligned}
& \frac{10}{x}(35-x)=\frac{12.5}{x}(30-x) \\
\Rightarrow & 350-10 x=375-12.5 x \\
\Rightarrow & 2.5 x=25 \Rightarrow x=₹ 10 \\
\Rightarrow & y=\frac{35-10}{10} \times 10=25 \text { years }
\end{aligned}
$$

$\therefore \quad$ Required time $=25$ years.
40. (A) $\mathrm{x}=\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}$

$$
=\frac{2+1+2 \sqrt{2}}{2-1}=3+2 \sqrt{2}
$$

$\frac{1}{x}=\frac{1}{(3+2 \sqrt{2})}=\frac{(3-2 \sqrt{2})}{(3+2 \sqrt{2})(3-2 \sqrt{2})}=\frac{3-2 \sqrt{2}}{9-8}$
$\frac{1}{x}=(3-2 \sqrt{2})$
Now, $x+\frac{1}{x}=3+2 \sqrt{2}+3-2 \sqrt{2}=6$
$\Rightarrow x+\frac{1}{x}=6$

$K>$
 Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

Now, $\frac{x^{5}+x^{4}+x^{2}+x}{x^{3}}$
$=x^{2}+x+\frac{1}{x}+\frac{1}{x^{2}}$
$=\left(x^{2}+\frac{1}{x^{2}}\right)+\left(x+\frac{1}{x}\right)$
$=\left(x+\frac{1}{x}\right)^{2}-2+\left(x+\frac{1}{x}\right)$
$=(6)^{2}-2+6$
$=36-2+6=36+4=40$
41. (C) Let T be the maximum $\& \mathrm{p}$ be the passing marks
A.T.Q.,

$$
30 \% \mathrm{~T}=\mathrm{P}+20
$$

$$
20 \% \mathrm{~T}=\mathrm{P}-5
$$

$$
\frac{-\quad-\quad+}{10 \% \mathrm{~T}=20+5}
$$

$\Rightarrow 10 \% \mathrm{~T}=25$
$\Rightarrow \mathrm{T}=250$
Now, $20 \% \mathrm{~T}=\mathrm{P}-5$
$\Rightarrow \mathrm{P}=20 \% \mathrm{~T}+5=\frac{1}{5} \times 250+5=55$
$\therefore \quad$ Required percentage $=\frac{55}{250} \times 100=22$
42. (C) Let the age of A and B be $7 x, 9 x$

Difference between ages remains constant.
$\Rightarrow 9 x-7 x=2$
$2 x=2$
$x=1$
$\therefore \quad$ Their ages are $=7,9$
\Rightarrow After 6 years their ages are $=13,15$
\therefore Required sum of age $=15+13=28$ years
43. (A)

A.T.Q.,

Area $=\frac{1}{2} \times 20 \times h=80$
$\Rightarrow h=8 \mathrm{~cm}$
In $\triangle \mathrm{ABC}$
$\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}$
$\Rightarrow 10^{2}=\mathrm{BC}^{2}+8^{2}$
$\Rightarrow \mathrm{BC}=6 \mathrm{~cm}$
$\Rightarrow \mathrm{CD}=\mathrm{BD}-\mathrm{BC}=20-6=14 \mathrm{~cm}$
In $\triangle A C D$
$\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}$
$\Rightarrow \mathrm{AD}^{2}=8^{2}+14^{2}$
$\Rightarrow \mathrm{AD}^{2}=64+196$
$\Rightarrow \mathrm{AD}=\sqrt{260} \mathrm{~cm}$
44. (D) C.I(Annually) $=₹ 10,00,000 \times \frac{10}{100}=₹ 100,000$

$$
\text { C.I (Semiannually) }=₹ 10,00,000 \times \frac{5}{100}
$$

$$
+₹ 10,00,000 \times \frac{5}{100}+₹ 10,00,000 \times
$$

$$
\frac{5}{100} \times \frac{5}{100}
$$

$$
=50,000+50,000+2500
$$

$$
=₹ 100,000+2500
$$

\therefore Required difference $=₹ 2500$
45. (B) Certroid $=\left(\frac{1+4-2}{3}, \frac{-5+0+2}{3}\right)$

Reflection point $\mathrm{A}^{\prime}=(5,5)$
$\therefore \quad$ Required Distance $=\sqrt{(5-1)^{2}+\left(5-(-1)^{2}\right)}$

$$
\begin{aligned}
& =\sqrt{(4)^{2}+(6)^{2}} \\
& =\sqrt{16+36}=\sqrt{52}
\end{aligned}
$$

46. (B) D is mid point of B and C
\Rightarrow Coordinates of $\mathrm{D}=\left(\frac{5+3}{2}, \frac{-4+2}{2}\right)=(4,-1)$
Equation of $\mathrm{AD}: \mathrm{A}(-1,-3) \& \mathrm{D}(4,-1)$
$y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
$\Rightarrow y-(-3)=\frac{-1-(-3)}{4-(-1)}(x-(-1))$
$\Rightarrow y+3=\frac{2}{5}(x+1)$
$\Rightarrow 5 y+15=2 x+2$
$\Rightarrow 2 x-5 y=13$
47. (A) We know
$5 A C^{2}=4\left(\mathrm{AD}^{2}+\mathrm{EC}^{2}\right)$
$\Rightarrow 5(5)^{2}=4\left(\left(\frac{3 \sqrt{5}}{2}\right)^{2}+\mathrm{EC}^{2}\right)$
$\Rightarrow 125=4\left(\frac{45}{4}+\mathrm{CE}^{2}\right)$

$K>$
 Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\Rightarrow 125=45+4 \mathrm{CE}^{2}$
$\Rightarrow \mathrm{CE}^{2}=\frac{125-45}{4}=20$
$\Rightarrow \mathrm{CE}=2 \sqrt{5} \mathrm{~cm}$
48. (C) $(316)^{3^{4 n}} \Rightarrow$ always has unit digit as 6
\Rightarrow Unit digit of $(316)^{3^{4 n}}+1 \Rightarrow 7$
As,
$45!=$ multiple of 4
$23!=$ multiple of 4
$(34)^{45!}=(34)^{4 \mathrm{~m}} \xrightarrow{\text { Unitdigit }}(4)^{\text {even }}=(4)^{2} \Rightarrow 6$
$(36)^{23!}$ alway has unit digit as 6
$\therefore \quad$ Required unit digit $=$ unit digit of $(7 \times 6 \times 6)$ $=2$
49. (A) A.T.Q.,
$\frac{n(n+1)}{2}=703 \mathrm{~m} \quad$ where $\mathrm{m}=1,2,3 \ldots$.
For the least value of $n, m=1$
$\frac{n(n+1)}{2}=703$
$\Rightarrow n(n+1)=1406$
$\Rightarrow n(n+1)=37 \times 38 \Rightarrow n=37$
50.
(B)

Applying Appollonius theorem
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=2\left(\mathrm{BO}^{2}+\mathrm{AO}^{2}\right)$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}=2\left(\mathrm{BO}^{2}+64\right)$
$\Rightarrow 196+324=2\left(\mathrm{BO}^{2}+64\right)$
$\Rightarrow \mathrm{BO}^{2}=196 \Rightarrow \mathrm{BO}=14 \mathrm{~cm}$
$\Rightarrow \mathrm{BD}=2 \mathrm{BO}=28 \mathrm{~cm}$
51.
(D) $\frac{m}{n}=\frac{1}{2}$

Ratio of their interior angle $=\frac{\frac{(m-2) \times 180}{m}}{\frac{(n-2) \times 180}{n}}$
$=\frac{(m-2) n}{(n-2) m}$
A.T.Q.,
$\frac{(m-2) n}{(n-2) m}=\frac{3}{4}$
$\Rightarrow \frac{m-2}{n-2}\left(\frac{2}{1}\right)=\frac{3}{4}$
$\Rightarrow 8(m-2)=3(n-2)$
$\Rightarrow 8 m-16=3 n-6$
$\Rightarrow 8 m-3 n=10$
$\Rightarrow 8 m-3 \times 2 m=10$
$\Rightarrow 2 m=10$
$\Rightarrow m=5, n=10$
52. (C) $\angle \mathrm{EAY}+\angle \mathrm{YAO}+\angle \mathrm{OAB}=180^{\circ}$
$\Rightarrow 60^{\circ}+35^{\circ}+\angle \mathrm{OAB}=180^{\circ}$
$\Rightarrow \angle \mathrm{OAB}=180-95^{\circ}$
$\Rightarrow \angle \mathrm{OAB}=85^{\circ}$
In $\angle \mathrm{AOB}$
$\angle \mathrm{BAO}+\angle \mathrm{AOB}+\angle \mathrm{OBA}=180^{\circ}$
$\Rightarrow 85^{\circ}+x^{\circ}+20^{\circ}=180^{\circ}$
$\Rightarrow x^{\circ}=180-105$
$\Rightarrow x=75^{\circ}$
53. (C) BD bisects $\angle \mathrm{B}$
$\Rightarrow \frac{2 x}{3 y+8}=\frac{x}{2 y}$
$\Rightarrow \frac{2 x}{x}=\frac{3 y+8}{2 y} \Rightarrow 2=\frac{3 y+8}{2 y}$
$\Rightarrow 4 y=3 y+8$
$\Rightarrow y=8$
Now,
$\mathrm{BC}=3 y+8=24+8=32$
$D C=2 y=16$
In $\triangle B C D$
$\Rightarrow \mathrm{BD}^{2}=\mathrm{BC}^{2}-\mathrm{CD}^{2}=\left(32^{2}-16^{2}\right)$
$\Rightarrow \mathrm{BD}^{2}=(32-16)(32+16)$
$\Rightarrow \mathrm{BD}^{2}=16 \times 48$
In $\triangle B D A$
$\mathrm{BD}^{2}=\mathrm{AB}^{2}-\mathrm{AD}^{2}$
$\Rightarrow \mathrm{BD}^{2}=(2 x)^{2}-x^{2}=3 x^{2}$
equating (i) $\&$ (ii)
$\Rightarrow 16 \times 48=3 x^{2}$
$\Rightarrow x^{2}=16 \times 16$
$\Rightarrow x=16$
54. (C) Let the number be $48 x, 48 y$ where x, y are coprime
A.T.Q,
$48 x+48 y=384$
$x+y=8 \quad$ Possible solution x, y are coprime $\Rightarrow x=1, y=7$

$$
x=3, y=5
$$

$\Rightarrow 48 y-48 x=48(y-x)$
$x=1$ and $y=7,48 y-48 x=48(7-1)=288$
$x=3$ and $y=5,48 y-48 x=48(5-3)=96$
$\therefore \quad$ Required difference $=228$
55. (A) Let the marks of one the students be x The marks of other student $=x+9$
A.T.Q,

$$
\frac{x+9}{x+x+9}=\frac{56}{100}
$$

$\Rightarrow \frac{x+9}{2 x+9}=\frac{14}{25}$
$\Rightarrow 25 x+225=28 x+126$

$K>$
 Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\Rightarrow 3 x=99$
$\Rightarrow x=33$
$\Rightarrow x+9=42$
$\therefore \quad$ Required Individuel marks $=42,33$
56. (A)

In $\triangle \mathrm{CBD}$
$\tan 45^{\circ}=\frac{\mathrm{CD}}{\mathrm{CB}}$
$\Rightarrow 1=\frac{C D}{C B}$
$\Rightarrow \mathrm{CB}=\mathrm{CD}=10 \mathrm{~m}$
\Rightarrow In $\triangle \mathrm{ACD}$
$\tan 30^{\circ}=\frac{\mathrm{DC}}{\mathrm{AC}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{DC}}{\mathrm{AC}}$
$\Rightarrow \mathrm{AC}=10 \sqrt{3} \mathrm{~m}$
\Rightarrow Distance between roads $=A C+C B$

$$
\begin{aligned}
& =10+10 \sqrt{3} \\
& =27.32 \mathrm{~m}
\end{aligned}
$$

57. (C) $\frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}-\sqrt{5-x}}=3$
$\Rightarrow \frac{(\sqrt{5+x}+\sqrt{5-x})(\sqrt{5+x}+\sqrt{5-x})}{(\sqrt{5+x}-\sqrt{5-x})(\sqrt{5+x}+\sqrt{5-x})}=3$
$\Rightarrow \frac{(\sqrt{5+x}+\sqrt{5-x})^{2}}{5+x-5+x}=3$
$\Rightarrow \frac{5+x+5-x+2 \sqrt{(5+x)(5-x)}}{2 x}=3$
$\Rightarrow \frac{2 \times 5+2 \sqrt{(5+x)(5-x)}}{2 x}=3$
$\Rightarrow 5+\sqrt{(5+x)(5-x)}=3 x$
$\Rightarrow \sqrt{25-x^{2}}=3 x-5$
$\Rightarrow 25-x^{2}=(3 x-5)^{2}$
$\Rightarrow 25-x^{2}=9 x^{2}+25-30 x$
$\Rightarrow 10 x^{2}=30 x$
$\Rightarrow x=3$
58. (D)

Let the length of side of the square is $=\mathrm{L}$ Circumference of circular base of cylinder $2 \pi \mathrm{R}=\mathrm{L}$
$\Rightarrow \mathrm{R}=\frac{\mathrm{L}}{2 \pi}$
$\therefore \quad$ Required Ratio $=\frac{\frac{\mathrm{L}}{2 \pi}}{\mathrm{~L}}=\frac{1}{2 \pi}$
59. (A) Volume of the hemisphere $=\frac{2}{3} \pi \mathrm{R}^{3}$

Volume of cone $=\frac{1}{3} \pi R^{2} H$
ATQ,
$\frac{2}{3} \pi \mathrm{R}^{3}=\frac{1}{3} \pi \mathrm{R}^{2} \mathrm{H}$
$\Rightarrow 2 \mathrm{R}^{3}=\mathrm{R}^{2} \mathrm{H}$
$\Rightarrow 2 \mathrm{R}=\mathrm{H}$
$\Rightarrow \mathrm{H}=2 \mathrm{R}$
60. (C) Volume sphere $=\frac{4}{3} \pi \cdot(7)^{3}$

Let the increase in height be h
Increase in volume $\Rightarrow \pi r^{2} h=\frac{4}{3} \pi(7)^{3}$
$\Rightarrow \quad \pi(84)^{2} h=\frac{4}{3} \pi 7^{3}$
$\Rightarrow \quad h=\frac{4}{3} \times \frac{7^{3}}{(84)^{2}}=\frac{1372}{21168}=0.064 \mathrm{~cm}$
61. (B) Volume of tank $=1.54 \times 3 \times 5 \mathrm{~m}^{3}$

Let t be the required time
Water travel distance in pipe in t time $=5 t$
Volume of all water that travelled in pipe in t time
$=\pi(0.07)^{2} \times 5 t$
A.T.Q.,
$\pi(0.07)^{2} \times 5 t=1.54 \times 3 \times 5$
$t=\frac{1.54 \times 3 \times 5 \times 7}{22 \times 5 \times(0.07)^{2}}=300 \mathrm{sec}=5 \mathrm{~min}$
62. (C) Area of semicircle with diameter AB
$=\frac{\pi}{2} \times\left(\frac{21}{2}\right)^{2}=173.25 \mathrm{~cm}^{2}$
Area of semicircle with diameter BC

Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$=\frac{\pi}{2} \times(14)^{2}=308$
Area of $\triangle \mathrm{ABC} \quad$ [Right angle at B]
$=\frac{1}{2} \times 21 \times 28=294 \mathrm{~cm}^{2}$
Area of semicircle with diameter AC
$=\frac{\pi}{2}(17.5)^{2}=481.25 \mathrm{~cm}^{2}$
$\therefore \quad$ Required area $=(173.25+308)$

- (481.25-294)
$=481.25-481.25+294=294 \mathrm{~cm}^{2}$

63. (A) Number is divisible by $36=9 \times 4$

Hence it must be divisible by both $9 \& 4$.
$\Rightarrow x=0$ must be divisible by 4
$\Rightarrow x=2,4,6,8,0$
and,
$x+2+3+6+x+0$ must be divisible by 9 .
$11+2 x=9 \mathrm{~m}$, where $\mathrm{m}=0,1,2,3, \ldots$.
$\Rightarrow x=8$, when $\mathrm{m}=3$
Hence value of $x=8$
64. (B) $7^{x-1}+11^{x-1}=170$

As, 170 is positive integer, so $(x-1)$ has to be only positive number.
x can be integer or non integer
As, $7^{x-1}+11^{x-1}$ is always increasing, there can't be more than one value of x.
65. (D) $\mathrm{A}: \mathrm{B}=\mathrm{B}: \mathrm{C}=\mathrm{C}: \mathrm{D}=3: 4$
$\operatorname{let} \mathrm{A}: \mathrm{B}=1: x$
A.T.Q,
$\mathrm{A}: \mathrm{B}=3: 4=1: \frac{4}{3}$
$\Rightarrow x=\frac{4}{3}$
$\mathrm{A}: \mathrm{B}=1: x$
$\Rightarrow \mathrm{B}: \mathrm{C}=x: x^{2}$
$\Rightarrow \mathrm{C}: \mathrm{D}=x^{2}: x^{3}$
$\Rightarrow \mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}=1: x: x^{2}: x^{3}$
Now, Required share $=\frac{1400 \times x^{2}}{1+x+x^{2}+x^{3}}$
$=\frac{1400 \times\left(\frac{4}{3}\right)^{2}}{1+\frac{4}{3}+\left(\frac{4}{3}\right)^{2}+\left(\frac{4}{3}\right)^{3}}$
$=\frac{1400 \times \frac{16}{9}}{\frac{27+36+48+64}{27}}$
$=1400 \times \frac{48}{27+36+48+64}$
= ₹ 384
66. (A) Area of park $=60 \times 40=2400 \mathrm{~m}^{2}$

Area of lawn $=2109 \mathrm{~m}^{2}$
\Rightarrow Area of Road $=(2400-2109) \mathrm{m}^{2}=291 \mathrm{~m}^{2}$
\Rightarrow Area of road $=x(l+\mathrm{b}-x)$
A.T.Q.,
$x(60+40-x)=291$
$\Rightarrow x^{2}-100 x+291=0$
$\Rightarrow(x-97)(x-3)=0$
$\Rightarrow x=3$ or 97
as $x \neq 97 \Rightarrow x=3 \mathrm{~m}$
\therefore Required breadth $=3 \mathrm{~m}$
67. (A) $\alpha+\beta=-\left(\frac{-1}{1}\right)$
$\Rightarrow \alpha+\beta=1$
and $\alpha \beta=\frac{1}{1}$
$\Rightarrow \alpha \beta=1$
Equation whose roots are $=\alpha^{3}$ and β^{3}
$\left(x-a^{3}\right)\left(x-\beta^{3}\right)=x^{2}-\left(a^{3}+\beta^{3}\right) x+\alpha^{3} \beta^{3}=0$
$\Rightarrow x^{2}-\left(a^{3}+\beta^{3}\right) x+a^{3} \beta^{3}=0$
Now, $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 o \beta(\alpha+\beta)=1^{3}-3 \times 1(1)$
$=1-3=-2$
and $a^{3} \cdot \beta^{3}=(\alpha \beta)^{3}=1$
$\therefore \quad$ Required equation $=x^{2}-(-2) x+1$
$=x^{2}+2 x+1$
68. (D) $\frac{\text { wine (left) }}{\text { water added }}=\frac{343}{169}$
$\frac{\text { wine (left) }}{\text { (initial amount) }}=\frac{343}{(343+169)}=\frac{343}{512}$
A.T.Q,
$\frac{343}{512}=\left(1-\frac{15}{k}\right)^{3}$
$\Rightarrow\left(\frac{7}{8}\right)^{3}=\left(1-\frac{15}{k}\right)^{3}$
$\Rightarrow \mathrm{k}=120$ litre
\therefore The initial amount of wine $=120$ litre
69. (B)
$\sqrt{\frac{\left(3 \frac{1}{4}\right)^{4}-\left(4 \frac{1}{3}\right)^{4}}{\left(3 \frac{1}{4}\right)^{2}-\left(4 \frac{1}{3}\right)^{2}}}=\sqrt{\left.\frac{\left(\frac{13}{4}\right)^{4}-\left(\frac{13}{3}\right)^{4}}{4}\right)^{2}-\left(\frac{13}{3}\right)^{2}}$
$=\sqrt{\left(\frac{13}{4}\right)^{2}+\left(\frac{13}{3}\right)^{2}}$
$=\sqrt{169 \times \frac{25}{144}}=13 \times \frac{5}{12}=\frac{65}{12}$
$=5 \frac{5}{12}$

Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
70. (B) Let radius of internal circle $=r$

ABCD is square with side 2 R
\Rightarrow Diagonal $=A C=\sqrt{2}(2 R)=2 \sqrt{2} R$
$\mathrm{PQ}=\mathrm{AC}-\mathrm{AP}-\mathrm{AQ}=2 \sqrt{2} \mathrm{R}-\mathrm{R}-\mathrm{R}=(2 \sqrt{2}-2) \mathrm{R}$
$\Rightarrow 2 r=2 \mathrm{R}(\sqrt{2}-1)$
$\Rightarrow r=\mathrm{R}(\sqrt{2}-1)$
71. (A) $\sin \theta+\cos \theta=\sqrt{2} \cos \theta$

Squaring both sides
$\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cdot \cos \theta=2 \cos ^{2} \theta$
$\Rightarrow 2 \sin \theta \cos \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\Rightarrow 2 \sin \theta \cos \theta=(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)$
$\Rightarrow \cos \theta-\sin \theta=\frac{2 \sin \theta \cos \theta}{\sqrt{2} \cos \theta}=\sqrt{2} \sin \theta$
72. (B) Required sum
$=$ Difference $\times\left(\frac{100}{r}\right)^{2} \times\left(\frac{100}{300+r}\right)$
$=122 \times\left(\frac{100}{5}\right)^{2} \times\left(\frac{100}{305}\right)$
$=₹ 16000$
73. (B)

Let the speed of train be u and the speed of cat be v and the train whistles at a point $\mathrm{T}, x \mathrm{~km}$ from A .
$\frac{u}{v}=\frac{x}{5 \mathrm{k}}=\frac{x+12 \mathrm{k}}{7 \mathrm{k}}$
$7 x=5(x+12 \mathrm{k})$
$\Rightarrow \frac{x}{\mathrm{k}}=\frac{30}{1} \Rightarrow \frac{u}{v}=\frac{30}{5 \times 1}=\frac{6}{1}$
\therefore Required ratio $=6: 1$
74. (D) Let work $=3000$ units $=30 \mathrm{men} \times 100$ days

Number of available days $=75-25$

$$
=50 \text { days }
$$

Number of men required $=\frac{3000}{50}=60$ men
$\therefore \quad$ He should increase $(60-30)=30$ men
75. (C) let the number of apples be x
\Rightarrow C.P. $=\frac{5 x}{6}$
$\Rightarrow 20 \%$ of apples get wasted, Apple sold $=\frac{4 x}{5}$
\Rightarrow S.P $=\frac{4 x}{5} \times \frac{7}{4}=\frac{7 x}{5}$
Now,

$$
\begin{aligned}
& =\left(\frac{\text { S.P }}{\text { C.P }}-1\right) \times 100=\left(\frac{\frac{7 x}{5}}{\frac{5 x}{6}}-1\right) 100 \\
& =\left(\frac{7 \times 6}{25}-1\right) \times 100=\left(\frac{42-25}{25}\right) \times 100 \\
& =17 \times 4=68 \% \text { profit }
\end{aligned}
$$

76. (A) $x=\frac{1}{2+\sqrt{3}} \times \frac{(2-\sqrt{3})}{(2-\sqrt{3})}=2-\sqrt{3}$

$$
y=2+\sqrt{3}
$$

$$
x y=(2-\sqrt{3})(2+\sqrt{3})=4-3=1
$$

$$
x^{2}+y^{2}=(x+y)^{2}-2 x y=(2-\sqrt{3}+2+\sqrt{3})^{2}-2
$$

$$
=16-2=14
$$

$\therefore \quad 8 x y\left(x^{2}+y^{2}\right)=8 \times 14=112$
77. (B) Let $t_{1} \& t_{2}$ be original and changed time. $S_{1} \& S_{2}$ be original \& changed speed
$\mathrm{S}_{1} \times \mathrm{S}_{2}=\frac{\text { Distance } \times\left(\mathrm{S}_{1} \sim \mathrm{~S}_{2}\right)}{\left(t_{1} \sim t_{2}\right)}=\frac{80}{1} \times 4=320$
$t_{1} \times t_{2}=\frac{\text { Distance } \times\left(t_{1} \sim t_{2}\right)}{\left(\mathrm{S}_{1}-\mathrm{S}_{2}\right)}$
$\Rightarrow \mathrm{S}_{1} \times\left(\mathrm{S}_{1}+4\right)=16 \times 20$
$\Rightarrow \mathrm{S}_{1} \times\left(\mathrm{S}_{1}+4\right)=320$
$\mathrm{S}_{1}=16 \mathrm{~km} / \mathrm{hr} \mathrm{S} 2=20 \mathrm{~km} / \mathrm{hr}$
78. (A) $\mathrm{P}=1+\sqrt{2}+\sqrt{3}$
$\Rightarrow \mathrm{P}-1=\sqrt{2}+\sqrt{3}$
$\Rightarrow \frac{1}{\mathrm{P}-1}=\frac{1}{(\sqrt{2}+\sqrt{3})}$
$\Rightarrow \frac{1}{P-1}=\frac{(\sqrt{2}-\sqrt{3})}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})}=\frac{\sqrt{2}-\sqrt{3}}{-1}=\sqrt{3}-\sqrt{2}$
$\Rightarrow \mathrm{P}+\frac{1}{\mathrm{P}-1}=1+\sqrt{2}+\sqrt{3}+\sqrt{3}-\sqrt{2}=1+2 \sqrt{3}$
$\Rightarrow \mathrm{P}+\frac{1}{\mathrm{P}-1}+3=4+2 \sqrt{3}$
$\Rightarrow \mathrm{P}+\frac{1}{\mathrm{P}-1}+3=(1)^{2}+(\sqrt{3})^{2}+2 \times 1 \times \sqrt{3}$
$\Rightarrow P+\frac{1}{P-1}+3=(1+\sqrt{3})^{2}$
$\Rightarrow \sqrt{\mathrm{P}+\frac{1}{\mathrm{P}-1}+3}=(1+\sqrt{3})$

Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
79. (A) Required Rate
$=\frac{2 \times \text { Difference in C.I. \& S.I. }}{\text { S.I. }} \times 100$
$=\frac{2 \times 0.8}{40} \times 100=4 \%$
and, Required sum
$=\frac{\text { Interest } \times 100}{\text { Rate } \times \text { time }}=\frac{40 \times 100}{4 \times 2}$
$=₹ 500$
80.
(D) $\mathrm{P}+\frac{2 \mathrm{P}}{3}+\frac{\mathrm{P}}{2}+\frac{\mathrm{P}}{7}=97$

Here, we can clearly see, P must be divisible by 3, 2, 7
$\Rightarrow P$ must be multiple of 42
\Rightarrow option (D) only such option
\Rightarrow check option D
$42+2 \times \frac{42}{3}+\frac{42}{2}+\frac{42}{7}$
$42+28+24+6=97$
Hence option (D) is correct
81. (D) $\sqrt{a^{2}+b^{2}+a b}+\sqrt{a^{2}+b^{2}-a b}=1$
$\Rightarrow \sqrt{a^{2}+b^{2}+a b}=1-\sqrt{a^{2}+b^{2}-a b}$
Squaring Both side
$a^{2}+b^{2}+a b=1+a^{2}+b^{2}-a b-2 \sqrt{a^{2}+b^{2}-a b}$
$\Rightarrow 2 a b=1-2 \sqrt{a^{2}+b^{2}-a b}$
$\Rightarrow \sqrt{a^{2}+b^{2}-a b}=\frac{1-2 a b}{2}$
Squaring Both sides
$a^{2}+b^{2}-a b=\frac{1+4 a^{2} b^{2}-4 a b}{4}$
$\Rightarrow 4 a^{2}+4 b^{2}-4 a b=1+4 a^{2} b^{2}-4 a b$
$\Rightarrow 4 a^{2} b^{2}-4 a^{2}-4 b^{2}=-1$
$\Rightarrow a^{2} b^{2}-a^{2}-b^{2}=-\frac{1}{4}$
Now,
$\left(1-a^{2}\right)\left(1-b^{2}\right)=1-a^{2}-b^{2}+a^{2} b^{2}$
$=1+\left(a^{2} b^{2}-a^{2}-b^{2}\right)=1-\frac{1}{4}=\frac{3}{4}$
82. (C) A.T.Q.,

Let the length of train be L
$\Rightarrow \frac{\mathrm{L}+260}{20}=23$
$\Rightarrow \mathrm{L}=200 \mathrm{~m}$
\therefore length larger train $=200 \times 2.5=500 \mathrm{~m}$

Speed of larger train $=72 \times \frac{3}{4}=54 \mathrm{~km} / \mathrm{h}$ $=15 \mathrm{~m} / \mathrm{s}$
$\therefore \quad$ Required time $=\frac{500+200}{20+15}=\frac{700}{35}=20 \mathrm{sec}$
83. (B) Let distance travelled by car be x and time by car be t
A.T.Q.,
$\frac{x}{t}=25$
$\Rightarrow \frac{434-x}{t-8}=65$
$\Rightarrow \frac{434-x}{\frac{x}{25}-8}=56$
$\Rightarrow 434-x=65\left(\frac{x}{25}-8\right)$
$\Rightarrow 434-x=\frac{13}{5} x-8 \times 65$
$\Rightarrow 5 \times 434-5 x=13 x-8 \times 65 \times 5$
$\Rightarrow 5 \times 434+8 \times 65 \times 5=18 x$
$\Rightarrow 18 x=4770$
$\Rightarrow x=265 \mathrm{~km}$
84. (C) Analysing the situation when sound 1 reached train.

$\mathrm{D}=330 \mathrm{~m} / \mathrm{s} \times 630 \mathrm{sec}=207900 \mathrm{~m}$

$$
=207.9 \mathrm{~km}
$$

$330 \mathrm{~m} / \mathrm{s}=66 \times 18 \mathrm{~km} / \mathrm{hr}$
A.T.Q,
$\Rightarrow \frac{207.9}{66 \times 18+u}=\frac{10}{60}$
$\Rightarrow \frac{207.9}{66 \times 18+u}=\frac{1}{6}$
$\Rightarrow 207.9 \times 6=66 \times 18=u$
$\Rightarrow u=207.9 \times 6-66 \times 18$
$\Rightarrow u=59.4 \mathrm{~km} / \mathrm{hr}$
85. (A) Annual interest $=\frac{2880}{4.5}=₹ 640$

Average interest rate $=8 \%$

sum 1 sum 2
= ₹ 4000 , ₹ 4000

$K D$
 Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\therefore \quad$ Required income $=\frac{4000 \times 10 \% \times 2}{100}=₹ 800$
86. (B) Price \times consumption $=$ Expenditure

As, Expenditure = constant
Price \times consumption $=$ constant
Price decrease $=-10 \%=\frac{-1}{10}$
\Rightarrow Consumption increase $=\frac{+1}{10-1}=\frac{+1}{9}$
$\frac{1}{9} \rightarrow 6.2 \mathrm{~kg}$
Total Amount $=1 \rightarrow 6.2 \times 9 \mathrm{~kg}=55.8 \mathrm{~kg}$
New total amount $=1+\frac{1}{9} \rightarrow 55.8+6.2$
$=62 \mathrm{~kg}$
$\therefore \quad$ Required new price $=\frac{₹ 279}{62 \mathrm{~kg}}=₹ 4.5 / \mathrm{kg}$
87. (A) Without stoppage speed $=60 \frac{\mathrm{~km}}{\mathrm{hr}}$

$$
\Rightarrow \frac{60 \mathrm{~min}}{60 \mathrm{~km}}=\frac{1 \mathrm{~min}}{\mathrm{~km}}
$$

With stoppage speed $=40 \mathrm{~km} / \mathrm{hr}$

$$
\Rightarrow \frac{60 \min }{40 \mathrm{~km}}=\frac{\frac{3}{2} \min }{1 \mathrm{~km}}=\frac{1 \frac{1}{2} \min }{\mathrm{~km}}
$$

\therefore Per km stoppage $=1 \frac{1}{2} \min -1 \min =\frac{1}{2} \min$
$\therefore \quad$ Per km actual time $=\frac{1}{40} \mathrm{hr}$
\therefore Required stoppage time $/ \mathrm{hr}=\frac{\frac{1}{2} \mathrm{~min}}{\frac{1}{40} \mathrm{hr}}$

$$
\begin{aligned}
& =\frac{1}{2} \times 40 \mathrm{~min} / \mathrm{hr} \\
& =20 \mathrm{~min} / \mathrm{hr}
\end{aligned}
$$

88. (D) As, we know the radius of $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$ are in Geometric progression.
Let comman ratio $=a$
$r_{1}=16$,
$\Rightarrow r_{2}=16 a, r_{3}=16 a^{2}, r_{4}=16 a^{3}, r_{5}=16 a^{4}$
A.T.Q.,
$16 a^{4}=256$
$\Rightarrow a^{4}=16$
$\Rightarrow a=2$
$\Rightarrow r_{2}=32 \mathrm{~cm}, r_{3}=64 \mathrm{~cm}, r_{4}=128 \mathrm{~cm}$
$\therefore \quad$ Required distance $=r_{2}+2 r_{3}+r_{4}=32+$
$64 \times 2+128=288 \mathrm{~cm}$
89. (C) As we know,

Each internal angle of hexagon $=120^{\circ}$ and central angles $=60^{\circ}$

Area of regular hexagon $=6 \cdot \frac{\sqrt{3}}{4} a^{2}$

$$
=6 . \frac{\sqrt{3}}{4} \times 144=216 \sqrt{3} \mathrm{~cm}^{2}
$$

Area of triangle UPQ $=\frac{1}{2} \times 12 \times 12 \times \sin 120^{\circ}$

$$
\begin{aligned}
& =\frac{1}{2} \times 12 \times 12 \times \sin \left(180-60^{\circ}\right) \\
& =\frac{1}{2} \times 12 \times 12 \times \sin 60^{\circ} \\
& =\frac{1}{2} \times 12 \times 12 \times \frac{\sqrt{3}}{2}=36 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

Similarly, Area of QRS $=36 \sqrt{3} \mathrm{~cm}^{2}$
and Area of UTS $=36 \sqrt{3} \mathrm{~cm}^{2}$
\therefore Required Area $=216 \sqrt{3}-(3 \times 36 \sqrt{3})$ $=108 \sqrt{3} \mathrm{~cm}^{2}$
90. (C) Average money recieved $=\frac{3900}{65}=60 \mathrm{p}$

$\therefore \quad$ Number of boys $=\frac{3}{5} \times 65=39$
$\therefore \quad$ Number of girls $=\frac{2}{5} \times 65=26$
91. (D) Required difference
$=100000 \times \frac{(14 \times 65-18 \times 20)}{100 \times 100}$
$=10 \times(910-360)=5500$
92. (B) Suzuki $=100000 \times \frac{10}{100} \times \frac{95}{100}=9500$

Hyundai $=100000 \times \frac{14}{100} \times \frac{65}{100}=9100$
Fiat $=100000 \times \frac{18}{100} \times \frac{20}{100}=3600$
Toyota $=100000 \times \frac{9}{100} \times \frac{55}{100}=4950$
93. (C) $100000 \times \frac{10}{100} \times \frac{5}{100}=500$

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
94. (A) Required difference
$=100000 \times\left[\left(\frac{23}{100}\right) \times\left(\frac{40}{100}\right)-\left(\frac{19}{100}\right) \times\left(\frac{30}{100}\right)\right]$
$=\frac{100000}{100 \times 100} \times(920-570)=3500$
95. (D) Required percentage

$$
\begin{aligned}
& =\left[\begin{array}{l}
\frac{23}{100} \times \frac{60}{100}+\frac{17}{100} \times \frac{55}{100}+\frac{18}{100} \times \frac{80}{100}+\frac{19}{100} \\
\times \frac{30}{100}+\frac{14}{100} \times \frac{35}{100}+\frac{10}{100} \times \frac{5}{100}+\frac{9}{100} \times \frac{48}{100}
\end{array}\right] \\
& =\left[\frac{23}{100} \times \frac{60}{100}+\frac{17}{100} \times \frac{55}{100}+\frac{18}{100} \times \frac{80}{100}+\frac{19}{100}\right. \\
& \left.\times \frac{30}{100}+\frac{14}{100} \times \frac{35}{100}+\frac{10}{100} \times \frac{5}{100}+\frac{9}{100} \times \frac{48}{100}\right] \times 100 \\
& =52.96=53
\end{aligned}
$$

96. (D) Average price of vegetables in Agra in:
$\mathrm{Jan}=\frac{1}{4} \times(20+40+60+70)=₹ 47.5$
Feb $=\frac{1}{4} \times(30+50+60+70)=₹ 52.5$
March $=\frac{1}{4} \times(10+40+70+80)=₹ 50$
May $=\frac{1}{4}(30+50+70+80)=₹ 57.50$
97. (A) Rate of beans in Agra in may $=₹ 50$ Rate of onion in vrindavan in april
$=40 \times \frac{4}{3}=53.33$
$\therefore \quad$ Required percentage $=\frac{50}{53.33} \times 100$

$$
=93.75
$$

98. (D) Price of Potato in Agra in Jan $=₹ 20$

Price of Potato in Agra in May = ₹30
$\therefore \quad$ Percentage increase $=\frac{(30-20)}{20} \times 100$

$$
=50
$$

99. (C) Rate of tomato in agra in Jan $=₹ 70$

Rate of Potato in varindavan in Feb
$=60 \times \frac{6}{5}=₹ 72$
$\therefore \quad$ Required Ratio $=70: 72=35: 36$
100. (B) For onion $=\frac{1}{5} \times(60+70+80+40+70)=₹ 64$

For potato $=\frac{1}{5} \times(20+60+40+50+30)=₹ 40$
For tomato $=\frac{1}{5} \times(70+30+70+60+80)=₹ 62$
For bean $=\frac{1}{5} \times(40+50+10+20+50)=₹ 34$

SSC TIER II (MATHS) MOCK TEST - 34 (ANSWER KEY)

1. (B)	11. (B)	21. (B)	31. (D)	41. (C)	51. (D)	61. (B)	71. (A)	81. (D)	91. (D)
2. (D)	12. (C)	22. (B)	32. (A)	42. (C)	52. (C)	62. (C)	72. (B)	82. (C)	92. (B)
3. (C)	13. (A)	23. (B)	33. (A)	43. (A)	53. (C)	63. (A)	73. (B)	83. (B)	93. (C)
4. (A)	14. (A)	24. (A)	34. (A)	44. (D)	54. (C)	64. (B)	74. (D)	84. (C)	94. (A)
5. (D)	15. (C)	25. (A)	35. (C)	45. (B)	55. (A)	65. (D)	75. (C)	85. (A)	95. (D)
6. (B)	16. (B)	26. (C)	36. (B)	46. (B)	56. (A)	66. (A)	76. (A)	86. (B)	96. (D)
7. (A)	17. (C)	27. (B)	37. (D)	47. (A)	57. (C)	67. (A)	77. (B)	87. (A)	97. (A)
8. (B)	18. (B)	28. (A)	38. (C)	48. (C)	58. (D)	68. (D)	78. (A)	88. (D)	98. (D)
9. (D)	19. (B)	29. (B)	39. (B)	49. (A)	59. (A)	69. (B)	79. (A)	89. (C)	99. (C)
10. (C)	20. (C)	30. (D)	40. (A)	50. (B)	60. (C)	70. (B)	80. (D)	90. (C)	100.(B)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

