PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

SSC TIER II (MATHS) MOCK TEST - 44 (SOLUTION)

1. (A) Difference between C.I. and S.I. for 3 years
$=\mathrm{P}\left(\frac{r}{100}\right)^{2}\left(\frac{r}{100}+3\right)$
Difference between C.I. and S.I. for 2 years
$=\mathrm{P}\left(\frac{r}{100}\right)^{2}$
ATQ,
$\frac{\mathrm{P}\left(\frac{r}{100}\right)^{2}\left(\frac{r}{100}+3\right)}{\mathrm{P}\left(\frac{r}{100}\right)^{2}}=\frac{23}{7}$
$\Rightarrow\left(\frac{r}{100}+3\right)=\frac{23}{7}$
$\Rightarrow \frac{r+300}{100}=\frac{23}{7}$
$\Rightarrow 7 r+2100=2300$
$\Rightarrow r=\frac{200}{7} \%$
2. (C) Let the distance D.
$t_{1}=\frac{\mathrm{D}}{40}$
$t_{2}=\frac{\mathrm{D}}{35}$
ATQ,
$t_{2}-t_{1}=\frac{15}{60}$
$\Rightarrow \frac{\mathrm{D}}{35}-\frac{\mathrm{D}}{40}=\frac{1}{4}$
$\Rightarrow 40 \mathrm{D}-35 \mathrm{D}=\frac{35 \times 40}{4}$
$\Rightarrow 5 \mathrm{D}=\frac{35 \times 40}{4}$
$\Rightarrow \mathrm{D}=\frac{35 \times 10}{5}=70 \mathrm{~km}$
3. (B) Required area $=\frac{4}{3} \sqrt{s\left(s-m_{1}\right)\left(s-m_{2}\right)\left(s-m_{3}\right)}$

Where $\mathrm{S}=\frac{m_{1}+m_{2}+m_{3}}{3}$
$\Rightarrow \mathrm{S}=\frac{9+12+15}{2}=18 \mathrm{~cm}$
\therefore Required area $=\frac{4}{3} \sqrt{18(18-9)(18-12)(18-15)}$
$=\frac{4}{3} \sqrt{18 \times 9 \times 6 \times 3}$
$=\frac{4}{3} \times \sqrt{9 \times 2 \times 9 \times 3 \times 2 \times 3}$
$=\frac{4}{3} \times 3 \times 2 \times 9=72 \mathrm{~cm}^{2}$
4. (C) $\frac{A}{3}=\frac{B}{2}=\frac{C}{5}=K$

Now,
$\mathrm{A}=3 k, \mathrm{~B}=2 k, \mathrm{C}=5 k$
$(\mathrm{C}+\mathrm{A})^{2}:(\mathrm{A}+\mathrm{B})^{2}:(\mathrm{B}+\mathrm{C})^{2}$
$=(5+3)^{2}:(3+2)^{2}:(2+5)^{2}$
$=8^{2}: 5^{2}: 7^{2}$
$=64: 25: 49$
5. (C) $\sqrt{8-2 \sqrt{15}}$

$$
=\sqrt{8-2 \sqrt{3} \times \sqrt{5}}
$$

$=\sqrt{5+3-2 \sqrt{3} \times \sqrt{5}}$
$=\sqrt{(\sqrt{5})^{2}+(\sqrt{3})^{2}-2 \sqrt{3} \times \sqrt{5}}$
$=\sqrt{(\sqrt{5}-\sqrt{3})^{2}}$
$=(\sqrt{5}-\sqrt{3})$
6.
(D) $\frac{1}{\sqrt{100}-\sqrt{99}}=\frac{\sqrt{100}+\sqrt{99}}{(\sqrt{100}-\sqrt{99})(\sqrt{100}-\sqrt{99})}$
$=\frac{\sqrt{100}+\sqrt{99}}{100-99}$

$$
=\sqrt{100}+\sqrt{99}
$$

$=\frac{1}{\sqrt{100}-\sqrt{99}}-\frac{1}{\sqrt{99}-\sqrt{98}}+\frac{1}{\sqrt{98}-\sqrt{97}}-\frac{1}{\sqrt{97}-\sqrt{96}}+\ldots \ldots .+\frac{1}{\sqrt{2}-\sqrt{1}}$
$=(\sqrt{100}+\sqrt{99})-(\sqrt{99}+\sqrt{88})+(\sqrt{98}+\sqrt{97})-(\sqrt{97}+\sqrt{96})+\cdots \cdots+(\sqrt{2}+\sqrt{1})$
$=\sqrt{100}+1=10+1=11$
7. (D) ATQ, $200 \mathrm{~m} \times 150 \mathrm{~m} \times 8 \mathrm{~m}=0.3 \mathrm{~m} \times 0.2 \mathrm{~m}$

$$
\times \frac{20,000 m}{h r} \times t
$$

$\Rightarrow \quad 240000=1200 t$
$\Rightarrow \quad t=200 \mathrm{hrs}$
8. (D) Let percent age of father mother and son be f, m, s

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

5 years ago,
$\frac{f-5+m-5-s-5}{3}=35$
$\Rightarrow f+m+s=105+15=120$
3 years ago,
$\frac{f-3+m-3}{2}=46$
$\Rightarrow f+\mathrm{m}=92+6=98$
$\Rightarrow s=120-98=22$
\therefore Percent age of son $=22$ years
9. (C) ATQ,
$\frac{\mathrm{CP}}{\mathrm{SP}}=\frac{x}{60}$
Profit\% = 20
$\Rightarrow \frac{20}{100}=\left(\frac{\mathrm{SP}}{\mathrm{CP}}-1\right)$
$\Rightarrow \frac{1}{5}=\frac{60-x}{x}$
$\Rightarrow x=300-5 x$
$\Rightarrow 6 x=300$
$\Rightarrow \quad x=50$
10. (A) Let initial CP of Ajay $=₹ 100$
$\begin{aligned} & 40 \% \text { profit } \Rightarrow \text { SP of Ajay }=\mathrm{CP} \text { of Rakesh } \\ &=₹ 140\end{aligned}$

$$
=₹ 140
$$

20% loss \Rightarrow SP of Rakesh $=$ CP of Ajay

$$
\text { = ₹ } 112
$$

30% profit \Rightarrow SP of Ajay = CP Varun
= ₹ 145.6
So, overall earning of Ajay
$=₹(140-112+145.6)=₹ 173.6$
So, profit $=₹ 173.6-₹ 100=₹ 73.6$
Profit $\%=100 \times\left(\frac{\text { Pofit }}{\mathrm{CP}}\right)=100 \times \frac{73.6}{100}=$ 73.6\%
11. (D) $x+1=x^{2}$
$\Rightarrow \frac{x+1}{x}=\frac{x^{2}}{x}$
$\Rightarrow 1+\frac{1}{x}=x$
$\Rightarrow x-\frac{1}{x}=1$
Squaring both side.
$\Rightarrow x^{2}+\frac{1}{x^{2}}=1^{2}+2=3$
$\Rightarrow x^{4}+\frac{1}{x^{4}}=3^{2}-2=7$
$\Rightarrow\left(x^{4}+\frac{1}{x^{4}}\right)^{2}-\left(x^{4}-\frac{1}{x^{4}}\right)^{2}=4$
$\Rightarrow(7)^{2}-\left(x^{4}-\frac{1}{x^{4}}\right)^{2}=4$
$\Rightarrow 49-\left(x^{4}-\frac{1}{x^{4}}\right)^{2}=4$
$\Rightarrow\left(x^{4}-\frac{1}{x^{4}}\right)^{2}=45$
$\Rightarrow x^{4}-\frac{1}{x^{4}}=+3 \sqrt{5}$
$\Rightarrow x^{4}+\frac{1}{x^{4}}+x^{4}-\frac{1}{x^{4}}=7+3 \sqrt{5}$
$\Rightarrow 2 x^{4}=7+3 \sqrt{5}$
12. (D) Let the number be. $x, x+1, x+2$
$x^{2}+(x+1)^{2}+(x+2)^{2}=x^{2}+x^{2}+1+2 x+x^{2}$ $+4+4 x$
$=3 x^{2}+6 x+5$
On division by 3 , we get remainder 2
Only option (D) 1877 give 2 as remainder when divided by 3.
13. (C) ATQ,

8A5146B is divisible by 88
$\Rightarrow 8 \mathrm{~A} 5146 \mathrm{~B}$ is divisible by 8,11
8 A 5146 B is divisible by 8
$\Rightarrow 46 B$ is divisible by 8
$\Rightarrow B=4$
8A51464 is divisible by 11
$\Rightarrow+4-6+4-1+5-A+8$ is divisible by 11
$\Rightarrow 21-7$ - A divisible by 11
$\Rightarrow 14$ - A divisible by 11
$\Rightarrow A=3$
$\Rightarrow \mathrm{A} \times \mathrm{B}=4 \times 3=12$
14. (D) $a^{n}+b^{n}$ is always divisible by $a+b$, when n is odd.
Therefore $15^{23}+23^{23}$ is always divisible by $15+23=38$
As 38 is a multiple of $19,15^{23}+23^{23}$ is divisible by 19 .
Therefore, then required remainder $=0$
15. (C) Let $\mathrm{CP}_{1}=₹ x$

$$
\begin{aligned}
& \mathrm{SP}_{1}=₹ 1.1 x \\
& \mathrm{CP}_{2}=₹ 0.9 x \\
& \mathrm{SP}_{2}=₹ 1.1 x+3
\end{aligned}
$$

ATQ,

$$
\begin{aligned}
& \mathrm{P}=25 \%=\frac{1}{4} \\
\Rightarrow & \frac{\mathrm{SP}_{2}}{\mathrm{CP}_{2}}=\frac{5}{4} \Rightarrow \frac{1.1 x+3}{0.9 x}=\frac{5}{4} \\
\Rightarrow & 4.4 x+12=4.5 x \\
\Rightarrow & x=\frac{12}{0.1}=₹ 120
\end{aligned}
$$

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
16. (D) Let $\mathrm{CP},=₹ 100$

Profit $=170 \%$
\Rightarrow CP is increased by 20%

$$
\mathrm{CP}_{2}=₹ 120
$$

Profit $\%=\frac{270-120}{120} \times 100$

$$
=125 \%
$$

17. (D) $\left(2 \cos ^{2} \theta-1\right)\left(\frac{1+\frac{\sin \theta}{\cos \theta}}{1-\frac{\sin \theta}{\cos \theta}}+\frac{1-\frac{\sin \theta}{\cos \theta}}{1+\frac{\sin \theta}{\cos \theta}}\right)$
$=2 \cos ^{2} \theta-1\left(\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}+\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}\right)$
$=\left(2 \cos ^{2} \theta-\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\right.$
$\times \frac{(\cos \theta+\sin \theta)^{2}+(\cos \theta-\sin \theta)^{2}}{\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}$
$=\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \times \frac{2\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}{\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}$
$=2 \times 1$
$=2$
18. (B)

	A	$:$	B
Efficiency	3	$:$	1
Day	1	$:$	3

ATQ,
(3-1) units $=2$ units $=40$ days
$\Rightarrow 1$ unit $=20$ days
$\mathrm{A} \Rightarrow 20$ days
$B \Rightarrow 60$ days
Let work be 60 units
A's one day work $=3$ units
B's one day work $=1$ unit
$(A+B)$'s one day work $=4$ units
$\begin{aligned} \therefore \text { Required number of days } & =\frac{30 \text { units }}{4} \\ & =7.5 \text { days }\end{aligned}$

$$
=7.5 \text { days }
$$

19. (B) Let the height of the pole $=h$

ATQ,
$\frac{h}{50}=\frac{6}{4}$
$h=\frac{3}{2} \times 50=75 \mathrm{ft}$
20. (C) Let R be the required radius

ATQ,
$\pi \mathrm{R}^{2}=\pi r_{1}^{2}+\pi r_{2}^{2}$
$\Rightarrow \pi \mathrm{R}^{2}=\pi\left(r_{1}^{2}+r_{2}^{2}\right)$
$\Rightarrow \mathrm{R}^{2}=r_{1}^{2}+r_{2}^{2}$
$\Rightarrow R^{2}=(20)^{2}+(21)^{2}$
$\Rightarrow R^{2}=400+441$
$\Rightarrow R^{2}=841$
$\Rightarrow R=29 \mathrm{~cm}$
21. (B)

$3 \mathrm{M}+4 \mathrm{~W}=3$
$\frac{4 M+3 W}{7 M+7 W}=4$
$\Rightarrow \mathrm{M}+\mathrm{W}=1$
$\Rightarrow 8 \mathrm{M}+8 \mathrm{~W}=8$
\therefore Required days $=\frac{48}{8}=6$ days
22. (D) $A+B$

$$
2 \mathrm{~A}+\frac{1}{3} \mathrm{~B}
$$

$A+B=3$
$2 \mathrm{~A}+\frac{1}{3} \mathrm{~B}=5$
$\Rightarrow \mathrm{A}=\frac{12}{5}, \mathrm{~B}=\frac{3}{5}$
\therefore Required number of days $=\frac{15}{12 / 5}$

$$
=\frac{25}{4}=6 \frac{1}{4} \text { days. }
$$

23. (C)

$\mathrm{A}+\mathrm{B} \rightarrow 12$ hours $\Rightarrow \frac{60}{12}=5$ (Efficiency)
$(7-5)=2$ units $=280$ bricks
$\Rightarrow 1$ unit $=140$ bricks
Total bricks $=60$ units $=140 \times 60=8400$
24. (B)

Let the required time be t

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

ATQ,
$\frac{12-3 t}{12-2 t}=\frac{2}{3}$
$t=\frac{12}{5} \mathrm{hr}=2 \frac{2}{5} \mathrm{hr}=2 \mathrm{hr} 24$ minutes
25. (C) $5 \times 10 \times 15 \times 20 \times 25 \times 30 \times 35$. \qquad 240
\times
245×250
$=5^{50}(1 \times 2 \times 3 \times 4 \times$ $\times 49 \times 50$)
$=5^{50}$ (50!)
Maximum power of 2 in 50 !
$\left[\frac{50}{2}\right]+\left[\frac{50}{4}\right]+\left[\frac{50}{8}\right]+\left[\frac{50}{16}\right]+\left[\frac{50}{32}\right]$
$=25+12+6+3+1=47$
Maximum power of 5 in 50!
$\left[\frac{50}{5}\right]+\left[\frac{50}{25}\right]+$ \qquad
$=10+2=12$
Maximum power of 2 is 47 and maximum power of 5 is $(12+50)=62$
\therefore Required number of zeros $=47$
26. (D) $\frac{7}{6}$ in improper fraction

Comparing $\frac{N}{D-N}$ for other number

$$
\begin{array}{lll}
\frac{7}{9}, & \frac{4}{5}, & \frac{5}{7} \\
\frac{7}{9-7}, & \frac{4}{5-4}, & \frac{5}{7-5} \\
\frac{7}{2}, & \frac{4}{1}, & \frac{5}{2} \\
3.5, & 4, & 2.5
\end{array}
$$

$\therefore \frac{5}{7}$ is smallest fraction
27. (A) Pass Fail

ATQ,
$5+1=6$ units $=120$
1 unit = 20
\therefore Required number of successful candidates $=5$ units

$$
\begin{aligned}
& =5 \times 20 \\
& =100
\end{aligned}
$$

28. (C)
C)
\therefore Total wickets $=80+5=85$
29. (C) ATQ,
15% of $(A+B)=25 \%$ of $(A+B)$
$\frac{\mathrm{A}+\mathrm{B}}{\mathrm{A}-\mathrm{B}}=\frac{25 \%}{15 \%}=\frac{5}{3}$
$\frac{(A+B)+(A-B)}{(A+B)-(A-B)}=\frac{A}{B}=\frac{5+3}{5-3}=\frac{8}{2}=\frac{4}{1}$
$\frac{\mathrm{A}}{\mathrm{B}}=\frac{4}{1}$
\therefore Required percentage $=\frac{4-1}{4} \times 100$
$=\frac{3}{4} \times 100=75$
30. (B) D's marks $=320$

C's marks $=320 \times \frac{125}{100}=400$
B's marks $=400 \times \frac{90}{100}=360$
A's marks $=360 \times \frac{125}{100}=450$
\therefore Required marks $=450$
31. (D) $9.4 \overline{1}=9.4+0.0 \overline{1}=9.4+\frac{0.0 \overline{1}}{10}=9.4+$
$\frac{1}{90} \quad 0 . \overline{7}=\frac{7}{9}$
$0.00 \overline{1}=\frac{0 . \overline{1}}{100}=\frac{1}{900}$
\therefore Required sum $=9.4+\frac{1}{90}+\frac{7}{9}+\frac{1}{900}$

$$
\begin{aligned}
& =9.4+\frac{10}{900}+\frac{700}{900}+\frac{1}{900} \\
& =9.4+\frac{711}{900}=10.19
\end{aligned}
$$

32. (C)

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$A \& B$ daily work $=1$ unit +3 units $=4$ units
$\therefore \mathrm{A}, \mathrm{B}$ together finish the work in
$=\frac{36}{4}$ days $=9$ days
\therefore Remaining work $=1-\frac{7}{9}=\frac{2}{9}$
33. (A) External volume of iron pipe $=\pi(4)^{2} . \times 21$
$=\frac{22}{7} \times 4 \times 4 \times 21=1056 \mathrm{~cm}^{3}$
Internal volume of iron pipe $=\pi .(3)^{2} \times 21$
$=\frac{22}{7} \times 3 \times 3 \times 21=594 \mathrm{~cm}^{2}$
\Rightarrow Volume of iron in pipe $=(1056-594) \mathrm{cm}^{3}$

$$
=462 \mathrm{~cm}^{3}
$$

\therefore Weight of pipe $=462 \mathrm{~cm}^{3} \times \frac{8 \mathrm{gm}}{\mathrm{cm}^{3}}=3696 \mathrm{gm}$ $=3.696 \mathrm{~kg}$
34. (A) $\frac{\text { Volume of cylinder } \mathrm{A}}{\text { Volume of cyliner } \mathrm{B}}=\frac{\pi \mathrm{R}_{\mathrm{A}}{ }^{2} \mathrm{H}_{\mathrm{A}}}{\pi \mathrm{R}_{\mathrm{B}}{ }^{2} \mathrm{H}_{\mathrm{B}}}$

$$
\begin{aligned}
& =\left(\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}\right)^{2} \cdot\left(\frac{\mathrm{H}_{\mathrm{A}}}{\mathrm{H}_{\mathrm{B}}}\right) \\
& \Rightarrow \frac{3}{1}=\left(\frac{3}{2}\right)^{2} \cdot \frac{n}{1} \Rightarrow \frac{3}{1}=\frac{9}{4} n \Rightarrow n=\frac{4}{3}
\end{aligned}
$$

35. (A) $\operatorname{LCM}(5,6,8,9)=5 \times 6 \times 4 \times 3=360$ seconds
$=\frac{360}{60}=6$ minutes
\therefore Bells will ring simultaneous after 6 minutes
36. (C) LCM of $(4,6,8,12,16)=48$
\therefore Required number $=48+2=50$
37. (D) Area of ceiling $=\frac{\text { Total cost }}{\text { Cost of } 1 \text { sq unit }}$
$=\frac{270}{0.5}=540$ sq. m
$l: b=5 x: 3 x$
$\Rightarrow l \times b=15 x^{2}=540 \mathrm{~m}^{2}$
$\Rightarrow l=30$ and $b=18 \mathrm{~m}$
Area of the 4 walls $=\frac{\text { Total cost }}{\text { cost of 1sq.unit }}$

$$
=\frac{48}{0.1}=48 \mathrm{~cm}^{2}
$$

\therefore Height $=\frac{480}{2(30+18)}=5 \mathrm{~m}$
38. (A)

$r_{1}+r_{2}=4$
$r_{2}+r_{3}=6$
$r_{3}+r_{1}=8$ \qquad
Adding (i), (ii), (iii)
$2\left(r_{1}+r_{2}+r_{3}\right)=4+6+8=18$
$\Rightarrow\left(r_{1}+r_{2}+r_{3}\right)=9 \mathrm{~cm}$
39. (B) $\sqrt{5 \sqrt{5 \sqrt{5 \sqrt{5 \ldots \ldots . .}}}}=5^{\frac{1}{2}} 5^{\frac{1}{4}} 5^{\frac{1}{8}} 5^{\frac{1}{16} \ldots \ldots=(125)^{x-}}$
$=5^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \cdots \cdots \cdots}=(125)^{x-1}$
$=5^{\left(\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right.}\right)}=5^{1}=(125)^{x-1}$
$=5^{1}=(125)^{x-1}$
$\Rightarrow 5^{1}=(125)^{x-1}$
$\Rightarrow(125)^{\frac{1}{3}}=(125)^{x-1}$
$\Rightarrow x-1=\frac{1}{3}$
$\Rightarrow x=1+\frac{1}{3}=\frac{4}{3}$
40. (C) $\sin \theta+\cos \theta=2$

Maximum value of $\sin \theta$ and $\operatorname{cosec} \theta$ is +1 .
$\Rightarrow \theta=90^{\circ}$
$\sin \theta+\operatorname{cosec} \theta=\sin 90^{\circ}+\operatorname{cosec} 90^{\circ}=1+1=2$
$\Rightarrow \frac{\theta}{2}=45^{\circ}$
$\tan ^{100} \frac{\theta}{2}+\cot ^{100} \frac{\theta}{2}=\tan ^{100} 45^{\circ}+\cot ^{100} 45^{\circ}$
$=(1)^{100}+1^{100}=1+1=2$
41. (C) Let the average expenditure be ₹ x

Total expenditure $=9 x$
Expenditure by 8 person $=8 \times 30=₹ 240$
Expenditure by 9 th person $=x+20$
ATQ,
$9 x=240+x+20$
$\Rightarrow 8 x=260$
$\Rightarrow 9 x=\frac{260}{8} \times 9=₹ 292.50$
42. (B) $x=\sqrt{132+\sqrt{132+\sqrt{132+\ldots \ldots}}}$

As, $132=11 \times 12$
$\Rightarrow \quad x=12$
$y=\sqrt{72-\sqrt{72-\sqrt{72+\ldots \ldots}}}$
As, $72=9 \times 8$

$$
y=8
$$

$x^{2}-y^{2}=(12)^{2}-(8)^{2}=(12-8)(12+8)$

$$
=4 \times 20=80
$$

43. (A) $x=\sqrt{2 \times \sqrt[3]{4 \times 2 \sqrt[3]{4}} \text {. }}$ \qquad
$\Rightarrow x^{2}=2 \times \sqrt[3]{4 \times 2 \sqrt[3]{4 \ldots \ldots \ldots}} \infty$
$\Rightarrow x^{2}=2 \times \sqrt[3]{4 x}$
$\Rightarrow x^{6}=8 \times 4 x$
$\Rightarrow x^{5}=32$
$\Rightarrow x=2$
44. (D) Total voter $=104000$
\Rightarrow Valid votes $=104000 \times \frac{98}{100}=101920$
\therefore Voter polled in favour of candidates

$$
\begin{aligned}
& =101920 \times \frac{55}{100} \\
& =56056
\end{aligned}
$$

45. (B) Let money $=100 \%$

50 oranges $=100 \%$
$\Rightarrow 1$ orange $=2 \%$
40 mangoes 100\%
1 orange = 2.5\%
Remaining amount $=[100-(10+20 \times 2.5)]$

$$
=100-(10+50)=40 \%
$$

\therefore Required number of oranges $=\frac{40 \%}{2 \%}=20$
46. (C) $x^{6}-1=\left(x^{2}\right)^{3}-(1)^{3}$
$=\left(x^{2}-1\right)\left(\left(x^{2}\right)^{2}+1+x^{2}\right)$
$=\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)$
$x^{4}+2 x^{3}-2 x-1$
At $x=1, x^{4}+2 x^{3}-2 x-1=1+2-2-1=$ 0

At $x=2, x^{4}+2 x^{3}-2 x-1=1-2+2-1=0$
$\therefore(x-1) x+1)$ Both are factor of $x^{4}+2 x^{3}$ $-2 x-1$
\therefore Required $\mathrm{HCF}=(x-1)(x+1)=x^{2}-1$
47. (A) ATQ,

$$
\begin{aligned}
& \frac{8 \times 3+20 \times 2+26 \times m+29 \times 1}{3+2+m+1}=17 \\
& \Rightarrow 24+40+26 \mathrm{~m}+29=6 \times 17+17 \mathrm{~m} \\
& \Rightarrow(24+40+29)-(6 \times 17)=17 \mathrm{~m}-26 \mathrm{~m} \\
& \Rightarrow-9=-9 \mathrm{~m} \\
& \Rightarrow \mathrm{~m}=1
\end{aligned}
$$

48. (D) $x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}=\frac{(\sqrt{3}-\sqrt{2})^{2}}{3-2}$
$=\frac{(\sqrt{3}-\sqrt{2})^{2}}{1}=\frac{3+2-2 \sqrt{6}}{1}=5-2 \sqrt{6}$
Similarly, $y=5+2 \sqrt{6}$
$x^{3}+y^{3}=(5-2 \sqrt{6})^{3}+(5+2 \sqrt{6})^{3}$
$=5^{3}-(2 \sqrt{6})^{3}-3 \times 5 \times 2 \sqrt{6}(5-2 \sqrt{6})$
$+5^{3}+(2 \sqrt{6})^{3}+3 \times 5 \times 2 \sqrt{6}(5+2 \sqrt{6})$
$=2\left(5^{3}+3 \times 5 \times 2 \sqrt{6} \times 2 \sqrt{6}\right)$
$=2(125+3 \times 5 \times 2 \times 2 \times 6)=970$
49. (B) $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
$\Rightarrow 2^{2}=a^{2}+b^{2}+c^{2}+2(-1)$
$\Rightarrow a^{2}+b^{2}+c^{2}=6$
Now,
$(a+b)^{2}+(b+c)^{2}+(c+a)^{2}$
$=2\left(a^{2}+b^{2}+c^{2}+a b+a c+b c\right)$
$=2(6-1)=10$
50. $(\mathrm{A})=\sqrt{8+\sqrt{57+\sqrt{38+\sqrt{108+\sqrt{169}}}}}$
$=\sqrt{8+\sqrt{57+\sqrt{38+\sqrt{108+13}}}}$
$=\sqrt{8+\sqrt{57+\sqrt{38+\sqrt{121}}}}$
$=\sqrt{8+\sqrt{57+\sqrt{38+11}}}$
$=\sqrt{8+\sqrt{57+\sqrt{49}}}$
$=\sqrt{8+\sqrt{57+7}}$
$=\sqrt{8+\sqrt{64}}$
$=\sqrt{8+8}$
$=\sqrt{16}=4$
51. (D)

Then
(i) $\mathrm{AC} \times \mathrm{BD}=\mathrm{AB} \times \mathrm{BC}$
(ii) $\mathrm{AD} \times \mathrm{AC}=\mathrm{AB}^{2}$
(iii) $\mathrm{AC} \times \mathrm{CD}=\mathrm{BC}^{2}$
(iv) $\frac{1}{\mathrm{BD}^{2}}=\frac{1}{\mathrm{AB}^{2}}+\frac{1}{\mathrm{BC}^{2}}$

Hence (D) in incorrect.
52. (C)

Draw FC \| \mid AB
$\Rightarrow \mathrm{FC}|\mid \mathrm{DE}$

$$
\begin{gathered}
a^{\circ}+\angle(1)=180^{\circ} \Rightarrow a^{\circ}=180^{\circ}-\angle(1) \\
\text { (2) }=c^{\circ} \quad \Rightarrow c^{\circ}=\angle(2) \\
\angle(1)+\angle(2)=b^{\circ} \Rightarrow b^{\circ}=\angle(1)+\angle(2) \\
\Rightarrow a^{\circ}+b^{\circ}-c^{\circ}=180^{\circ}-\angle(1)+\angle(1)+\angle(2)-
\end{gathered}
$$

<(2)
$\Rightarrow a^{0}+b^{\circ}-c^{0}=180^{\circ}$
53. (B) $9^{(2 x-1)}-81^{(x-1)}=1944$
$\Rightarrow 3^{(2(2 x-1))}-(3)^{(4(x-1))}=1944$
$\Rightarrow 3^{(4 x-2)}-(3)^{(4 x-4)}=1944$
$\Rightarrow 3^{(4 x-2-2+2)}-4^{4 x-4}=1944$
$\Rightarrow 3^{(4 x-4)}\left[3^{2}-1\right]=1944$
$\Rightarrow 3^{4 x-4} 8=1944$
$\Rightarrow 3^{4 x-4}=243$
$\Rightarrow 3^{4 x-4}=3^{5}$
$\Rightarrow 4 x-4=5$
$\Rightarrow x=\frac{9}{4}$
54. (B) Value of sum of squares of number not be less than zero.
$(a-b)^{2}+(a-c)^{2}+(a-d)^{2}$ can be zero when $a=b=c=d$
But $a=b=c=d$ is not possible here as a
$+b+c+d=30$
Hence we choose value of a, b, c, d as close as possible
$\Rightarrow a=7, b=7, c=8, d=8$
$\Rightarrow(a-b)^{2}+(a-c)^{2}+(a-d)^{2}=(7-7)^{2}+(7-8)^{2}$
$+(7-8)^{2}$
$=0^{2}+1^{2}+1^{2}=2$
\therefore Required minimum value $=2$
55. (D) Let the number of sides be n

Each internal angle $=\frac{(n-2) \times 180}{n}$
Each external angle $=\frac{360}{n}$
ATQ,
$\frac{(n-2) \times 180}{n}=\frac{360}{n} \times 3$
$\Rightarrow(n-2)=6$
$\Rightarrow n=8$
56. (C) $\angle \mathrm{ADC}=\frac{\angle \mathrm{AOC}}{2}=\frac{100^{\circ}}{2}=50^{\circ}$

In cyclic quadrilateral ABCD
$\angle \mathrm{ADC}+\angle \mathrm{ABC}=180^{\circ}$
$\Rightarrow 50^{\circ}+\angle \mathrm{ABC}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}=130^{\circ}$
$\therefore \angle \mathrm{ADC}: \angle \mathrm{ABC}=50: 130$

$$
=5: 13
$$

57. (C) $x=7+4 \sqrt{3}$
$x=4+3+2.2 \sqrt{3}$
$x=(2)^{2}+(\sqrt{3})^{2}+2(2 \times \sqrt{3})$
$x=(2+\sqrt{3})^{2}$
$\Rightarrow \sqrt{x}=(2+\sqrt{3})$
$x=7+4 \sqrt{3}$
$\Rightarrow \frac{1}{x}=7-4 \sqrt{3}, \quad\left[7^{2}-(4 \sqrt{3})^{2}=1\right]$
Similarly,
$\frac{1}{\sqrt{x}}=(2-\sqrt{3})$
$\sqrt{x}+\frac{1}{\sqrt{x}}=(2-\sqrt{3})+(2-\sqrt{3})=4$
\therefore Required square root $=2$
58. (B) $\sin ^{2} 21^{\circ}=\frac{x}{y}$
$\Rightarrow 1-\sin ^{2} 21^{\circ}=\cos ^{2} 21^{\circ}=1-\frac{x^{2}}{y^{2}}$
$\Rightarrow \cos ^{2} 21^{\circ}=\frac{y^{2}-x^{2}}{y^{2}}$
$\Rightarrow \cos 21^{\circ}=\sqrt{\frac{y^{2}-x^{2}}{y^{2}}}=\frac{\sqrt{y^{2}-x^{2}}}{y}=\sin$
69°
$\Rightarrow \sec 21^{\circ}=\frac{y}{\sqrt{y^{2}-x^{2}}}$
$\therefore \sec 21^{\circ}-\sin 69^{\circ}=\frac{y}{\sqrt{y^{2}-x^{2}}}-\frac{\sqrt{y^{2}-x^{2}}}{y}$
$=\frac{y^{2}-y^{2}+x^{2}}{y \sqrt{y^{2}-x^{2}}}=\frac{x^{2}}{y \sqrt{y^{2}-x^{2}}}$

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
59. (A) Let the distance be 90 km

$$
\begin{aligned}
& \text { Average speed }=\frac{\text { Total distance travelled }}{\text { Total time taken }} \\
& =\frac{90 \mathrm{~km}}{\left(\frac{30}{5}+\frac{30}{10}+\frac{30}{15}\right) \text { hours }} \\
& =\frac{90 \mathrm{~km}}{6+3+2 \text { hours }}=\frac{90}{11} \mathrm{~km} / \mathrm{hr} \\
& =8 \frac{2}{11} \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

60. (A) Let the number be x
$x+\frac{2}{x}=\frac{19}{3}$
$\Rightarrow x+\frac{2}{x}=\frac{38}{6}$
$\Rightarrow x+\frac{2}{x}=6+\frac{2}{6}$
$\Rightarrow x=6$
\therefore Required number $=6$
61. (C) Let the sum be ₹P

ATQ,
$\mathrm{P}+\frac{5 \mathrm{PR}}{100}=1350$
and, $\mathrm{P}+\frac{8 \mathrm{PR}}{100}=1620$
$\Rightarrow \frac{5 \mathrm{PR}}{100}=1350-\mathrm{P}$
$\Rightarrow \frac{8 \mathrm{PR}}{100}=1620-\mathrm{P}$
Dividing equation (1) by (2)
$\frac{(1350-P)}{(1620-P)}=\frac{5}{8}$
$\Rightarrow 8(1350-\mathrm{P})=5(1620-\mathrm{P})$
$\Rightarrow 10800-8 \mathrm{P}=8100-5 \mathrm{P}$
$\Rightarrow 10800-8100=8 \mathrm{P}-5 \mathrm{P}$
$\Rightarrow 2700=3 \mathrm{P}$
$\Rightarrow \mathrm{P}=₹ 900$
62. (C) Let each installments be ₹ x
$\mathrm{R}=12 \frac{1}{2} \% \leftrightarrow \frac{1}{8}$
$\Rightarrow 1+\mathrm{R}=\frac{9}{8}$

Taking instalments back to point A and equating
$\Rightarrow x \times \frac{8}{9}+x \times \frac{8}{9} \times \frac{8}{9}=6800$
$\Rightarrow \frac{8 x}{9}\left(1+\frac{8}{9}\right)=6800$
$\Rightarrow \frac{8}{9} \times \frac{17}{9} \quad x=6800$
$\Rightarrow x=₹ 4050$
63. (B) Let T be the time and R be the required rate
ATQ,
$\frac{3000 \times \mathrm{T} \times 6}{100}=900$
$\Rightarrow \mathrm{T}=5$ years.
Now, $1600=\frac{4000 \times 5 \times \mathrm{R}}{100}$
$\Rightarrow R=8 \%$
64. (A) Sum after 2 years compounded annually = ₹ 4624
Sum after 3 years compounded annually = ₹4913

So, initial sum $=₹\left[4624 \times\left(\frac{4624}{4913}\right)^{2}\right]$
= ₹ 4096
65. (A) Let the speed of the two trains be $3 x$ and $4 x$ respectively.
Length of $1^{\text {st }}$ train $=\mathrm{L}_{1}=3 x \times 3=9 x$
Length of $2^{\text {nd }}$ trains $=\mathrm{L}_{2}=4 x \times 3=12 x$
\therefore Required time $=\frac{\mathrm{L}_{1}+\mathrm{L}_{2}}{\mathrm{~S}_{1}+\mathrm{S}_{2}}=\frac{9 x+12 x}{7 x}$

$$
=\frac{21}{7}=3 \mathrm{sec} .
$$

66. (C)

Distance travelled by the sparrow in 2

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
minutes $=\mathrm{BD}$
$B D=B C+C D$
$\Rightarrow \mathrm{BD}=50 \sqrt{3} \cot 30^{\circ}+50 \sqrt{3} \cot 60^{\circ}$
$\Rightarrow \mathrm{BD}=150+50=200 \mathrm{~m}$
\therefore Speed of the sparrow $=\frac{200}{2} \times \frac{60}{1000}$

$$
=6 \mathrm{~km} / \mathrm{hr}
$$

67. (C) Distance covered in 1 litre petrol with speed $50 \mathrm{~km} / \mathrm{hr}=19.5 \mathrm{~km}$
Hence, this distance will be covered with speed $70 \mathrm{~km} / \mathrm{hr}$ in = 1.3 litre
then distance covered in 1 litre with speed,
$70 \mathrm{~km} / \mathrm{hr}=\frac{19.5}{1.3}=15 \mathrm{~km}$
\therefore Distance covered in 10 litre diesel with speed, $70 \mathrm{~km} / \mathrm{hr}=10 \times 15=150 \mathrm{~km}$.
68. (C) $\frac{4 \frac{1}{7}-2 \frac{1}{4}}{3 \frac{1}{2}+1 \frac{1}{7}} \div \frac{1}{2+\frac{1}{2+\frac{1}{5-\frac{1}{5}}}}$
$=\frac{\frac{29}{7}-\frac{9}{4}}{\frac{7}{2}+\frac{8}{7}} \div \frac{1}{2+\frac{1}{2+\frac{1 \times 5}{24}}}$
$=\frac{\frac{29 \times 4-9 \times 7}{28}}{\frac{7 \times 7+8 \times 2}{14}} \div \frac{1}{2+\frac{24}{48+5}}$
$=\frac{\frac{53}{\frac{65}{14}}}{\frac{65}{106+24}} \div \frac{1 \times 53}{10}$
$=\frac{53}{2 \times 65} \div \frac{53}{130}$
$=\frac{53}{130} \times \frac{130}{53}=1$
69. (A) $\frac{(243)^{0.13} \times(243)^{0.07}}{(7)^{0.25} \times(49)^{0.075} \times(343)^{0.2}}$
$=\frac{\left(3^{5}\right)^{0.13} \times\left(3^{5}\right)^{0.07}}{(7)^{0.25} \times\left(4^{2}\right)^{0.075} \times\left(7^{3}\right)^{0.2}}$
$=\frac{3^{0.65} \times 3^{0.35}}{7^{0.25} \times 7^{0.150} \times 7^{0.06}}$
$=\frac{3^{(0.65+0.35)}}{7^{(0.25+0.150+0.6)}}=\frac{3^{1}}{7^{1}}=\frac{3}{7}$
70. (B) Required volume $=$ Area of base \times height $=36 \times 5=180 \mathrm{~cm}^{3}$
71. (D) Let L and S be the length and speed of the train respectively.

$$
\begin{equation*}
L=(S-6) \times 5 \tag{1}
\end{equation*}
$$

and, $L=(S-7.5) \times 5.5$
From equation (1) and (2)
$(S-6) \times 5=(S-7.5) \times 5.5$
$\Rightarrow 5 \mathrm{~S}-30=5.5 \mathrm{~S}-41.25$
$\Rightarrow \mathrm{S}=22.5 \mathrm{kmph}$
From equation (1)
$\mathrm{L}=(22.5-6) \frac{\mathrm{km}}{\mathrm{hr}} \times 5 \mathrm{sec}$
$\Rightarrow \mathrm{L}=\frac{16.5 \times 100 \mathrm{~m}}{60 \times 60 \mathrm{sec}} \times 5 \mathrm{sec}$
$\Rightarrow \mathrm{L}=22.92 \mathrm{~m}$
72. (A) Average speed during the entire journey.
$=\frac{\text { Total distance }}{\text { Total time }}=\frac{3584 \mathrm{~km}}{2 \text { day } 8 \text { hours }}=\frac{3584}{56}$
$=64 \mathrm{~km} / \mathrm{hr}$
Now,
Average speed during the remaining part of journey
$=\frac{3584-(1440+1608)}{8} \mathrm{~km} / \mathrm{hr}$
$=\frac{3584-3048}{8}=\frac{536}{8}=67 \mathrm{~km} / \mathrm{hr}$
\therefore Required difference
$=(67-64) \mathrm{km} / \mathrm{hr}$
$=3 \mathrm{~km} / \mathrm{hr}$
73. (D) $\mathrm{P}=\sqrt{\frac{1-\sin x}{1+\sin x}}$
$\Rightarrow \mathrm{P}=\sqrt{\frac{(1-\sin x)(1-\sin x)}{(1+\sin x)(1-\sin x)}}$
$\Rightarrow \mathrm{P}=\sqrt{\frac{(1-\sin x)^{2}}{1-\sin ^{2} x}}$
$\Rightarrow \mathrm{P}=\sqrt{\frac{(1-\sin x)^{2}}{(\cos x)^{2}}}$
$\Rightarrow \mathrm{P}=\sqrt{\left(\frac{1-\sin x}{\cos x}\right)^{2}}$

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\Rightarrow \mathrm{P}=\frac{1-\sin x}{\cos x}$
and $\mathrm{Q}=\frac{1-\sin x}{\cos x}$
$\mathrm{R}=\frac{\cos x}{1+\sin x}$
$=\frac{\cos x}{1+\sin x} \times \frac{1-\sin x}{1-\sin x}$
$=\frac{\cos x(1-\sin x)}{\cos ^{2} x}$
$=\frac{1-\sin x}{\cos x}$
$\therefore \mathrm{P}=\mathrm{Q}=\mathrm{R}$
74. (D) $x \cos \frac{\pi}{3}-\sin \frac{\pi}{3}=x \tan \frac{\pi}{6} \cot \frac{\pi}{3}$
$\Rightarrow x \times \frac{1}{2}-\frac{\sqrt{3}}{2}=x \times \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}}$
$\Rightarrow \frac{x}{2}-\frac{\sqrt{3}}{2}=\frac{x}{3}$
$\Rightarrow \frac{x}{2}-\frac{x}{3}=\frac{\sqrt{3}}{2}$
$\Rightarrow \frac{x}{6}=\frac{\sqrt{3}}{2}$
$\therefore x=3 \sqrt{3}$
75. (A)

Area of isosceles base $=\frac{1}{2} b \times h$
$\left[h=\mathrm{AD}=\sqrt{\mathrm{AC}^{2}-\mathrm{CD}^{2}}=\sqrt{5^{2}-4^{2}}=3\right]$
$=\frac{1}{2} \times 8 \times 3=12 \mathrm{~cm}^{2}$
\therefore Required volume $=$ Area of base \times height
$=12 \times 8=96 \mathrm{~cm}^{3}$
76. (D) Let the radius of sphere $=R$

ATQ,
$4 \pi(R+2)^{2}-4 \pi R^{2}=704$
$\Rightarrow 4 \pi\left[\mathrm{R}^{2}+4+4 \mathrm{R}-\mathrm{R}^{2}\right]=704$
$\Rightarrow 4 \pi[4 \mathrm{R}+4]=704$
$\Rightarrow 16 \times \frac{22}{7}(1+\mathrm{R})=704$
$\Rightarrow(\mathrm{R}+1)=\frac{704 \times 7}{16 \times 22}=14$
$\therefore \mathrm{R}=13 \mathrm{~cm}$
77. (A) Volume of cube $=(\text { side })^{3}=(2)^{3}=8 \mathrm{~cm}^{3}$

Maximum volume of cylinder $=\pi r h$
$=\frac{22}{7} \times 1 \times 2$
$=\frac{44}{7} \mathrm{~cm}^{3}$
\therefore Volume of remaining part $=8-\frac{44}{7}$
$=\frac{12}{7} \mathrm{~cm}^{3}$
78. (A) Area bounded by $(|x|+|y|=k)=2 \mathrm{k}^{2}$ Area bounded by $(|x|+|y|=6)=2(6)^{2}$ $=72$ sq. units
Alternate Method

Area of $\mathrm{AOB}=\frac{1}{2} \times 6 \times 6=18$
\therefore Area of $\mathrm{ABCD}=4 \times 18=72$ sq. units
79. (B) Total mixture $=8+32=40$ litre

Wine : water $=8: 40$

$$
=1: 5
$$

Let x litre mixture was replaced.
ATQ,
$\left(8-\frac{x}{5}+x\right):\left(32-\frac{4 x}{5}\right)=3: 7$
$\Rightarrow \frac{40+4 x}{160-4 x}=\frac{3}{7}$
$\Rightarrow 280+28 x=480-12 x$
$\Rightarrow 40 x=480-280=200$
$\Rightarrow x=5$ litre

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
80. (C) $\frac{\text { Population in } 2^{\text {nd }} \text { years }}{\text { Population in } 3^{\text {rd }} \text { years }}=\frac{10}{9}=\frac{100}{100-10}$
$=\frac{100}{100-r}$
$\Rightarrow \mathrm{r}=10 \%$
Let the population of vultures 3 years ago be P then.
$\Rightarrow P\left(1-\frac{10}{100}\right)^{3}=29160$
$\Rightarrow \mathrm{P} \times \frac{9}{10} \times \frac{9}{10} \times \frac{9}{10}=29160$
$\Rightarrow P=\frac{29160 \times 10 \times 10 \times 10}{9 \times 9 \times 9}$
$\Rightarrow \mathrm{P}=40,000$
81. (C) $x=2-2^{1 / 3}+2^{2 / 3}$
$\Rightarrow x-2=2^{2 / 3}-2^{1 / 3}$
$\Rightarrow x^{3}-6 x^{2}+12 x-8=2^{2}-2^{1}-3 \times 2\left(2^{2 / 3}-2^{1 / 3}\right)$
$\Rightarrow x^{3}-6 x^{2}+12 x-8=4-2-6(x-2)$
$\Rightarrow x^{3}-6 x^{2}+12 x-8=14-6 x$
$\Rightarrow x^{3}-6 x^{2}+18 x+18=14+8+18$
$\Rightarrow x^{3}-6 x^{2}+18 x+18=40$
82. (A) Required ungrazed area
$=$ Area of square -4 (area of quadrants)
$=42^{2}-4 \times \frac{1}{4} \times \pi(21)^{2}=378$
83. (D) Let x be the number of students who has taken both subjects.

Sociology students $=64 \times 50 \%=32$
P. Science students $=64 \times 75 \%=48$

Now,

$$
(32-x)+x+(48-x)=64
$$

$\Rightarrow 32+48-x=64$
$\Rightarrow x=80-64=16$
84. (A) $x=997, y=998, z=999$

Now,
$x^{2}+y^{2}+z^{2}-x y-y z-z x$
$=\frac{1}{2}\left[(x-4)^{2}+(y-z)^{2}+(x-x)^{2}\right]$
$=\frac{1}{2}\left[(997-998)^{2}+(998-999)^{2}+(999-997)^{2}\right]$

$$
\begin{aligned}
& =\frac{1}{2}\left[(-1)^{2}+(-1)^{2}+(2)^{2}\right] \\
& =\frac{1}{2}[1+1+4]=3
\end{aligned}
$$

85. (C) In $\Delta \mathrm{OC}_{1} \mathrm{C}_{2}$

In $\Delta \mathrm{OC}_{1} \mathrm{C}$
$\left(\mathrm{OC}_{1}\right)^{2}=(\mathrm{OC})^{2}+\left(\mathrm{CC}_{1}\right)^{2}$
$\Rightarrow(r+1)^{2}=(\mathrm{PC}-\mathrm{OP})^{2}+1$
$\Rightarrow(r+1)^{2}=(2-\mathrm{r})^{2}+1$
$\Rightarrow r^{2}+1+2 r=4+r^{2}-4 r+1$
$\Rightarrow 6 r=4$
$\Rightarrow r=\frac{2}{3}$
86. (D) $\frac{9}{\operatorname{cosec} 2} 4 \cos ^{2} \theta+\frac{5}{1+\tan ^{2} \theta}$
$=9 \sin ^{2} \theta+4 \cos ^{2} \theta+\frac{5}{\sec ^{2} \theta}$
$=9 \sin ^{2} \theta+9 \cos ^{2} \theta$
$=9\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
= 9
87. (C) Distance traversed by the extremities of the minute hand in one hour
$=2 \times \frac{22}{7} \times 10$
Distance traversed by the extremities of the minute hand in 3 days and 5 hours
$=2 \times \frac{22}{7} \times 10 \times 77$
$=22 \times 220=4840 \mathrm{~cm}$
Now,
Distance traversed by the hour-had in 12 hour
$=2 \times \frac{22}{7} \times 7=44 \mathrm{~cm}$
Distance traversed by the hour hand in 77 hour (3 days, 5 hours)

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$=\frac{44}{12} \times 7=\frac{11 \times 77}{3}=\frac{847}{3}=282.33 \mathrm{~cm}$
\therefore Required difference $=4840-283.33$

$$
=4557.67 \mathrm{~cm}
$$

88. (B) $\mathrm{S}_{n}=0.4+0.44+0.444+$ \qquad + to n terns
$=4[0.1+0.11+0.111+\ldots \ldots+$ to n terms $]$
$=\frac{4}{9}[(0.9+0.99+.999+$ \qquad + to n terms)]
$=\frac{4}{9}\left[\left(1-\frac{1}{10}\right)+\left(1-\frac{1}{100}\right)+\left(1-\frac{1}{1000}\right)+\ldots\right.$. tonterms $]$ $=\frac{4}{9}\left[(1+1+1+\ldots \ldots+\right.$ term $\left.)-\left(\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\ldots \ldots \ldots+\frac{1}{10^{n}}\right)\right]$
$=\frac{4}{9}\left(n-\frac{\frac{1}{10}\left\{1-\left(\frac{1}{10}\right)^{n}\right\}}{1-\frac{1}{10}}\right)$
$=\frac{4}{9}\left[n-\frac{\frac{1}{10}\left(1-\frac{1}{10^{n}}\right)}{\frac{9}{10}}\right]$
$=\frac{4}{9}\left[n-\frac{1}{9}\left(1-\frac{1}{10^{n}}\right)\right]$
$=\frac{4}{81}\left[9 n-1+\frac{1}{10^{n}}\right]$
\therefore Required sum $=\frac{4}{81}\left[9 n-1+\frac{1}{10^{n}}\right]$
89. (A) Let the speed of man and current be x $\mathrm{km} / \mathrm{hr}$ and $\mathrm{y} \mathrm{km} / \mathrm{hr}$ respectively.
Then
$\frac{30}{x-y}+\frac{44}{x+y}=10$
$\frac{40}{x-y}+\frac{55}{x+y}=13$
Solving eqn. (i) and (ii)
$\mathrm{y}=3 \mathrm{~km} / \mathrm{hr}$
90. (B) Let $\mathrm{CP}=₹ x$ and $\mathrm{SP}=₹ y$
$\Rightarrow \quad y \times 7 \%=x \times 8 \%$
and, $y \times 9 \%=x \times 10 \%+1$
$\Rightarrow \frac{9}{100} y=\frac{10}{100} \times x+1$
$\Rightarrow \quad 9 y=10 x+100$
and, $7 y=8 x$
$9 y=10 x+10$
$7 y=8 x$
Solving eq. (i) and (ii)
$x=₹ 350$
91. (A) Percentage of boys in U school $=85$
\therefore No. of boys $=\frac{85}{100} \times 1000=850$
Percentage of boys in R School $=75$
\therefore No. of boys $=\frac{75}{100} \times 2000=15000$
\therefore Total no. of boys in school U and R
$=1500+850=2350$
\therefore Total percentage of boys $=\frac{2350}{3000} \times 100$

$$
=78.55
$$

92. (B) Percentage of boys $=60$ [in T. School]
\therefore No. of boys $=\frac{60}{100} \times 1000=600$
93. (D) Required percentage $=\frac{2000}{2500} \times 100=80$
94. (B) Percentage of boys in P school $=60$
\therefore No. of boys in P school

$$
\begin{aligned}
& =\frac{60}{100} \times 2500 \\
& =1500
\end{aligned}
$$

Percentage of boys in Q school $=55 \%$
\therefore No. of boys in Q school

$$
\begin{aligned}
& =3000 \times \frac{55}{100} \\
& =1650
\end{aligned}
$$

\therefore Required average

$$
\begin{aligned}
& =\frac{1500+100}{2} \\
& =1575
\end{aligned}
$$

95. (C) Girls in P school $=40 \%$ of $2500=1000$ Girls in Q school 45\% of $3000=1350$
$\therefore \frac{\mathrm{P}}{\mathrm{Q}}=\frac{\frac{40}{100} \times 2500}{\frac{45}{100} \times 300}=20: 27$
96. (B) Appeared in interview (from others) $=12 \%$ Qualified from engineering $=16 \%$
\therefore Required ratio $=\frac{\frac{12}{100} \times 25780}{\frac{11}{100} \times 7390}$

$$
=3094: 813
$$

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
97. (B) Appeared candidates from others and managements $=24 \%$
\therefore No. of candidates

$$
\begin{equation*}
=\frac{24}{100} \times 25780 \tag{i}
\end{equation*}
$$

Appeared candidates from Engg. $=16 \%$
$\therefore \quad$ No of candidates $=\frac{16}{100} \times 25780$
\therefore Percentage of candidates with respect to Engg. candidates

$$
=\frac{24}{16} \times 100=150
$$

98. (D) Engineering student $=11 \%$

Agriculture student $=7 \%$
Difference = 4\%
\therefore Required difference

$$
\begin{aligned}
& =\frac{4}{100} \times 7390 \\
& =295.78 \\
& =296
\end{aligned}
$$

99. (C) Management

$$
\begin{aligned}
& =\frac{12}{100} \times 25780-\frac{20}{100} \times 7390 \\
& =3093.60-1478.00 \\
& =1615.6
\end{aligned}
$$

Engineering

$$
\begin{aligned}
& =\frac{16}{100} \times 25780-\frac{11}{100} \times 7390 \\
& =4124.80-812.90=3311.9
\end{aligned}
$$

Science

$$
\begin{aligned}
& =\frac{28}{100} \times 25780-\frac{32}{100} \times 7390 \\
& =4853.6
\end{aligned}
$$

Agriculture

$$
\begin{aligned}
& =\frac{14}{100} \times 25780-\frac{7}{100} \times 7390 \\
& =3609.20-517.30 \\
& =3091.9
\end{aligned}
$$

100. (A) Percentage selected candidates from commerce and agriculture discipline together

$$
\begin{aligned}
& =(16+7) \\
& =23 \%
\end{aligned}
$$

\therefore Total no. of candidates

$$
\begin{aligned}
& =\frac{23}{100} \times 7390 \\
& =1701.08
\end{aligned}
$$

SSC TIER II (MATHS) MOCK TEST - 44 (ANSWER KEY)

1. (A)	11. (D)	21. (B)	31. (D)	41. (C)	51. (D)	61. (C)	71. (D)	81. (C)	91. (A)
2. (C)	12. (D)	22. (D)	32. (C)	42. (B)	52. (C)	62. (C)	72. (A)	82. (A)	92. (B)
3. (B)	13. (C)	23. (C)	33. (A)	43. (A)	53. (B)	63. (B)	73. (D)	83. (D)	93. (D)
4. (C)	14. (D)	24. (B)	34. (A)	44. (D)	54. (B)	64. (A)	74. (D)	84. (A)	94. (B)
5. (C)	15. (C)	25. (C)	35. (A)	45. (B)	55. (D)	65. (A)	75. (A)	85. (C)	95. (C)
6. (D)	16. (D)	26. (D)	36. (C)	46. (C)	56. (C)	66. (C)	76. (D)	86. (D)	96. (B)
7. (D)	17. (D)	27. (A)	37. (D)	47. (A)	57. (C)	67. (C)	77. (A)	87. (C)	97. (B)
8. (D)	18. (B)	28. (C)	38. (A)	48. (D)	58. (B)	68. (C)	78. (A)	88. (B)	98. (D)
9. (C)	19. (B)	29. (C)	39. (B)	49. (B)	59. (A)	69. (A)	79. (B)	89. (A)	99. (C)
10. (A)	20. (C)	30. (B)	40. (C)	50. (A)	60. (A)	70. (B)	80. (C)	90. (B)	100.(A)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

