SSC TIER II (MATHS) MOCK TEST - 45 (SOLUTION)

1. (C) I. $3 . \overline{36}+1 . \overline{33}-2 . \overline{05}$
$=3+0 . \overline{36}+1+0 . \overline{33}-2-0 . \overline{05}$
$=3+\frac{36}{99}+1+\frac{33}{99}-2-\frac{05}{99}$
$=(3+1-2)+\left(\frac{36}{99}+\frac{33}{99}-\frac{5}{99}\right)$
$=2+\frac{64}{99}=2+0 . \overline{64}$
$=2 . \overline{64} \neq 2.6 \overline{4}$
$\therefore \quad$ Statement I is not true
II. $(1+\sqrt{2})^{2}=1+2+2 \sqrt{2}=3+2 \sqrt{2}$
$\Rightarrow(1+\sqrt{2})^{4}=(3+2 \sqrt{2})^{2}=9+8+12 \sqrt{2}$
$=17+12 \sqrt{2}$
$\Rightarrow(1+\sqrt{2})^{8}=(17+12 \sqrt{2})^{2}$
$=289+288+408 \sqrt{2}$
$=(577+408 \sqrt{2})$
$\Rightarrow(1+\sqrt{2})^{8}=(577+408 \sqrt{2})$
$\Rightarrow(1+\sqrt{2})=(577+408 \sqrt{2})^{\frac{1}{8}}$
$\therefore \quad(1+\sqrt{2})=\sqrt{\sqrt{\sqrt{577+408 \sqrt{2}}}}$
Statement II is true.
III. $8^{\sin \theta} .16^{\cos \theta}=2^{3 \sin \theta} \cdot 2^{4 \cos \theta}=2^{3 \sin \theta+4 \cos \theta}$ when $3 \sin \theta+4 \cos \theta$ is minimum, $2^{3 \sin \theta+4 \cos \theta}$ will also be minimum
Now, we know
$-\sqrt{3^{2}+4^{2}} \leq 3 \sin \theta+4 \cos \theta \leq \sqrt{3^{2}+4^{2}}$
$-5 \leq 3 \sin \theta+4 \cos \theta \leq+5$
\Rightarrow Minimum value of $8^{\sin \theta} .16^{\cos \theta}=2^{-5}$
\therefore Statement III is true
2. (A) $\mathrm{A}=\frac{(0.147+0.289)^{2}-0.01 \times(1.47-2.89)^{2}}{1.47 \times 0.0289}$
$\Rightarrow \mathrm{A}=\frac{(0.147+0.289)^{2}-(0.147-0.289)^{2}}{0.147 \times 0.289}$
we know,
$\left(a^{2}+b^{2}\right)-\left(a^{2}-b^{2}\right)=4 a b$
$\Rightarrow \mathrm{A}=\frac{4 \times 0.147 \times 0.289}{0.147 \times 0.289}=4$

Now,

$$
\begin{aligned}
B & =\frac{5.6 \times 0.36+0.42 \times 3.2}{0.8 \times 2.1} \\
& =\frac{56 \times 36+42 \times 32}{8 \times 210} \\
& =1.2+0.8=2.0
\end{aligned}
$$

Now,
$\left(A^{2}+B^{2}\right)^{2}=\left(4^{2}+2^{2}\right)^{2}=(16+4)^{2}$ $=(20)^{2}=400$
3. (B)

O is centre of the circle.
In equilateral triangle $r=\frac{2}{3} \mathrm{~h}$
where $\mathrm{h}=\mathrm{P} \times$ (Median of PQR)
$\Rightarrow \mathrm{h}=\frac{3}{2} r$
$\Rightarrow \frac{\sqrt{3}}{2} a=\frac{3}{2} r \quad[a$, side of equilater $\triangle \mathrm{PQR}]$
$\Rightarrow a=\sqrt{3} \mathrm{r}=\mathrm{PQ}=\mathrm{PR}=\mathrm{QR}$
Now,
PS is diameter $\Rightarrow \angle \mathrm{PQS}=\angle \mathrm{PRS}=90^{\circ}$
$\triangle \mathrm{PQR}$ is equilateral $\Delta \Rightarrow \angle \mathrm{PQR}=\angle \mathrm{PRQ}$
$=60^{\circ}$
$\Rightarrow \angle \mathrm{RQS}=\angle \mathrm{QRS}=90^{\circ}-60^{\circ}=30^{\circ}$
$\Rightarrow \mathrm{QSR}=360^{\circ}-\left(60^{\circ}+90^{\circ}+90^{\circ}\right)=120^{\circ}$
$\Rightarrow \angle \mathrm{QSP}=60^{\circ} \Rightarrow \angle \mathrm{QXS}=90^{\circ}$
In $\triangle \mathrm{PXQ}$
$\mathrm{QX}=\frac{\mathrm{QR}}{2}=\frac{\sqrt{3} r}{2}$
and $\mathrm{XS}=\mathrm{PS}-\mathrm{PX}=2 r-\frac{3}{2} r$

$$
=\frac{1}{2} r
$$

$(\mathrm{QS})^{2}=(\mathrm{QX})^{2}+(\mathrm{XS})^{2}$
$\Rightarrow(\mathrm{QS})^{2}=\left(\frac{\sqrt{3}}{2} r\right)^{2}+\left(\frac{1}{2} r\right)^{2}$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\Rightarrow(\mathrm{QS})^{2}=\frac{3}{4} r^{2}+\frac{1}{4} r^{2}=r^{2}$
$\Rightarrow \mathrm{QS}=r$
Similarly,
SR = r
$\therefore \quad$ Required perimeter $=\mathrm{PQ}+\mathrm{PR}+\mathrm{RS}+\mathrm{SQ}$

$$
\begin{aligned}
& =\sqrt{3} r+\sqrt{3} r+r+r \\
& =2 \sqrt{3} r+2 r \\
& =2 r(\sqrt{3}+1)
\end{aligned}
$$

4. (D)

Clearly,
$\mathrm{AO}_{1}=\mathrm{AO}_{2}=\mathrm{O}_{1} \mathrm{O}_{2}=1 \mathrm{~cm}$
$\Rightarrow \Delta \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{~A}$ is equilateral \Rightarrow All angles 60°
\Rightarrow Area $\mathrm{AO}_{2} \mathrm{X}=\frac{60^{\circ}}{360^{\circ}} \times \pi \times 1-\frac{\sqrt{3}}{4}(1)^{2}$ $=\frac{\pi}{6}-\frac{\sqrt{3}}{4}$

Area of equilateral $\Delta \mathrm{AO}_{1} \mathrm{O}_{2}=\frac{\sqrt{3}}{4}(1)^{2}=\frac{\sqrt{3}}{4}$
$\therefore \quad$ Required Area $=2 \times\left(\right.$ Area of $\left.\Delta \mathrm{AO}_{1} \mathrm{O}_{2}\right)+$ 4(Area of AXO_{2})
$=2 \times \frac{\sqrt{3}}{4}+4\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right)=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}$
5. (B) $\operatorname{LCM}(9,2,8,5)=360$

$$
\begin{aligned}
& \frac{9}{13}=\frac{9 \times 40}{13 \times 40}=\frac{360}{520} \\
& \frac{2}{3}=\frac{9 \times 40}{3 \times 180}=\frac{360}{540} \\
& \frac{8}{11}=\frac{8 \times 45}{11 \times 45}=\frac{360}{495} \\
& \frac{5}{7}=\frac{5 \times 72}{7 \times 72}=\frac{360}{504} \\
& \frac{360}{540}<\frac{360}{520}<\frac{360}{504}<\frac{360}{495} \\
& \Rightarrow \frac{2}{3}<\frac{9}{13}<\frac{5}{7}<\frac{8}{11}
\end{aligned}
$$

6. (C) Let Average run for 12 innings $=x$

Total runs after 12 innings $=12 x$
Average run in 13th innings $=(x+5)$
Total runs in 13 innings $=13(x+5)$

ATQ,
$\Rightarrow 13(x+5)-12 x=96$
$\Rightarrow 13 x+65-12 x=96$
$\Rightarrow x+65=96$
$\Rightarrow x=96-65=31$
\therefore Required average $=x+5=31+5=36$ runs
7. (D)

Area of triangle $=\sqrt{\mathrm{S}(\mathrm{S}-a)(\mathrm{S}-b)(\mathrm{S}-c)}$
$S=\frac{13+14+15}{2}=21$
$=\sqrt{21(21-13)(21-14)(21-15)}$
$=\sqrt{21 \times 8 \times 7 \times 6}=84 \mathrm{~cm}^{2}$
As, EF divides $A B C$ into two equal halves.
\Rightarrow Area $\triangle \mathrm{EFC}=\frac{1}{2} \times 84 \mathrm{~cm}^{2}=42 \mathrm{~cm}^{2}$ Also, Area $\mathrm{ABFEA}=42 \mathrm{~cm}^{2}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{BC} \times \mathrm{AD}=84 \mathrm{~cm}^{2}$
$\Rightarrow \mathrm{AD}=\frac{2 \times 84}{14}=12 \mathrm{~cm}$
In $\triangle \mathrm{ABD}$
$\mathrm{BD}^{2}=\mathrm{AB}^{2}-\mathrm{AD}^{2}$
$\Rightarrow \mathrm{BD}^{2}=13^{2}-12^{2}=(13+12)(13-12)=25$
$\Rightarrow \mathrm{BD}=5 \mathrm{~cm}$
Now,
Area of $\triangle \mathrm{ABD}=\frac{1}{2} \times \mathrm{AD} \times \mathrm{BD}=\frac{1}{2} \times 12 \times 5$ $=30 \mathrm{~cm}^{2}$
$\therefore \quad$ Required Area of Ttrapezium ADFE
$=$ Area of ABDFEA - Area of $\triangle \mathrm{ABD}$
$=42-30=12 \mathrm{~cm}^{2}$
8. (A)

$$
\begin{aligned}
& \frac{3 \frac{1}{4}-\frac{4}{5} \text { of } \frac{5}{6}}{4 \frac{1}{3} \div \frac{1}{5}-\left(\frac{3}{10}+21 \frac{1}{5}\right)}=\frac{\frac{13}{4}-\frac{4}{5} \times \frac{5}{6}}{\frac{13}{3} \times 5-\left(\frac{3}{10}+\frac{106}{5}\right)} \\
& =\frac{\left(\frac{13}{4}-\frac{2}{3}\right)}{\frac{65}{3}-\left(\frac{3+212}{10}\right)}=\frac{\frac{31}{12}}{\frac{65}{3}-\frac{215}{10}}=\frac{31}{12} \times \frac{30}{5}
\end{aligned}
$$

Campus

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$=\frac{31}{2}=15 \frac{1}{2}$
\therefore Required least fraction $=15 \frac{1}{2}-15=\frac{1}{2}$
9. (D) $\frac{1}{\sqrt{12-\sqrt{40}}}=\frac{1}{\sqrt{7+5-4 \times 7 \times 5}}$
$=\frac{1}{\sqrt{(\sqrt{7})^{2}+(\sqrt{5})^{2}-2 \sqrt{7} \sqrt{5}}}=\frac{1}{\sqrt{(\sqrt{7}-\sqrt{5})^{2}}}$
$=\frac{1}{(\sqrt{7}-\sqrt{5})}=\frac{\sqrt{7}+\sqrt{5}}{(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5})}=\frac{\sqrt{7}+\sqrt{5}}{2}$
Similarly,
$\frac{1}{\sqrt{8-\sqrt{60}}}=\frac{1}{\sqrt{(\sqrt{5})^{2}+(\sqrt{3})^{2}-2 \times \sqrt{5} \times \sqrt{3}}}=\frac{1}{\sqrt{5}-\sqrt{3}}$
$=\frac{\sqrt{5}+\sqrt{3}}{2}$ and $\frac{2}{\sqrt{10+\sqrt{84}}}=\frac{\sqrt{7}-\sqrt{3}}{2}$
Now,
Value of Required expression
$=\frac{\sqrt{7}+\sqrt{5}}{2}-\frac{\sqrt{5}+\sqrt{3}}{2}-\frac{\sqrt{7}-\sqrt{3}}{2}$
$=\frac{\sqrt{7}+\sqrt{5}-\sqrt{3}-\sqrt{7}+\sqrt{3}}{2}=\frac{0}{2}=0$
10. (C) No. of digits required
$=[\{(9-1)+1\} \times 1+\{(50-10)+1\} \times 2]$
$=9 \times 1+41 \times 2=9+82=91$
11. (D) Remaining no. of total balls after $1^{\text {st }}$ ball is chosen $=(12+6)-1=17$ balls
Remaining no. of black balls after $1^{\text {st }}$ ball is chosen = $12-1=11$
$\therefore \quad$ The probability that the second ball is also black $=\frac{11}{17}$
12. (A) Let x be the initial no. of people in the company.
ATQ,
$\frac{35 x+5 \times 32}{x+5}=34$
$\Rightarrow 35 x+160=34 x+170$
$\Rightarrow x=10$
13. (B) Let x be age $\& y$ be height

ATQ,
$y \propto \sqrt{x}$
$\Rightarrow y=k \sqrt{x}$
At $x=9, y=4$
$\Rightarrow 4=k \sqrt{9}$
$\Rightarrow k=\frac{4}{3}$

Now,
$y=\frac{4}{3} \sqrt{x}$
At $x=(9+7)=16$
$y=\frac{4}{3} \sqrt{16}=\frac{16}{3}=5 \frac{1}{3} \mathrm{ft}$
14. (A) Applying Alligation

\Rightarrow Ratio of Amount $=18: 2=9: 1$
\Rightarrow Quantity sold at 14% profit $=\frac{1}{9+1} \times 50$

$$
=\frac{1}{10} \times 50 \mathrm{~kg}=5 \mathrm{~kg}
$$

\Rightarrow Quantity sold at $6 \% \operatorname{loss}=\frac{1}{9+1} \times 50$
$=\frac{9}{10} \times 50 \mathrm{~kg}=45 \mathrm{~kg}$
15. (C) $\frac{a^{3}+b^{3}+c^{3}-3 a b c}{a^{2}+b^{2}+c^{2}-a b-b c-c a}=(a+b+c)$
$\Rightarrow \frac{(1.5)^{3}+(4.7)^{3}+(3.8)^{3}-3 \times 1.5 \times 4.7 \times 3.8}{(1.5)^{2}+(4.7)^{2}+(3.8)^{2}-1.5 \times 4.7-4.7 \times 3.8-3.8 \times 15}$ $=(1.5+4.7+3.8)=10$
16. (B) $8-\left[7-\left\{x-\left(4-\frac{7}{2}\right)\right\}\right]=5$
$\Rightarrow 8-\left[7-\left\{x-\frac{1}{2}\right\}\right]=5$
$\Rightarrow 8-\left[7-x+\frac{1}{2}\right]=5$
$\Rightarrow 8-\left[\frac{15}{2}-x\right]=5$
$\Rightarrow 8-\frac{15}{2}+x=5$
$\Rightarrow \frac{1}{2}+x=5$
$\Rightarrow x=4.5$
17. (B) Sum of temperature of first 3 days $=22 \times 3=66$
Sum of temperature of next 3 days $=24 \times 3$ $=72$
Sum of temperature of whole week $=23.5 \times 7$ = 164.5
\therefore Temperature of last day
$=164.5-(66+72)=26.5^{\circ} \mathrm{C}$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
18. (C) Let the speed of trains be $a \& b \mathrm{~m} / \mathrm{s}$. when they are moving in same direction
$a-b=\frac{100+80}{18}=10$
when they are moving in opposite direction
$a+b=\frac{100+80}{9}=20$
from equation (i) \& (ii)
$a=15 \mathrm{~m} / \mathrm{s}, b=5 \mathrm{~m} / \mathrm{s}$
19. (C)

Let A be the point h m above the lake \& let MB $=x$
In $\triangle \mathrm{ABM}$
$\tan \theta=\frac{\mathrm{MB}}{\mathrm{AB}}$
$\Rightarrow \mathrm{AB}=\frac{\mathrm{MB}}{\tan \theta}=\frac{x}{\tan \theta}$
$\Rightarrow \mathrm{AB}=x \cot \theta$
In $\triangle \mathrm{ABN}$
$\tan \phi=\frac{\mathrm{BN}}{\mathrm{AB}}$
$[\mathrm{BN}=\mathrm{BC}+\mathrm{NC}]$
$\tan \phi=\frac{x+2 h}{\mathrm{AB}}$
$\Rightarrow \mathrm{AB}=(x+2 h) \cot \phi$
from (i) \& (ii)
$x \cot \theta=(x+2 h) \cot \phi$
$\Rightarrow x(\cot \theta-\cot \phi)=2 h \cot \phi$
$\Rightarrow x=\frac{2 h \cot \phi}{\cot \theta-\cot \phi}$
Height of the cloud above the lake $=x+h$
$=\frac{2 h \cot \phi}{\cot \theta-\cot \phi}+h$
$=\frac{2 h \cot \phi+h \cot \theta-h \cot \phi}{\cot \theta-\cot \phi}=\frac{h \cot \phi+h \cot \theta}{\cot \theta-\cot \phi}$
$=h\left|\frac{\cot \phi+\cot \theta}{\cot \theta-\cot \phi}\right|=h\left[\frac{\tan \phi+\tan \theta}{\tan \phi-\tan \theta}\right]$
20. (D)

$\angle \mathrm{CMB}=x=\angle \mathrm{DCM}$
[Alternate interior angles]
In $\triangle \mathrm{BME}$
$\angle 1=180^{\circ}-x$
$\angle 2=180^{\circ}-y$
$\Rightarrow \angle \mathrm{CEB}=180^{\circ}-(\angle 1+\angle 2)$

$$
\begin{aligned}
& =180^{\circ}-\left(180^{\circ}-x+180^{\circ}-y\right) \\
& =x+y-180^{\circ}=x+y-\pi
\end{aligned}
$$

21. (B) Let the numbers be $33 x \& 33 y$ where x, y are coprime
ATQ,
$33 x+33 y=528$
$\Rightarrow(x+y)=16$
$\therefore \quad$ Pairs of x, y (coprime) $=(1,15)(3,13)$
$(5,11)(9,7)$
$\therefore \quad$ No of pairs of $33 x, 33 y=4$
22. (D) Only 10080 is divisible by 7

Ten thousand's digit = 1
Number formed by digits in units and ten place $=80=$ divisible by 4
sum of digits $=1+0+0+8+0=9=$ divisible
by 3
10080, is divisible by $5 \& 7$ both.
23. (A)

Let total work be $\operatorname{LCM}(12 \times 10,20 \times 12)$
$=240$ units
1 men efficiency $=\frac{24}{12}=2 \frac{\text { unit }}{\text { day }}$,
1 women efficiency $=\frac{20}{20}=1$ unit/day
8 men's $\& 4$ women's 9 days work
$=(8 \times 2+4 \times 1) \times 9=180$ units
\Rightarrow Remaining work $=240-180=60$ unit
Now,
8 men's \& 14 women's efficiency
$=(8 \times 2+14 \times 1)=30$ unit/days
$\therefore \quad$ Required no. of days
$=60$ units $/ 30$ units $/$ day $=2$ days
24. (D)

A B

Let volume $=24$ units
work done by both pipe in 2 hours

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$=(3+4) \times 2=14$ units
Remaining units $=24-14=10$ units
\therefore Required time $=\frac{10}{4}=2 \frac{1}{2}$ hours
25. (C) Let work of each man $=1$ unit/day 12 day's work $=12 \times 20=240$ units Total work
$=240$ units $+(20+5) \times(30-12-2)$ units
$=(240+400)$ units $=640$ units.
$\therefore \quad$ Required time $=\frac{640 \text { units }}{20 \frac{\text { units }}{\text { day }}}=32$ days
26. (C) Number $476 x y 0$ is divisible by 33
\Rightarrow It must be divisible by 3,11 both
\Rightarrow Sum of digits $=4+7+6+x+y+0=3 n$ where $\mathrm{n}=1,2,3 \ldots .$.
and, $0-y+x-6+7-4=11 m$ where $\mathrm{m}=0,1,2,3 \ldots \ldots$.
Now, $17+x+y=3 n$
$x-y-3=11 \mathrm{~m}$
$x=8 \& y=5$ satisfies equations.
27. (A)

Let total work $=\operatorname{LCM}(12,8,6)=2 \times 2 \times 3 \times 2$ $=24$ units
Ratio of their work $=4: 3: 2$
\Rightarrow Ratio of their share $=4: 3: 2$
$\therefore \quad$ B's share $=1350 \times \frac{3}{9}=₹ 450$
28. (B) $A=400\left(1+\frac{(10 / 2)}{100}\right)^{3}$
$=400 \times\left(1+\frac{5}{100}\right)^{3}$
$=400 \times\left(1+\frac{1}{20}\right)^{3}$
$=400 \times\left(\frac{21}{20}\right)^{3}$
$=400 \times \frac{21}{20} \times \frac{21}{20} \times \frac{21}{20}=₹ 463.05$
29. (B) Let x, y, z be amount given to $A, B \& C$ respectively
ATQ,
$x\left(1+\frac{5 \times 2}{100}\right)=y\left(1+\frac{5 \times 3}{100}\right)=z\left(1+\frac{5 \times 4}{100}\right)$
$\Rightarrow x\left(\frac{110}{100}\right)=y\left(\frac{115}{100}\right)=z\left(\frac{120}{100}\right)$
$\Rightarrow 110 x=115 y=120 z$
$\Rightarrow 22 x=23 y=24 z$
$\Rightarrow x: y: z=23 \times 24: 22 \times 24: 22 \times 23=552$:
528:506
= $276: 264: 253$
\therefore Required amount
$=7930 \times \frac{276}{276+264+253}=₹ 2760$
30. (B) Let r be the annual simple interest rate. simple interest in 3 years
$=\frac{12000 \times 3 \times r}{100}=3600$
Now, Remaining principal $=12000-6500$
$=5500$
Simple interest in next 2 years
$=\frac{5500 \times 2 \times r}{100}=110 r$
Now, he need to pay
$=360 r+110 r+550$
ATQ, $360 r+110 r+550=9260$
$\Rightarrow 470 r=9260-5500=3730$
$\Rightarrow r=8 \%$
31. (A) S.I for 10 years $=\frac{1000 \times 5 \times 10}{100}=₹ 500$

Now, $\mathrm{P}_{\text {new }}=₹ 1500$ (after 10 years)
A = ₹ 2000
$\therefore \quad$ S.I. $=₹ 500$
$500=\frac{1500 \times 5 \times \mathrm{T}}{100}$
$\mathrm{T}=\frac{500 \times 100}{1500 \times 5}=6 \frac{2}{3}$ years
\therefore Total time $=10+6 \frac{2}{3}=16 \frac{2}{3}$ years
32. (C) Let P be the required amount.

Interest on 500, at 12% and after 4 years
$=\frac{500 \times 4 \times 12}{100}=₹ 240$
ATQ,
Interest on P,
at 10% for 4 years $=₹ 480-₹ 240$
$=₹ 240$
$\Rightarrow \frac{\mathrm{P} \times 10 \times 4}{100}=240$
$\Rightarrow \mathrm{P}=₹ 600$
33. (C) $\mathrm{D}=₹ 48$
$R=20 \%$
$\mathrm{T}=3$
$P=\frac{D \times 100^{3}}{R^{2}(300+R)}$
$=\frac{48 \times 100^{3}}{20^{2}(320)}=₹ 375$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
34. (B) $\mathrm{S}=4+32+108+\ldots \ldots+4000$
$S=4(1+8+27+\ldots \ldots .+1000)$
$S=4\left(1^{3}+2^{3}+3^{3}+\ldots \ldots . .+10^{3}\right)$
$\mathrm{S}=4\left(1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots+9^{3}+10^{3}\right)$
$S=4(2025+1000)=4(3025)$
$\mathrm{S}=12100$
35. (B) Let x be total marks \& P be passing marks.
ATQ,
32% of $x=\mathrm{P}-16$
36% of $x=\mathrm{P}+10$
substracting equation (ii) from (i)
4% of $x=26$
$25 \times 4 \%$ of $x=25 \times 26$
100% of $x=x=650$
from equation (i)
$\mathrm{P}=32 \%$ of $x+16=208+16$
$=224$
$\therefore \quad$ Required percentage $=\frac{224}{650} \times 100=34.46 \%$
36. (D) ₹ 21000

$\mathrm{R}=10 \%=\frac{1}{10}$
$1+\mathrm{R}=\frac{11}{10}$
Shifting Instalments back to point A and equating
$x \times \frac{10}{11}+x \frac{10}{11} \times \frac{10}{11}=21000$
$\Rightarrow \frac{10}{11} \times\left(1+\frac{10}{11}\right)=21000$
$\Rightarrow \frac{10}{11} x\left(\frac{21}{11}\right)=21000$
$\Rightarrow x=\frac{21000 \times 11 \times 11}{21 \times 10}$
= ₹ 12100
37. (B) I. $(\sin \alpha-\operatorname{cosec} \alpha)^{2}+(\cos \alpha-\sec \alpha)^{2}$
$=\sin ^{2} \alpha+\operatorname{cosec}^{2} \alpha-2+\cos ^{2} \alpha+\sec ^{2} \alpha-2$
$=\operatorname{cosec}^{2} \alpha+\sec ^{2} \alpha+\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)-4$
$=\operatorname{cosec}^{2} \alpha+\sec ^{2} \alpha+1-4$
$=1+\cot ^{2} \alpha+1+\tan ^{2} \alpha+1-4$
$=\cot ^{2} \alpha+\tan ^{2} \alpha+3-4=\tan ^{2} \alpha+\cot ^{2} \alpha-1$
\Rightarrow Statement 1 is incorrect.
II. $3 \cos 80^{\circ} \cdot \operatorname{cosec} 10^{\circ}+2 \cos 59^{\circ} \cdot \operatorname{cosec} 31^{\circ}$
$=3 \cos \left(90^{\circ}-10^{\circ}\right) \operatorname{cosec} 10^{\circ}+2 \cos (90-31)$ $\operatorname{cosec} 31^{\circ}$
$=3 \sin 10^{\circ} \cdot \operatorname{cosec} 10^{\circ}+2 \sin 31^{\circ} \operatorname{cosec} 31^{\circ}$ $=3+2=5$
\Rightarrow statement II is correct
38. (A) $\tan 15^{\circ} \cdot \cot 75^{\circ}+\tan 75^{\circ} \cdot \cot 15^{\circ}$
$=\tan 15^{\circ} \cdot \cot \left(90^{\circ}-15^{\circ}\right)+\tan \left(90^{\circ}-15^{\circ}\right) \cot 15^{\circ}$
$=\tan 15^{\circ} \cdot \tan 15^{\circ}+\cot 15^{\circ} \cot 15^{\circ}$
$=\tan ^{2} 15^{\circ}+\cot ^{2} 15^{\circ}$
Now, $\tan 15^{\circ}=2-\sqrt{3}$
$\Rightarrow \frac{1}{\tan 15^{\circ}}=\cot 15^{\circ}=(2+\sqrt{3})$
$\Rightarrow \tan ^{2} 15^{\circ}+\cot ^{2} 15^{\circ}=(2-\sqrt{3})^{2}+(2+\sqrt{3})^{2}$
$=4+3-4 \sqrt{3}+4+3+4 \sqrt{3}$
$=14$
39. (A) $\Sigma=\sin ^{2} 1^{\circ}+\sin ^{2} 5^{\circ}+\sin ^{2} 9^{\circ}+$ \qquad .$+\sin ^{2} 89^{\circ}$
$\begin{aligned} \Sigma= & \left(\sin ^{2} 1^{\circ}+\sin ^{2} 89^{\circ}\right)+\left(\sin ^{2} 5^{\circ}+\sin ^{2} 85^{\circ}\right)+ \\ & +\ldots \ldots+\left(\sin ^{2} 44^{\circ}+\sin ^{2} 46\right)+\sin ^{2} 45^{\circ}\end{aligned}$
Let n be the total number of terms.
$\mathrm{T}_{n}=a+(n-1) d$
$\Rightarrow 89^{\circ}=1+(n-1) \times 4$
$\Rightarrow(n-1)=22$
$\Rightarrow n=23$
$\Sigma=\left(\sin ^{2} 1^{\circ}+\cos ^{2} 1^{\circ}\right)+\left(\sin ^{2} 5^{\circ}+\sin ^{2} 85^{\circ}\right)+$ $+\ldots \ldots .+\left(\sin ^{2} 44^{\circ}+\sin ^{2} 46^{\circ}\right)+\sin ^{2} 45^{\circ}$
$=(1+1+1+\ldots \ldots+11$ terms $)+\sin ^{2} 45^{\circ}$
$=11+\left(\frac{1}{\sqrt{2}}\right)^{2}=11 \frac{1}{2}$
40.

$$
\text { (A) } \begin{aligned}
& \frac{1+2 \sin 60^{\circ} \cos 60^{\circ}}{\sin 60^{\circ}+\cos 60^{\circ}}+\frac{1-2 \sin 60^{\circ} \cos 60^{\circ}}{\sin 60^{\circ}-\cos 60^{\circ}} \\
= & \frac{\sin ^{2} 60^{\circ}+\cos ^{2} 60^{\circ}+2 \sin 60^{\circ} \cos 60^{\circ}}{\sin 60^{\circ}+\cos 60^{\circ}} \\
+ & \frac{\sin ^{2} 60^{\circ}+\cos ^{2} 60^{\circ}-2 \sin 60^{\circ} \cos 60^{\circ}}{\sin 60^{\circ}-\cos 60^{\circ}} \\
= & \frac{\left(\sin 60^{\circ}+\cos 60^{\circ}\right)^{2}}{\sin 60^{\circ}+\cos 60^{\circ}}+\frac{\left(\sin 60^{\circ}-\cos 60^{\circ}\right)^{2}}{\sin 60^{\circ}-\cos 60^{\circ}} \\
= & \sin 60^{\circ}+\cos 60^{\circ}+\sin 60^{\circ}-\cos 60^{\circ}=2 \sin 60 \\
= & 2 \times \frac{\sqrt{3}}{2}=\sqrt{3}
\end{aligned}
$$

41. (A) $2^{x}=4^{y}=8^{z}$
$\Rightarrow 2^{x}=2^{2 y}=2^{3 z}$
$\Rightarrow x=2 y=3 z$
$\Rightarrow x: y: z=2 \times 3: 1 \times 3: 1 \times 2=6: 3: 2$
Now, $\frac{1}{2 x}+\frac{1}{4 y}+\frac{1}{8 z}=7$
Putting $x=6 k, y=3 k \& z=2 k$
$\frac{1}{2(6 k)}+\frac{1}{4(3 k)}+\frac{1}{8(2 k)}=7$
$\Rightarrow \frac{1}{12 k}+\frac{1}{12 k}+\frac{1}{16 k}=7$
$\Rightarrow \frac{4}{48 k}+\frac{4}{48 k}+\frac{3}{48 k}=7$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\Rightarrow \frac{11}{48 k}=7$
$\Rightarrow k=\frac{11}{48 \times 7}$
$\Rightarrow x=6 k=6 \times \frac{11}{48 \times 7}=\frac{11}{56}$
42. (A) $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$
$\Rightarrow x+y=\sqrt{3}-\frac{1}{\sqrt{3}}+\sqrt{3}+\frac{1}{\sqrt{3}}=2 \sqrt{3}$
$x \cdot y=\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)\left(\sqrt{3}+\frac{1}{\sqrt{3}}\right)=3-\frac{1}{3}=\frac{8}{3}$
Now,
$\frac{x^{2}}{y}+\frac{y^{2}}{x}=\frac{x^{3}+y^{3}}{x y}$
$=\frac{(x+y)^{3}-3 x y(x+y)}{x y}$
$=\frac{(2 \sqrt{3})^{3}-3 \times \frac{8}{3} \times 2 \sqrt{3}}{\frac{8}{3}}=\frac{24 \sqrt{3}-16 \sqrt{3}}{\frac{8}{3}}$
$=\frac{8 \sqrt{3}}{\frac{8}{3}}=3 \sqrt{3}$
43. (B) $\frac{x-a^{2}}{b^{2}+c^{2}}+\frac{x-b^{2}}{c^{2}+a^{2}}+\frac{x-c^{2}}{a^{2}+b^{2}}=3$

$$
\begin{aligned}
& \Rightarrow \frac{x-a^{2}}{b^{2}+c^{2}}-1+\frac{x-b^{2}}{c^{2}+a^{2}}-1+\frac{x-c^{2}}{a^{2}+b^{2}}-1=0 \\
& \Rightarrow \frac{x-a^{2}}{b^{2}+c^{2}}-1+\frac{x-b^{2}}{c^{2}+a^{2}}-1+\frac{x-c^{2}}{a^{2}+b^{2}}-1=0 \\
& \Rightarrow \frac{x-a^{2}-b^{2}-c^{2}}{b^{2}+c^{2}}+\frac{x-a^{2}-b^{2}-c^{2}}{c^{2}+a^{2}} \\
& \quad \frac{x-a^{2}-b^{2}-c^{2}}{a^{2}+b^{2}}=0
\end{aligned}
$$

$\Rightarrow\left(x-a^{2}-b^{2}-c^{2}\right)\left[\frac{1}{b^{2}+c^{2}}+\frac{1}{c^{2}+a^{2}}+\frac{1}{a^{2}+b^{2}}\right]=0$
$\Rightarrow x-a^{2}-b^{2}-c^{2}=0$
$\Rightarrow x-\left(a^{2}+b^{2}+c^{2}\right)=0$
$\Rightarrow x=a^{2}+b^{2}+c^{2}$
44.
(A) $\frac{(x+1)(x+2)}{(x+3)(x+4)}=\frac{(x+3)}{(x+7)}$
$\Rightarrow \frac{x^{2}+3 x+2}{x^{2}+7 x+12}=\frac{x+3}{x+7}$
$\Rightarrow x^{3}+3 x^{2}+2 x+7 x^{2}+21 x+14=x^{3}+7 x^{2}$
$+12 x+3 x^{2}+21 x+36$
$\Rightarrow x^{3}+10 x^{2}+23 x+14=x^{3}+10 x^{2}+33 x+36$
$\Rightarrow 23 x+14=33 x+36$
$\Rightarrow 14-36=(33-23) x$
$\Rightarrow 10 x=-22$
$\Rightarrow x=-\frac{22}{10}$
$\Rightarrow x=-2 \frac{1}{5}$
45. (B) $x^{9}+x^{7}-194 x^{5}-194 x^{3}$
$=x^{9}-194 x^{5}+x^{7}-194 x^{3}$
$=x^{5}\left(x^{4}-194\right)+x^{3}\left(x^{4}-194\right)$
$=\left(x^{4}-194\right)\left(x^{5}+x^{3}\right)$
$=\left(x^{4}-194\right) x^{3}\left(x^{2}+1\right)$
$=\left(x^{4}-194\right) x^{3} 4 x \quad\left[\begin{array}{l}x^{2}-4 x+1=0 \\ \Rightarrow x^{2}+1=4 x\end{array}\right]$
$=+4 x^{4}\left(x^{4}-194\right)$
Now, $x^{2}-4 x=1=0$
$\Rightarrow x+\frac{1}{x}=4$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=14$
$\Rightarrow x^{4}+\frac{1}{x^{4}}=194$
$\Rightarrow\left(x^{4}-194\right)=-\frac{1}{x^{4}}$
$\Rightarrow x^{4}\left(x^{4}-194\right)=-1$
$=+4 x^{4}\left(x^{4}-194\right)=-4$
$\therefore \quad x^{9}+x^{7}-194 x^{5}-194 x^{3}=-4 x^{4}\left(x^{4}-194\right)=-4$
46. (B)

At point N , time is constant.
$\Rightarrow D \propto S$
$\Rightarrow \frac{\mathrm{MN}}{\mathrm{NK}}=\frac{\mathrm{U}_{\mathrm{M}}}{\mathrm{U}_{\mathrm{K}}}$
$\Rightarrow \frac{\mathrm{U}_{\mathrm{M}}}{\mathrm{U}_{\mathrm{K}}}=\frac{900}{700}=\frac{9}{7}$
$\therefore \quad$ Required Ratio $=9: 7$
47. (B)

Here, time $=$ constant
$D \propto S$
$\frac{D_{A}}{D_{B}}=\frac{U_{A}}{U_{B}}$

Campus

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\Rightarrow \frac{100}{80}=\frac{U_{A}}{U_{B}}$
$\Rightarrow \frac{\mathrm{U}_{\mathrm{A}}}{\mathrm{U}_{\mathrm{B}}}=\frac{5}{4}$

Here, Distance is constant.
Let A takes t see
$\Rightarrow \mathrm{B}$ takes $(t+4) \mathrm{sec}$
$U \propto \frac{1}{T}$
$\Rightarrow \frac{\mathrm{U}_{\mathrm{A}}}{\mathrm{U}_{\mathrm{B}}}=\frac{\mathrm{T}_{\mathrm{B}}}{\mathrm{T}_{\mathrm{A}}}$
$\Rightarrow \frac{5}{4}=\frac{t+4}{t}$
$\Rightarrow 5 t=4 t+10$
$\Rightarrow t=16 \mathrm{sec}$
\therefore Required speed $=\frac{100 \mathrm{~m}}{16 \mathrm{sec}}$
$=\frac{25}{4} \mathrm{~m} / \mathrm{s}$
$=6 \frac{1}{4} \mathrm{~m} / \mathrm{s}$
48. (A)
$\begin{aligned} \text { Ratio of time } & =8: 20 \\ & =2: 5\end{aligned}$
Ratio of speed $=5: 2$
[As Distance $=$ Constant]
First meeting at starting point $=$ $\operatorname{LCM}(8,20)=40 \mathrm{~min}$
From the speed ratio, we know this is the $7^{\text {th }}(=5+2)$ meeting.
$\therefore \quad$ Time of first meeting $=\frac{40}{7} \min =5 \frac{5}{7} \mathrm{~min}$
49. (A) Let Father's age be $=20 x$
younger son age $=4 x$
elder son age $=5 x$
when elder son has lived thrice time his present age
Age of elder son $=3 \times 5 x=15 x$
Age of father $=20 x+10 x=30 x$
younger son age $=4 x+10 x+14 x$
ATQ, $30 x-(2 \times 14 x)=3$
$\Rightarrow 30 x-28 x=3$
$\Rightarrow 2 x=3$
$\Rightarrow x=15$
\therefore Father's age $=20 x=20 \times 1.5=30$ years
50. (B)

	Boat	Road	Rail
Ratio of distance $=4 x:$	$3 x:$	$6 x$	
Ratio of speed $=$	$4 y:$	$3 y:$	$6 y$

Ratio of time $=\frac{4 x}{4 y}: \frac{3 x}{3 y}: \frac{6 x}{6 y}$ $=1: 1: 1$
51. (C) Let number of $₹ 1$ coins $=3 x$

Number of 50 p coin $=5 x$
Number of 10 p coins $=7 x$
ATQ,
$3 x \times 1+5 x \times \frac{1}{2}+7 x \times \frac{1}{10}=155$
$\Rightarrow x\left(3+\frac{5}{2}+\frac{7}{10}\right)=155$
$\Rightarrow x\left(\frac{30+25+7}{10}\right)=155$
$\Rightarrow x\left(\frac{62}{10}\right)=155$
$\Rightarrow x=25$
\therefore Required number of coins
$=3 x+5 x+7 x=15 x=15 \times 25=375$
52. (C) Let the third pipe fill the tank in $=x \mathrm{hr}$ Second pipe fill the tank in $=(x+4) \mathrm{hr}$
First Pipe fill the tank in $=(x+9) \mathrm{hr}$ ATQ,
$\frac{1}{x}=\frac{1}{x+4}+\frac{1}{x+9}$
$\Rightarrow x=\sqrt{4 \times 9}=6 \mathrm{hrs}$
$\therefore \quad$ Time taken by first pipe $=x+9$
$=6+9=15 \mathrm{hrs}$
53. (D)

Here,
$\frac{r_{b}}{r_{s}}=\frac{h_{b}}{h_{s}}$
Volume of small cone $=\frac{\text { Volume of big cone }}{27}$
$\Rightarrow \frac{1}{3} \pi\left(r_{s}\right)^{2} h_{s}=\frac{\frac{1}{3} \pi\left(r_{b}\right)^{2}\left(h_{b}\right)}{27}$
$\Rightarrow \frac{r_{b}^{2} \times h_{b}}{r_{s}^{a} \times h_{s}}=27$
$\Rightarrow \frac{r_{b} \times r_{b} \times h_{b}}{r_{s} \times r_{s} \times h_{s}}=\frac{3 \times 3 \times 3}{1 \times 1 \times 1}$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\Rightarrow \frac{h_{b}}{h_{s}}=\frac{3}{1}$
$\Rightarrow h_{s}=\frac{h_{b}}{3}=\frac{30}{3}=10 \mathrm{~cm}$
\therefore Required height
$=(30-10)=20 \mathrm{~cm}$
54. (B) For the Frustum

For the cylinder
$r_{1}=9 \mathrm{~cm}$
$r=4 \mathrm{~cm}$
$r_{2}=4 \mathrm{~cm}$
$h=10 \mathrm{~cm}$
$h=12 \mathrm{~cm}$
$l=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}$
$=\sqrt{12^{2}+(9-4)^{2}}$
$=\sqrt{144+25}$
$=\sqrt{169}$
$=13 \mathrm{~cm}$
$\therefore \quad$ Area of the sheet required
$=$ area of frustum + area of cylinder
$=\pi\left(r_{1}+r_{2}\right) l+2 \pi r h$
$=\frac{22}{7}[(9+4) \times 13+2 \times 4 \times 10]$
$=\frac{22}{7}(169+80)$
$=\frac{22}{7} \times 249$
$=782.57 \mathrm{~cm}^{2}$
55. (C) Curved surface area of cone
= Area of sector of circle
$\Rightarrow \pi r l=\pi \mathrm{R}^{2} \frac{120^{\circ}}{360^{\circ}}$
Here, $l=\mathrm{R}$
$r=15 \times \frac{120^{\circ}}{360^{\circ}}=5 \mathrm{~cm}$
$h=\sqrt{225-25}=10 \sqrt{2} \mathrm{~cm}$
\therefore Required volume of cone $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \pi \times(5)^{2} \times 10 \sqrt{2} \\
& =250 \sqrt{2} \frac{\pi}{3} \pi \mathrm{~cm}^{3}
\end{aligned}
$$

56. (A) Let the increment in cm be x

New volume of cylinder $=\pi(10+x)^{2} \times 4$
New volume of cylinder $=\pi 10^{2}(4+x)$
ATQ,
$\pi(10+x)^{2} \times 4=\pi \times 10^{2} \times(4+x)$
$\Rightarrow(10+x)^{2} \times 4=100(4+x)$
$\Rightarrow(10+x)^{2}=25(4+x)$
$\Rightarrow 100+x^{2}+20 x=100+25 x$
$\Rightarrow x^{2}-5 x=0$
$\Rightarrow x(x-5)=0$
$\Rightarrow x=0 \mathrm{~cm}$ or $x=5 \mathrm{~cm}$
$\therefore \quad x=5 \mathrm{~cm}$
57. (C) Let $x=35 \alpha$ and $y=35 b$
where a, b are coprime
ATQ,
$x+y=1085$
$35 \alpha+25 \beta=1085$
$\alpha+\beta=31$
\Rightarrow Possible value of (α, β)
$=(1,30)(2,29)(3,28)(4,27)(5,26)$
$(6,25)(7,24)(8,23)(9,22)(10,21)$
$(11,20)(12,19)(13,18)(14,17)(15,16)$
$\therefore \quad$ No. of possible pair of $(x, y)=15$
58. (A) Let x be the initial no. of people in the company
ATQ,
$\frac{35 x+5 \times 32}{x+5}=34$
$\Rightarrow 35 x+160=34 x+170$
$\Rightarrow x=10$
59. (D) Divisors $\quad 3 \quad 4 \quad 7$

Remainders- 214
Least such number $=[(4 \times 4+1) \times 3]+2$

$$
=51+2=53
$$

$\mathrm{N}=$ Generalized number $=(3 \times 4 \times 7) n+53$
where $n=0,1,2,3$
$\mathrm{N}=84 n+53$
$\therefore \quad$ Required remainder $=53$
60. (D) Sum of all external angle $=360^{\circ}$

Each external angle $=\frac{360^{\circ}}{8}=45^{\circ}$
Each internal angle $=180^{\circ}-45^{\circ}=135^{\circ}$

Joining A and D and drawing perpendiculor from B and C to $A D$.
Let $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=a$
$\Rightarrow \mathrm{PQ}=a$
[BPQC is a rectangle]
$\Rightarrow \mathrm{AP}=\mathrm{BP}=\mathrm{CQ}=\mathrm{QD}=a / \sqrt{2}$
Now, smallest diagonal is AC and largest diagonal is AE In $\triangle A C Q$,

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

$A C=\sqrt{(A Q)^{2}+(C Q)^{2}}$
$=\sqrt{\left(a+\frac{a}{\sqrt{2}}\right)^{2}+\left(\frac{a}{\sqrt{2}}\right)^{2}}$
$=a \sqrt{\left(1+\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}$
$=a \sqrt{1+\frac{1}{2}+2 \times 1 \times \frac{1}{\sqrt{2}}+\frac{1}{2}}$
$=a \sqrt{2+\sqrt{2}}$
In $\triangle \mathrm{ADE}$

$$
\begin{aligned}
\mathrm{AE} & =\sqrt{(a+\sqrt{2} a)^{2}+a^{2}} \\
& =a \sqrt{(1+\sqrt{2})^{2}+1} \\
& =a \sqrt{1+2+2 \sqrt{2}+1}=a \sqrt{4+2 \sqrt{2}} \\
& =\sqrt{2} a \sqrt{2+\sqrt{2}}
\end{aligned}
$$

$\therefore \quad$ Required ratio $=\mathrm{AE}: \mathrm{AC}$
$=\sqrt{2} \sqrt{2+\sqrt{2}}: a \sqrt{2+\sqrt{2}}$
$=\sqrt{2}: 1$
61. (C) $a^{2}-b^{2}=288$
$(a-b)(a+b)=25 \times 32$
when $(a+b)$ is even, $a-b$ must be even. when $(a+b)$ is odd, $a-b$ must be odd.
Possible solutions:
$(a-b)(a+b)=2 \times 144$
$(a-b)(a+b)=4 \times 72$
$(a-b)(a+b)=6 \times 48$
$(a-b)(a+b)=8 \times 36$
$(a-b)(a+b)=12 \times 24$
$(a-b)(a+b)=16 \times 18$
For each equation, we get one nutural number solution.
$\therefore \quad$ Number of possible natural number pairs $=6$
for each natural number pairs, we have four pair of intgral solution.
For example
$a+b=144$
$a-b=2$
$a=\frac{144+2}{2} \quad b=\frac{144-2}{2}$
$a=73$
$b=71$
Natural number pairs $=(73,71)$ corresponding integral pairs
$=(73,71)(-73,71)$
$(73,-71)(-73,-71)$
\therefore Required number of integral pairs
$=6 \times 4=24$
62. (A) $\angle \mathrm{CAD}=\angle \mathrm{CBD}=60^{\circ}[\mathrm{On}$ same segment $]$ Now,
$\angle \mathrm{BAD}=\angle \mathrm{BAC}+\angle \mathrm{CAD}$

$$
=30^{\circ}+60^{\circ}=90^{\circ}
$$

$\angle \mathrm{BAD}+\angle \mathrm{BCD}=180^{\circ} \quad[\mathrm{ABCD}$ is cyclic]
$\Rightarrow 90^{\circ}+\angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=180^{\circ}-90^{\circ}=90^{\circ}$
63. (D) $\mathrm{EF}|\mid \mathrm{DC}$
\triangle EGF ~ \triangle CGD
(By AA similarity)
$\Rightarrow \frac{\mathrm{EG}}{\mathrm{GC}}=\frac{\mathrm{EF}}{\mathrm{DC}}$
$\Rightarrow \frac{5}{10}=\frac{\mathrm{EF}}{18}$
$\Rightarrow \mathrm{EF}=\frac{18 \times 5}{10}=9 \mathrm{~cm}$
64. (A)

$\angle \mathrm{PAQ}=68^{\circ}$
$\Rightarrow \angle \mathrm{PAO}=\frac{68^{\circ}}{2}=34^{\circ}$
In $\triangle \mathrm{APD}$
$\angle \mathrm{APD}+\angle \mathrm{PAD}+\angle \mathrm{ADP}=180^{\circ}$
$\Rightarrow \angle \mathrm{APD}+34^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{APD}=56^{\circ}$
$\Rightarrow \angle \mathrm{APD}=\angle \mathrm{APQ}=56^{\circ}$
$\therefore \quad \angle \mathrm{APQ}=56^{\circ}$
65. (A) Total profit $=₹ 60000$

Reinvestment $=40 \%$
Bonus to employees $=30 \%$ of $60^{\circ} \%=18 \%$
Charity $=20 \%$ of $60 \%=12 \%$
\Rightarrow Advertisement $=100-(40+18+12)=30 \%$
$\therefore \quad$ Amount spent on advertisement

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$=₹ 60000 \times \frac{30}{100}$
= ₹ 18000
66. (D)

\therefore Required Ratio $=3: 1$
67. (B) $y^{2}=\left(64 x^{3} \div 27 a^{-3}\right)^{-2 / 3}$
$\Rightarrow y^{2}=\left(\frac{4^{3} x^{3}}{3^{3} a^{-3}}\right)^{-2 / 3}$
$=\left(\frac{4^{3} x^{3} a^{3}}{3^{3}}\right)^{-\frac{2}{3}}$
$=\left(\left(\frac{4 x a}{3}\right)^{3}\right)^{\frac{-2}{3}}$
$\Rightarrow y^{2}=\left(\frac{4 x a}{3}\right)^{-2}$
$=\left(\frac{3}{4 x a}\right)^{2}$
$\Rightarrow y^{2}=\left(\frac{3}{4 x a}\right)^{2}$
$\Rightarrow y=\frac{3}{4 a x}$
68. (B) ATQ,
$\frac{\mathrm{A}}{2}=\frac{2}{3} \mathrm{~B}=\frac{3}{4} \mathrm{C}=\frac{4}{5} \mathrm{D}$
$\Rightarrow \mathrm{A}: \mathrm{B}=4: 3$
and, $\mathrm{B}: \mathrm{C}=9: 8$
and, $\mathrm{C}: \mathrm{D}=16: 15$
$\Rightarrow \mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}=(4 \times 9 \times 16):(3 \times 9 \times 16)$: $(3 \times 8 \times 16):(3 \times 8 \times 15)$
A : B : C : D = 576 : 432: 384:360
$\therefore \quad$ Required Ratio $=\mathrm{A}: \mathrm{D}=576: 360$ = $8: 5$
69. (D) Let their initial investment be $x, 2 x, 4 x$ Ratio of their investment during whole years
$=\left(x \times 6+\frac{3 x}{2} \times 6\right):(2 x \times 6+4 x \times 6):(4 x \times 6+3 x \times 6)$
$=15 x: 36 x: 42 x$
$=5 x: 12 x: 14 x=5: 12: 14$
$\therefore \quad$ Required Profit share ratio $=5: 12: 14$
70. (A) Profit share of A and B
$=52000 \times 12: 39000 \times 8=2: 1$
Let the total profit $=₹ x$
B recieve 25% as commission for managing business.
Remaining 75% of the total profit will be shared between A and B in the ratio 2: 1 .
ATQ,
$0.25 x+\frac{1}{3} \times 0.75 x=20000$
$\Rightarrow x=40000$
$\therefore \quad$ Required profit share of A
$=40000$ - share of B = 40000-20000
$=₹ 20000$
71. (B) Let efficiency of boys and women be x, y respectively.
ATQ,
$6(6 x+8 y)=(14 x+10 y) \times 4$
$\Rightarrow 12(3 x+4 y)=8(7 x+5 y)$
$\Rightarrow 3(3 x+4 y)=2(7 x+5 y)$
$\Rightarrow 9 x+12 y=14 x+10 y$
$\Rightarrow 2 y=5 x$
$\Rightarrow y=2.5 x$
Let $x=2$ \& $y=5$
Total work $=6(6 x+8 y)$
$=6(6 \times 2+8 \times 5)=6(12+40)$
$=6 \times 52$
Now,
Combined efficiency of 1 boy \& 1 women
$=2+5=7$ unit/days
$\therefore \quad$ Required number of days
$=\frac{6 \times 52 \text { units }}{7 \text { unit } / \text { day }}=\frac{312}{7}$ days
$=44 \frac{4}{7}$ days
72. (C) ATQ,
$25<\frac{26+29+n+35+43}{5}<35$
$\Rightarrow 125<133+n<175$
$\Rightarrow-8<n<42$
and, $n>\frac{26+29+35+43}{4}=33.25$
$\therefore 33<n<42$
73. (A) $\mathrm{E}=$ Expense, $\mathrm{S}=$ Saving, $\mathrm{I}=$ Income $E: S=5: 3$
$\Rightarrow \mathrm{I}: \mathrm{E}: \mathrm{S}=5+3: 5: 3=8: 5: 3$
let income $=800$ units, Expenses $=500$ units,
Savings $=300$ units
New Income $=800+200=1000$ units
New Expenses $=500+300=800$ units
\Rightarrow New savings $=200$ units
ATQ,
300 units -200 units $=₹ 3500$
$\Rightarrow 1$ unit $=₹ 35$
$\therefore \quad$ New income $=1000$ units $=₹ 35000$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
74. (C)

	${ }^{1}$	${ }^{2}$	${ }^{3}$
Production \Rightarrow	25\%	35\%	40\%
Defective products \Rightarrow		4\%	5\%

Non defective product 98\% 96\% 95\%
$\therefore \quad$ Non defective products percentage
$=25 \times 0.98+35 \times 0.96+40 \times 0.95=96.1 \%$
75. (C)

$$
\begin{aligned}
& \text { Day Initail Amount Sales Remaining Rotten for next day } \\
& \begin{array}{llllll}
\text { I. } & x & 0.5 x & 0.5 x & 0.05 x & 0.45 x \\
\text { II. } & 0.45 x & 0.225 x & 0.225 x & 0.0225 x & 0.2025
\end{array} \\
& \begin{array}{llll}
\text { III. } 0.2025 x & 0.10125 x & 0.10125 x & 0.010125 x
\end{array} \\
& \Rightarrow \text { Total rotten mangoes } \\
& =(0.05+0.0225+0.010125) x=1983 \\
& \Rightarrow x=24000
\end{aligned}
$$

76. (A) $P_{1} \propto \frac{T}{V}$
$\Rightarrow \mathrm{P}=\mathrm{K} \frac{\mathrm{T}}{\mathrm{V}}$
$P_{2}=K \frac{T+0.4 T}{V-0.2 V}$
$=\frac{\mathrm{K} \times 1.4 \mathrm{~T}}{0.8 \mathrm{~V}}=\mathrm{K} \frac{7}{4} \frac{\mathrm{~T}}{\mathrm{~V}}$
$\frac{P_{2}-P_{1}}{P_{1}}=\left(\frac{\frac{7}{4} \frac{T}{V}-\frac{T}{V}}{\frac{T}{V}}\right)=\left(\frac{\frac{7}{4}-1}{1}\right)=\frac{3}{4}$
percetage increase $=\frac{3}{4} \times 100=75 \%$
$\therefore \quad$ New pressure will be increased by 75%
77. (C) Let $\mathrm{A}\left(x_{1}, y_{1}\right)$ be the third vertex.
let $\mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ be the perpendicular from the vertices on the opposite side BC, CA, AB respectively.
\Rightarrow Orthocentre $=$ Intersection of $\mathrm{AD}, \mathrm{BE} \&$ CF.

Slope of $\mathrm{BO} \times$ slope of $\mathrm{BC}=-1 \quad[\mathrm{BA} \perp \mathrm{OC}]$
$\Rightarrow \frac{y_{1}-0}{x_{1}-0} \times \frac{3-(-1)}{-2-5}=-1$
$\Rightarrow y_{1}=\frac{7 x_{1}}{4}$
Slope of $\mathrm{CA} \times$ slope of $\mathrm{OB}=-1$
$\Rightarrow \frac{-1-0}{5-0} \times \frac{y_{1}-3}{x_{1}+2}=-1$
$\Rightarrow 5 x_{1}+10=y_{1}-3$
$\Rightarrow x_{1}=-4$
$\Rightarrow 5 x_{1}+10=\frac{7 x_{1}}{4}-3$
$\Rightarrow y=\frac{7 x_{1}}{4}=\frac{7(-4)}{4}=-7$
$\therefore \quad$ Required coordinate of $\mathrm{A}=\left(x_{1}, y_{1}\right)=(-4,-7)$
78. (A) Let the initial amount of honey in the Jar was K,
$\Rightarrow 512=\mathrm{K}\left(1-\frac{20}{100}\right)^{4}$
$\Rightarrow 512=\mathrm{K}\left(1-\frac{1}{5}\right)^{4}$
$\Rightarrow 512=\mathrm{K}\left(\frac{4}{5}\right)^{4}$
$\Rightarrow \mathrm{K}=\frac{512 \times 625}{256}$
$\Rightarrow \mathrm{K}=1250 \mathrm{gm}$
$\therefore \quad \mathrm{K}=1.25 \mathrm{~kg}$
79. (A)

$\Rightarrow \frac{30-25}{25-G}=\frac{x}{2 x}$
$\Rightarrow \frac{30-25}{25-\mathrm{G}}=\frac{1}{2}$
$\Rightarrow \mathrm{G}=15 \mathrm{~kg}$
80. (B)

Let Tank volume $=5 \times 5 \times 2 \times 2 \times 2=200$ units
At 10:00 am units filled $=4 \mathrm{hrs}$ by $\mathrm{A}+$ 2 hrs by $\mathrm{B}+1 \mathrm{hrs}$ by C
$=(4 \times 10+2 \times 8+1 \times 5+0 \times 4)=40+16+5$
$=61$ units
Now,
Combined efficiency $=10+8+5+4$

$$
=27 \text { units } / \mathrm{hr}
$$

\Rightarrow Time after 10:00 am to fill the tank $=\frac{200-61}{27}=5.14 \mathrm{hrs}=5 \mathrm{hrs} 9 \mathrm{~min}$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\therefore \quad$ Required time
=10:00 am +5 hr 9 min
$=3: 09 \mathrm{pm}$
81. (A)

Tank volume $=3 \times 5 \times 4$ units $=60$ units let tank will be filled after x hours.
$\Rightarrow 5 x+4(x-1)-3(x-2)=60$
$\Rightarrow 5 x+4 x-4-3 x+6=60$
$\Rightarrow 6 x=58$
$\Rightarrow x=\frac{58}{6}$
$\Rightarrow x=\frac{29}{3}=9 \frac{2}{3}$ hours
82. (B) Let r be the ratio $\& \mathrm{~h}$ be the height of cylinder.
ATQ,
$\mathrm{r}+\mathrm{h}=35 \mathrm{~cm}$
and, $2 \pi r^{2}+2 \pi r h=1540$
$\Rightarrow 2 \pi r(r+h)=1540$
$\Rightarrow 2 \pi \mathrm{r}(35)=1540$
$\Rightarrow 2 \pi r=44 \mathrm{~cm}$
$\therefore \quad$ Circumterence of the base of cylinder
83. (C) $x \neq 0 \Rightarrow$ least value of $x=1$
and $y>x \Rightarrow$ least value of $y=2$

y	x	z	$x+y \times z$	No. of numbers
2	1	0,1	$1 \times 1 \times 2$	2
3	1,2	$0,1,2$	$2 \times 1 \times 3$	6
.				
.				
.				
9	$1,2,3 \ldots, 7,8$	$0,1,2,3 \ldots 7,8$	$8 \times 1 \times 9$	72

\therefore Required number of numbers $=1 \times 1 \times 2$ $+2 \times 1 \times 3+3 \times 1 \times 4+4 \times 1 \times 5+5 \times 1 \times 6+$ $6 \times 1 \times 7+7 \times 1 \times 8+8 \times 1 \times 9=240$
84. (C)

Draw the perpendicuter OM and AN as shown in figure and join the point A and O , where O is the centre of circle.
In $\triangle \mathrm{ANO}$
$(\mathrm{OA})^{2}=(\mathrm{ON})^{2}+(\mathrm{AN})^{2}$
$\Rightarrow(\mathrm{OA})^{2}=(\mathrm{MO}-\mathrm{MN})^{2}+(\mathrm{DN}-\mathrm{DA})^{2}$
$\Rightarrow r^{2}=(r-10)^{2}+(r-20)^{2}$
$\Rightarrow \mathrm{r}=50 \mathrm{~cm}$
85. (C) Let a be the common root
$a^{3}+3 a^{2}+4 a+5=0$
$a^{3}+2 a^{2}+7 a+3=0$
Comparing these two equations
$a^{3}+3 a^{2}+4 a+5=a^{3}+2 a^{2}+7 a+3$
$\Rightarrow\left(a^{2}-3 a+2\right)=0$
$\Rightarrow(a-2)(a-1)=0$
$\Rightarrow a=1,2$
$\therefore \quad$ Number of common roots $=2$
86. (A) $\angle \mathrm{OCT}=90^{\circ}[\mathrm{OC}=$ radius $\& \mathrm{CT}=$ tangent $]$
$\Rightarrow \angle \mathrm{OCT}=\angle \mathrm{OCA}+\angle \mathrm{ACT}=90^{\circ}$
$\Rightarrow \angle \mathrm{OCA}=90^{\circ}-50^{\circ}=40^{\circ}$
$\Rightarrow \angle \mathrm{OCA}=\angle \mathrm{CAO}=40^{\circ}[\mathrm{OC}=\mathrm{OA}=$ radius $]$
$\Rightarrow \quad \angle \mathrm{COA}=180-(\angle \mathrm{OCA}+\angle \mathrm{CAO})$
$\Rightarrow \angle \mathrm{COA}=180^{\circ}-80^{\circ}=100^{\circ}$
Now,
$\angle \mathrm{CAB}=\angle \mathrm{ACT}+\angle \mathrm{ATC}$
[$\angle \mathrm{CAB}$ external angle of $\triangle \mathrm{ACT}$]
$\angle \mathrm{CAB}=50^{\circ}+30^{\circ}=80^{\circ}$
$\angle \mathrm{CAB}=\angle \mathrm{CAO}+\angle \mathrm{OAB}=80^{\circ}$
$\angle \mathrm{OAB}+40^{\circ}=80^{\circ}$
$\angle \mathrm{OAB}=40^{\circ}$
$\angle \mathrm{OAB}=\angle \mathrm{ABO}=40^{\circ}[\mathrm{OA}=\mathrm{OB}=$ radius $]$
$\angle \mathrm{BOA}=180^{\circ}-(\angle \mathrm{DAB}+\angle \mathrm{ABO})$
$=180^{\circ}-\left(40^{\circ}+40^{\circ}\right)=100^{\circ}$
87. (D) $y=$

$\Rightarrow y=\frac{1}{2+\frac{1}{3+y}}$
$\Rightarrow y=\frac{3+y}{6+2 y+1}$
$\Rightarrow 2 y^{2}+6 y+y=3+y$
$\Rightarrow 2 y^{2}+6 y-3=0$
$\Rightarrow y=\frac{-6 \pm \sqrt{36+24}}{4}=\frac{-3 \pm \sqrt{15}}{2}$
$\therefore \quad y=\frac{\sqrt{15}-3}{2} \quad[$ As $y>0]$
88. (A) Let B, G be the number of boy $\&$ girls respectively.
ATQ,
${ }^{\mathrm{B}} \mathrm{C}_{2}=190 \Rightarrow \mathrm{~B}=20$
${ }^{\mathrm{G}} \mathrm{C}_{2}=45 \Rightarrow \mathrm{G}=10$
\Rightarrow Total number of players $=20+10=30$
$\therefore \quad$ Number of matches between single boy \& single girl.
$=20 \mathrm{C}_{1} \times 10 \mathrm{C}_{1}=20 \times 10=200$
89. (D) Case A. Both chord same side of centre

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\mathrm{OM}=\sqrt{(\mathrm{AO})^{2}-(\mathrm{AM})^{2}}=\sqrt{(20)^{2}-(16)^{2}}$

$$
=12 \mathrm{~cm}
$$

$\mathrm{ON}=\sqrt{(\mathrm{OC})^{2}-(\mathrm{CN})^{2}}=\sqrt{(20)^{2}-(12)^{2}}=16 \mathrm{~cm}$
\therefore Required distance $=16-12=4 \mathrm{~cm}$
Case B. Both chord opposite side of centre.
\therefore Required distance distance $=16+12$
$=28 \mathrm{~cm}$
90.

$$
\text { (A) } \begin{aligned}
& \sqrt{1+\frac{1}{1^{2}}+\frac{1}{2^{2}}}=\frac{3}{2}=2-\frac{1}{2} \\
& \sqrt{1+\frac{1}{1^{2}}+\frac{1}{2^{2}}}+\sqrt{1+\frac{1}{2^{2}}+\frac{1}{3^{2}}}=\frac{3}{2}+\frac{7}{6}=\frac{8}{3} \\
& =3-\frac{1}{3} \\
& \sqrt{1+\frac{1}{1^{2}}+\frac{1}{2^{2}}}+\sqrt{1+\frac{1}{2^{2}}+\frac{1}{3^{2}}}+\sqrt{1+\frac{1}{3^{2}}+\frac{1}{4^{2}}} \\
& =\frac{3}{2}+\frac{7}{6}+\frac{13}{12} \\
& =\frac{15}{4}=4-\frac{1}{4}
\end{aligned}
$$

If clearly indicates that
$\Rightarrow \sqrt{1+\frac{1}{1^{2}}+\frac{1}{2^{2}}}+\sqrt{1+\frac{1}{2^{2}}+\frac{1}{3^{2}}}+$
$\ldots \ldots+\sqrt{1+\frac{1}{2007^{2}}+\frac{1}{2008^{2}}=2008-\frac{1}{2008}}$
91. (C) Required number of persons $=450+250$ $+150+75+50+25=1000$
92. (B) Required number of persons $=250+150$ $=400$
93. (C) Required ratio $=250: 75=10: 3$
94. (C) Age group 15-20

$$
\text { Ratio }=\frac{450}{1000}=\frac{9}{20}
$$

95. (D) Required percentage $=\frac{25}{500} \times 100=5$
96. (D) Expenditure on clothing \& miscellaneous
$=(20+30) \%$ of $25000=₹ 12500$
97. (C) Total expenditure $=\frac{15000}{(10+20)} \times 100$ $=50,000$
98. (D) $360^{\circ}=100 \%$
$54^{\circ}=\frac{54}{3.6} \times 100 \%=15 \%$
Now, Miscellaneous food $=30 \%-15 \%$ $15 \%=54^{\circ}$
99. (B) Required percentage $=\frac{15-10}{15} \times 100$
= 33.33\%
100. (D) $90^{\circ}=\frac{90}{360} \times 100 \%=25 \%$

Travelling \& entertainment joint cover 25% which is equal to 90°.

SSC TIER II (MATHS) MOCK TEST - 45 (ANSWER KEY)

1. (C)	11. (D)	21. (B)	31. (A)	41. (A)	51. (C)	61. (C)	71. (B)	81. (A)	91. (C)
2. (A)	12. (A)	22. (D)	32. (C)	42. (A)	52. (C)	62. (A)	72. (C)	82. (B)	92. (B)
3. (B)	13. (B)	23. (A)	33. (C)	43. (B)	53. (D)	63. (D)	73. (A)	83. (C)	93. (C)
4. (D)	14. (A)	24. (D)	34. (B)	44. (A)	54. (B)	64. (A)	74. (C)	84. (C)	94. (C)
5. (B)	15. (C)	25. (C)	35. (B)	45. (B)	55. (C)	65. (A)	75. (C)	85. (C)	95. (D)
6. (C)	16. (B)	26. (C)	36. (D)	46. (B)	56. (A)	66. (D)	76. (A)	86. (A)	96. (D)
7. (D)	17. (B)	27. (A)	37. (B)	47. (B)	57. (C)	67. (B)	77. (C)	87. (D)	97. (C)
8. (A)	18. (C)	28. (B)	38. (A)	48. (A)	58. (A)	68. (B)	78. (A)	88. (A)	98. (D)
9. (D)	19. (C)	29. (B)	39. (A)	49. (A)	59. (D)	69. (D)	79. (A)	89. (D)	99. (B)
10. (C)	20. (D)	30. (B)	40. (A)	50. (B)	60. (D)	70. (A)	80. (B)	90. (A)	100.(D)

[^0]Note:- If you face any problem regarding result or marks scored, please contact 9313111777

[^0]: Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

 Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

