SSC TIER II (MATHS) MOCK TEST - 47 (SOLUTION)

1. (D) Relative speed of both the trains $=90 \mathrm{~km} / \mathrm{hr}$

$$
=90 \times \frac{5}{18}=25 \mathrm{~m} / \mathrm{sec}
$$

Total length of both the trains
$=\mathrm{S} \times \mathrm{T}=25 \times 12=300 \mathrm{~m}$

Distance covered in 45 seconds by the first train

$$
\begin{aligned}
& D=S \times T=48 \times \frac{5}{18} \times 45=600 \mathrm{~m} \\
& D=L_{T}+L_{P} \\
\Rightarrow & L_{P}=600-200=400 \mathrm{~m}
\end{aligned}
$$

2. (C) Let the present age of Ram and Shyam be $4 x$ and $5 x$ years.
After 5 years

$$
\begin{aligned}
& \frac{4 x+5}{5 x+5}=\frac{5}{6} \\
\Rightarrow \quad & 24 x+30=25 x+25 \\
\Rightarrow \quad & x=5
\end{aligned}
$$

Present age of Ram and Shyam are 20 and 25 years
3. (B) $(4 \times 4-3 \times 5) \%$ of sum $=80$
100% of sum $=8000$
4. (D) Let the distance from starting point be x Speed of man down stream $=5+1.5$

$$
=6.5 \mathrm{~km} / \mathrm{hr}
$$

Speed of man upstream $=5-1.5$
$=3.5 \mathrm{~km} / \mathrm{hr}$
Then, we have

$$
\begin{aligned}
& \frac{x}{6.5}+\frac{x}{3.5}=1 \\
\Rightarrow \quad & 10 x=6.5 \times 3.5 \\
\Rightarrow \quad & x=\frac{22.75}{10}=2.275
\end{aligned}
$$

5. (D) ₹ 1 50-P 25-P

Number 5 : 6 : 8
Value $5: 3$: $2=10$
$\downarrow \times 24$
240
Number of $25-\mathrm{P}$ coins $=8 \times 24=192$
6. (C)

Here, $\mathrm{AC}=\mathrm{CO}=\mathrm{OD}=\mathrm{DB}=1 \mathrm{~cm}$ radius of large semicircle $=2 \mathrm{~cm}$ Area of the shaded region $=$ (Area of large semicircle)- (2 times area of $\operatorname{arc} \theta=120^{\circ}$) - 2(Area of equilateral triangle)- (area of arc with $\theta=60^{\circ}$)

$$
\begin{aligned}
\frac{4 \pi}{2} & -2 \pi(1)^{2} \frac{120}{360}-2 \times \frac{\sqrt{3}}{4}(1)^{2}-\pi \times(1)^{2} \times \frac{60}{360} \\
& =\frac{4 \pi}{2} \frac{2}{3} \pi \frac{\sqrt{3}}{2} \frac{\pi}{6} \\
& =\left[\frac{7 \pi}{6}-\frac{\sqrt{3}}{2}\right]
\end{aligned}
$$

7. (D)

$$
\begin{aligned}
& \frac{3-5 k}{2 k}+\frac{3-5 l}{2 l}+\frac{3-5 m}{2 m}=0 \\
\Rightarrow & \frac{1}{2}\left(\frac{3-5 k}{k}+\frac{3-5 l}{l}+\frac{3-5 m}{m}\right)=0 \\
\Rightarrow \quad & \frac{3}{k}-5+\frac{3}{l}-5+\frac{3}{m}-5=0 \\
\Rightarrow \quad & \frac{3}{k}+\frac{3}{l}+\frac{3}{m}=15 \\
\Rightarrow \quad & \frac{1}{k}+\frac{1}{l}+\frac{1}{m}=5 \\
\Rightarrow \quad & \frac{l m+m k+l k}{k l m}=5
\end{aligned}
$$

8. (A)

\therefore From an external point, tangents of circle are same.
$\therefore \quad \mathrm{nP}=\mathrm{nQ}$
9. (A) $x^{2}+x y+x z=20$
$x y+y^{2}+z y=30$
$x z+y z+z^{2}=50$
Adding equation (i), (ii) and (iii).
$x^{2}+y^{2}+z^{2}+2(x y+y z+z x)=100$
$(x+y+z)^{2}=100$
$\therefore 2(x+y+z)=10 \times 2=20$
10. (D) Peter's share $=2 x+13$

John's share $=3 x+9$
Amanda's share $=4 x+15$
$\therefore \quad 2 x+13+3 x+9+4 x+15=1927$
$9 x+37=1927$
$9 x=1890$
\therefore Amanda's share $=210 \times 4+15$

$$
=840+15=₹ 855
$$

11. (D) 335
$\begin{array}{r}+5 \mathrm{~A} 7 \\ \hline 8 \mathrm{~B} 2\end{array}$
Divisibility by $3=\frac{\text { sum of all digits }}{3}$

$$
=\frac{8+B+2}{3}
$$

Possible values of $B=2,5,8$
\therefore Minimum value of $A=1$
12. (B) Given $x^{3}+\frac{1}{x^{4}}=5$

$$
\begin{equation*}
x+\frac{1}{x}=3 \tag{i}
\end{equation*}
$$

\therefore Taking cube of both sides,
$\left(x+\frac{1}{x}\right)^{3}=3^{3}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}+3 \times x \times \frac{1}{x}\left[x+\frac{1}{x}\right]=27$
$\Rightarrow x^{3}+\frac{1}{x^{3}}+3 \times 3=27$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=27-9=18$
$\Rightarrow x+\frac{1}{x}=3$
Squaring both sides in equation (i)
$\Rightarrow x^{2}+\frac{1}{x^{2}}+2 \cdot x \cdot \frac{1}{x}=9$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=9-2 \Rightarrow x^{2}+\frac{1}{x^{2}}=7$

Again squaring both side in equation (iii)

$$
\begin{align*}
& \Rightarrow x^{4}+\frac{1}{x^{4}}+2=49 \\
& \Rightarrow x^{4}+\frac{1}{x^{4}}=47 \tag{iv}
\end{align*}
$$

Adding equation (ii) and (iv),

$$
\begin{aligned}
& \Rightarrow x^{3}+\frac{1}{x^{3}}+x^{4}+\frac{1}{x^{4}}=18+47 \\
\Rightarrow & x^{3}+\frac{1}{x^{3}}+x^{4}+\frac{1}{x^{4}}=65\left\{\therefore x^{3}+\frac{1}{x^{4}}=15\right\} \\
& \Rightarrow 15+x^{4}+\frac{1}{x^{3}}=65 \\
& \Rightarrow x^{4}+\frac{1}{x^{3}}=65-15 \\
& \Rightarrow x^{4}+\frac{1}{x^{3}}=50
\end{aligned}
$$

13. (A) Let, a person invests ₹ x at 4% and average rate of interest be $\mathrm{r} \%$,
$\therefore \quad \frac{x \times 4}{100}=\frac{4500-x}{100} \times 6$
$2 x=45000 \times 3-3 x$
$x=\frac{45000 \times 3}{5}=₹ 27000$
$\therefore \quad 2^{\text {nd }}$ part $=₹ 18000$
Interest of $1^{\text {st }}$ part in one year,

$$
=\frac{27000 \times 4}{100}=₹ 1080
$$

Similarly, interest of second part in one years $=₹ 1080$
Total interest $=₹ 2160$

$$
\begin{aligned}
\therefore & \frac{45000 \times r}{100}=₹ 2160 \\
& r=\frac{216}{45}=4.8 \%
\end{aligned}
$$

$\therefore \quad$ Average rate of interest $=4.8 \%$
14. (B) Let the length and breadth of each rectangle is l and b respectively,

It is clear from above given figure, $3 b=2 l$
Total perimeter of big rectangle $=165 \mathrm{~cm}$

$$
\begin{equation*}
2 \times l+2(l+b)+3 \times b=165 \tag{i}
\end{equation*}
$$

$3 b+2\left[\frac{3}{2} b+b\right]+3 b=165$
$3 b+3 b+2 b+3 b=165$
$11 b=165$
$b=15$
and $l=\frac{3}{2} \times 15=\frac{45}{2}$
$\therefore \quad$ Perimeter of small rectangle $=2(l+b)$

$$
\begin{equation*}
=2\left(\frac{45}{2}+15\right)=75 \mathrm{~cm} \tag{i}
\end{equation*}
$$

15. (A) $a(a+b+c)=16$
$b(a+b+c)=8$
$c(a+b+c)=120$
Adding all of them,
$a(a+b+c)+b(a+b+c)+c(a+b+c)$
$=16+8+120$
$\Rightarrow(a+b+c)(a+b+c)=144$
$\Rightarrow(a+b+c)=12$
From equation (i)
$a \times 12=16$
$a=\frac{16}{12} \Rightarrow a=\frac{4}{3}$
16. (B) $1-\frac{1}{1+\sqrt{2}}+\frac{1}{1-\sqrt{2}}$
$=1-\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}+\frac{1}{(1-\sqrt{2})} \times \frac{(1+\sqrt{2})}{(1+\sqrt{2})}$
$=(1-\sqrt{2}+1)+\frac{(\sqrt{2}+1)}{1^{2}-(\sqrt{2})^{2}}$
$=1-\sqrt{2}+1-\sqrt{2}-1=1-2 \sqrt{2}$
17. (A) $x=\sqrt{2 \sqrt[3]{4 \sqrt{2 \sqrt[3]{4}}}}$

Squaring both sides,
$x^{2}=2 \sqrt[3]{4 \sqrt{2 \sqrt[3]{4 \ldots \ldots \ldots}}}$
Taking cube of both sides,
$x^{6}=8 \times 4 \sqrt{2 \sqrt[3]{4}}$
$x^{6}=32 x$
$\Rightarrow x^{6}-32 x=0 \Rightarrow x\left(x^{5}-32\right)=0$
$\Rightarrow x^{5}=32$,
$\Rightarrow x=2$
18. (A) $\frac{1}{\sqrt[3]{49}+\sqrt[3]{7}+1}=a \sqrt[3]{49}+b \sqrt[3]{7}+c$

Let $t=\sqrt[3]{7} \Rightarrow t^{2}=\sqrt[3]{49}$ and $t^{3}=7$
$\frac{1}{t^{2}+t+1}=a t^{2}+b t+c$
$\Rightarrow \frac{t-1}{(t-1)\left(t^{2}+t+1\right)}=a t^{2}+b t+c$
$\Rightarrow \frac{t-1}{\left(t^{3}-1\right)}=a t^{2}+b t+c$
$\Rightarrow \frac{1}{6}(t-1)=a t^{2}+b t+c$
On comparing coefficient,
$\mathrm{a}=0, \mathrm{~b}=\frac{1}{6}, \mathrm{c}=-\frac{1}{6}$
$a+b+c=0+\frac{1}{6}-\frac{1}{6}=0$
19. (B) $x^{2}+y^{2}+2 x+1=0$
$x^{2}+1^{2}+2 x+y^{2}=0$
$(x+1)^{2}+y^{2}=0$
$x=-1$
$y=0$
$\therefore \quad x^{39}+y^{43}$
$=(-1)^{39}+(0)^{43}=-1+0=-1$
20. (C) Distance $=$
$\frac{\text { Product of speeds }}{\text { Difference of speeds }} \times$ Difference of time
$=\frac{7 \times 12}{5} \times \frac{25}{60}=7 \mathrm{~km}$
Time taken by Ram when he goes with speed $7 \mathrm{~km} / \mathrm{h}=\frac{\text { Distance }}{\text { Speed }}=\frac{7}{7}=1$ hour
$\therefore \quad 1$ hour $=60$ minutes
Actual time taken by Ram to reach the station $=60-15=45$ minutes
21. (C) A.T.Q,

Number $(N)=9 A+6=21 B+12$
$\Rightarrow \mathrm{A}=\frac{7 \mathrm{~B}+2}{3} \quad(\because \mathrm{~A}$ and B are integer $)$
Put B $=1$

$$
\begin{aligned}
& A=3 \\
& \mathrm{~N}=33 \\
& \Rightarrow(\mathrm{LCM} 9,21) \mathrm{m}+33
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
Put $\mathrm{m}=0,1,2$ \qquad
$\mathrm{P}=63+33=96$
On dividing by 63 in a 1111
Total number is $=17+1=18$
(one value is also obtained for 0)
22. (A) $2 \times 5 \quad 22 \times 5 \quad 3$

$2^{2} \times 3 \times 5$
$3,6,12,15,30,60$
Total number is $=6$
23. (B) A.T.Q,

Mark price $=₹ 800$

$$
₹ 800 \xrightarrow{-10 \%} 720 \xrightarrow{-5 \%} 684
$$

Hence,
Selling price = ₹ 684
24. (B) Time $=2$ years, Rate $=10 \%$

Case (I); when interest compounded annually

2 years CI rate $\%=10+10+\frac{10 \times 10}{100}=21 \%$
2 years SI rate $\%=10+10=20 \%$
A. T. Q ,
$(21-20) \%$ of sum $=28$
Sum = ₹ 2800
Case (II); when interest is compounded half yearly,

Rate $\%=\frac{10}{2}=5 \%$
Time $=2+2=4$
Effective rate \% of CI for 2 half
yearly $=5+5+\frac{25}{100}=10.25$
Effective rate of CI for 4 half yearly
$=10.25+10.25+\frac{10.25 \times 10.25}{100}=21.55 \%$
Difference in rate $\%=(21.55-20)=1.55 \%$
Required difference $=\frac{1.55}{100} \times 2800=43.4$
Hence,
Required difference = ₹ 43.4
25. (A) A.T.Q,

yes	no
50%	50%
70%	30%

$X_{\text {min }}=20 \%$
$X_{\max }=50 \%+30 \%=80 \%$
$X_{\text {max }}-X_{\text {min }}=60 \%$
26. (A) $x^{5}-16 x^{4}+16 x^{3}-16 x^{2}+16 x$
$x^{5}-15 x^{4}-x^{4}+15 x^{3}+x^{3}-15 x^{2}-x^{2}+15 x+x=15$

$$
\left[\therefore x=15,-15 x^{4}=-x^{5}\right.
$$

$\therefore x^{5}-x^{5}$ similarly all terms will be cancel]
27. (A) A.T.Q,
$\Rightarrow \frac{1}{\frac{60}{17}}=\frac{1}{3+\frac{9}{17}}=\frac{1}{3+\frac{1}{\frac{17}{9}}}=\frac{1}{3+\frac{1}{1+\frac{8}{9}}}$
$=\frac{1}{3+\frac{1}{1+\frac{1}{\frac{9}{8}}}}=\frac{1}{3+\frac{1}{1+\frac{1}{1+\frac{1}{8}}}}$
Comparing from equation,
$a=3, b=1, c=1, d=8$

$$
\Rightarrow a+b+c+d=3+1+1+8=13
$$

28 (B) A.T.Q,
$10 \mathrm{~m}+10 \mathrm{w}=\frac{1320}{6}=220$ per day
$20 \mathrm{~m}+40 \mathrm{w}=\frac{7000}{10}=700$ per day
Substracting (i) $\times 2$ from (ii)
$20 \mathrm{w}=260$
$\therefore 1 \mathrm{w}=\frac{260}{20}=₹ 13$
Now,
$10 \mathrm{~m}+10 \mathrm{w}=220$
$10 m+10 \times 13=220$
$\therefore \quad 1 \mathrm{~m}=\frac{260-130}{10}=\frac{90}{10}=₹ 9$
Now, the required number of days

$$
\frac{2120}{12 \times 9+8 \times 13}=\frac{2120}{212}=10 \text { days }
$$

29. (C) A.T.Q,

Efficiency, $\frac{\mathrm{B}}{\mathrm{A}+\mathrm{B}+\mathrm{C}}=\frac{240}{900}=\frac{4}{15}$
$B+C: A+B+C$
time 150 : 100
Effi 2 : 3

$$
\frac{B+C}{A+B+C}=\frac{2 \times 5}{3 \times 5}=\frac{10}{15}
$$

A : B:C

5:4:6
$\underbrace{A+B}_{\substack{9 \\ 5 x}}$
$A+B+C$
15 Efficiency
$3 x$ days
$\Rightarrow \quad 2 x=\frac{16}{3}, \Rightarrow x=\frac{8}{3}$
$A+B+C=3 x$ days
$A+B+C=3 \times \frac{8}{3}=8$ days
30. (B) A.T.Q,
$\therefore \quad \frac{5}{6} \sim_{\text {Total work }}^{\text {done }}$
$5 \times \frac{2}{5} \rightarrow$ spoiled due to rain
$\therefore \quad$ Left work
$\Rightarrow 5-2=3$
$\Rightarrow 6-3=3$
$\frac{400 \times 20}{5}=\frac{300 \times \mathrm{D}}{3}$
$\mathrm{D}=16$ days
The whole work will be completed in 16 days
31. (D) A.T.Q,

$A+B=\frac{60}{5}=12$ minutes
$12 \times$ waste pipe $=(A+B) \times 8$
waste pipe $=\frac{40}{12}=\frac{10}{3}$
waste pipe will empty $=\frac{60}{10} \times 3$

$$
=18 \text { minutes }
$$

32. (B) Train length $=2 \mathrm{~L}$

Tunnel length $=\mathrm{L}$
$3 \mathrm{~L}=36 \times \frac{5}{18} \times 60 \times 2$
$\mathrm{L}=400$ metres

Train $1=400 \times 2=800$ metres
Train $2=800 \times 2=1600$ metres
Total distance in crossing $=2400$ metres 60% of speed $=6 \mathrm{~m} / \mathrm{sec}$ $2400=6 \times t$ t $=400$ seconds
33. (C) A.T.Q,

Case - I
$\begin{array}{ll}\mathrm{T}_{\mathrm{A}} & \mathrm{T}_{\mathrm{B}} \\ x+2 & x\end{array}$
$x+2 \quad x$
After engine failure for train B Case - II

1 unit $\rightarrow 8$ hours
2 units $\rightarrow 16$ hours
B takes 16 hours
A takes 18 hours
Speed of $A=\frac{1440}{18}=80 \mathrm{~km} / \mathrm{hr}$.
34. (B) $\Rightarrow 3 \sin ^{2} \phi+4 \cos ^{2} \phi$
$\Rightarrow 3 \sin ^{2} \phi+3 \cos ^{2} \phi+\cos ^{2} \phi$
$\Rightarrow 3+\cos ^{2} \phi \quad(\because$ maximum value of $\cos ^{2} \phi=1$)
$\Rightarrow 3+1=4$
35. (D) A.T.Q,
$\tan \theta=\frac{3}{4}$
$\therefore \quad \sin \theta=\frac{3}{5}, \cos \theta=\frac{4}{5}$
$\Rightarrow 25 x \sin ^{2} \theta \cos \theta=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$
$\Rightarrow x=\frac{1}{25 \times \cos ^{3} \theta}=\frac{1}{25 \times 64} \times 125$
$\Rightarrow x=\frac{5}{64}$
36. (A) A.T.Q,

Speed of boat in still
water $=x \mathrm{~km} / \mathrm{hr}$
stream $=y \mathrm{~km} / \mathrm{hr}$
Then,
$x+\mathrm{y}=\frac{2}{15} \times 60=8$ and $x-\mathrm{y}=\frac{10}{2}=5$
So, Speed of boat $=\frac{8+5}{2}=6.5 \mathrm{~km} / \mathrm{hr}$

$K D$
 Campus

 KD Campus Pvt. Ltd

 KD Campus Pvt. Ltd}
37. (A) Let oxygen is total minutes
$16: 9$ (after two times process)
4:3 (after one time process)
4 units $=8$ litres
1 unit = 2 litres
38. (A) A.T.Q,

$$
\begin{align*}
& x^{2}-\sqrt{6} x-1=0 \\
& \Rightarrow x-\frac{1}{x}=\sqrt{6} \\
& \Rightarrow x^{2}+\frac{1}{x^{2}}=6+2=8 \\
& \Rightarrow x^{4}+\frac{1}{x^{4}}=64-2=62 \\
& \Rightarrow x^{10}-61 x^{6}-62 x^{2} \tag{i}
\end{align*}
$$

Putting the value of 62 and 61 in equal (i)
$\Rightarrow x^{10}-\left(x^{4}+\frac{1}{x^{4}}-1\right) x^{6}-\left(x^{4}+\frac{1}{x^{4}}\right) x^{2}$
$\Rightarrow-\left(x^{2}+\frac{1}{x^{2}}\right)=-8$
39. (C) A.T.Q,

Like Dislike
$\left.\right|_{10} ^{50} 80 \%$ say $\left.\begin{aligned} & \text { like it so } 20 \% \text { dislike it } \\ & 10\end{aligned}\right|_{40} ^{50} 80 \%$ dislike
Total persons dislike dancing $=50$
$=\frac{10}{50} \times 100=20 \%$
40. (D) A.T.Q,
$\Rightarrow\left(90^{\circ}-4 a\right)=2\left(90^{\circ}-5 a\right)$
$\Rightarrow 6 a=90^{\circ}$
$\Rightarrow \mathrm{a}=15^{\circ}$
Sum of two angles,
$\Rightarrow 5 a+4 a=9 a=135^{\circ}$
41. (A) $2015^{2018}-2019$

The unit digit of $2015^{2018}=25$
Hence, tens digit is $=25-19=06$
Tens digit is $=0$
42. (C) A.T.Q,
$\mathrm{S}=a+a r+a r^{2}+a r^{3}+-----\infty$

$$
=\frac{a}{1-r},(|r|<1)
$$

$a r=1$
$a=\frac{1}{r}$
$\mathrm{S}=\frac{1 / r}{1-r}=\frac{1}{r(1-r)}$
For S to be smallest denominator should
be maximum,
Hence,
$\frac{d}{d r}\left(r-r^{2}\right)=0$
$1-2 r=0$
$\Rightarrow 1-2 \mathrm{r}=0$
$\Rightarrow \mathrm{r}=\frac{1}{2}$
Puting the value of r in equation (i) S = 4
43. (D)

A.T.Q,

In $\triangle \mathrm{ABC}, \angle \mathrm{A}=120^{\circ}$

$$
\mathrm{AD} \perp \mathrm{BC}
$$

Let, $\mathrm{AB}=a$ and $\mathrm{BD}=b$

$$
a+b=\mathrm{CD} \rightarrow \text { Given }
$$

Let, Some part of CD is $\mathrm{DE}=b$
So, $\mathrm{AE}=a$ and $\mathrm{EC}=a$
$\Rightarrow \triangle \mathrm{AEC}$ and $\triangle \mathrm{ABE}$ are isoscales Δ
Let, $\angle \mathrm{C}=\theta \Rightarrow \angle \mathrm{EAC}=\theta$
$\Rightarrow \angle \mathrm{AEB}=2 \theta$ and $\angle \mathrm{ABE}=2 \theta$
$\Rightarrow \angle \mathrm{BAE}=120^{\circ}-\theta$
Now, $2 \theta+2 \theta+120^{\circ}-\theta=180^{\circ}$
$3 \theta=60$
$\theta=20^{\circ}$
44. (B) A.T.Q,

Present age of Ritu $=(x+3)$ years
Present age of Rahul $=[(x+3-8)]$ years $=(x-5)$ years
45. (D)

A.T.Q,

AB is a common tangent,
$\therefore \quad \mathrm{AB}=2 \sqrt{a b}$
Similary,
$A M=2 \sqrt{a c}$ and $B M=2 \sqrt{b c}$
$\therefore \quad 2 \sqrt{a b}=2 \sqrt{a c}+2 \sqrt{b c}$
$(\therefore \mathrm{AM}=\mathrm{AM}+\mathrm{BM})$
$\Rightarrow \sqrt{a b}=\sqrt{a c}+\sqrt{b c}$
On dividing both side by $\sqrt{a b c}$
$\Rightarrow \frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}=\frac{1}{\sqrt{c}}$
46. (B)

$\angle \mathrm{OQA}=\angle \mathrm{OPA}=90^{\circ}$
$\angle \mathrm{QOP}+\angle \mathrm{QAP}=180^{\circ}$
$\Rightarrow \angle \mathrm{QOP}=180^{\circ}-32^{\circ}=148^{\circ}$
$\angle \mathrm{QOP}=\angle \mathrm{SOR}=2 \angle \mathrm{STR}$
$\therefore \quad \angle \mathrm{RTS}=\frac{148^{\circ}}{2}=74^{\circ}$
47. (C) Taking power of 12 in all terms,
I. $11^{4}>7^{6}>45^{3}=14641>117649>91125$
II. $7^{6}>11^{4}>45^{3}=117649>14641>91125$
III. $7^{6}>45^{3}>11^{4}=117649>91125>14641$
IV. $45^{3}>7^{6}>11^{4}=91125>117649>14641$ Here we can see that statement III is true only.
48. (C) $a^{3}+3 a^{2}+9 a=1$

Multiply the equation by $\frac{3}{a}$ on both the sides.
$\Rightarrow 3 a^{2}+9 a+27=\frac{3}{a}$
Substracting the equation,
$\Rightarrow a^{3}-27=1-\frac{3}{a}$
$\Rightarrow a^{3}+\frac{3}{a}=28$
49. (D) A.T.Q,

Suppose $x=y=0$, then $Z^{3}=3$, $P=Z, Q=Z$ and $R=-Z$,

Putting these values in below given equation,
$\mathrm{P}^{3}+\mathrm{Q}^{3}+\mathrm{R}^{3}-3 \mathrm{PQR}=Z^{3}+Z^{3}-Z^{3}+3 Z^{3}$

$$
=4 Z^{3}
$$

Putting $Z^{3}=3$,

$$
\mathrm{P}^{3}+\mathrm{Q}^{3}+\mathrm{R}^{3}-3 \mathrm{PQR}=12
$$

50. (A) $x_{1} x_{2} x_{3}=4\left(4+x_{1}+x_{2}+x_{3}\right)$

Putting $x_{2}=1$ and $x_{3}=1$
$\Rightarrow x_{1}=4\left(4+x_{1}+1+1\right)$
$\Rightarrow x_{1}=24+4 x_{1}$
$\Rightarrow x_{1}=-8$
Putting all these values;
$\frac{1}{\left(3+x_{1}\right)}+\frac{1}{\left(3+x_{2}\right)}+\frac{1}{\left(3+x_{3}\right)}$
$\Rightarrow \frac{1}{-5}+\frac{1}{4}+\frac{1}{4}$
$\Rightarrow \frac{-1}{5}+\frac{1}{2}=\frac{3}{10}$
51. (B) $x^{2}-x+1=0$

When α and β are the roots of this equation;
$\alpha+\beta=1$
$\alpha \beta=1$
If the roots are α^{3} and β^{3};
Sum of roots $=\alpha^{3}+\beta^{3}$
$\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)$
$\Rightarrow \alpha^{3}+\beta^{3}=1 \times\left[(\alpha+\beta)^{2}-3 \alpha \beta\right]$ $=(1-3)=-2$
Multiplication of roots $=\alpha^{3} \times \beta^{3}=1$
\therefore The question will be,
$x^{2}-\operatorname{SOR} x+\mathrm{POR}=0$
$x^{2}+2 x+1=0$
52. (B)

Area of semicircle,

$$
\begin{aligned}
& =\frac{\pi}{2} \times(14)^{2} \\
& =308 \mathrm{~cm}^{2}
\end{aligned}
$$

Diagonal of square LMNO $=14 \mathrm{~cm}$ Side of sqauare $\angle \mathrm{MNO}$,

$$
=\frac{14}{\sqrt{2}} \mathrm{~cm}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\therefore \quad$ Area of square $\mathrm{LMNO}=\frac{196}{2}=98$
Area of square $\mathrm{ABCD}=(28)^{2}$

$$
=784 \mathrm{~cm}^{2}
$$

Area of shaded region,

$$
=784-308-98
$$

$$
=378 \mathrm{~cm}^{2}
$$

53. (B) Let present worth $=100$ units

True discount $=\frac{100 \times 4 \times 5}{100}=20$ units
Due debt - $100+20=120$ units
120 units \qquad ₹ 4800

1 unit \qquad ₹ 40

True discount, 20 units \qquad ₹ 20×40
\qquad
Present worth 100 units \qquad 100×40 ₹ 4000

SI $=\frac{4800 \times 4 \times 5}{100}=₹ 960$
SI $-\mathrm{TD}=960-800=₹ 160$
54. (B) Ratio of two years
before therse
Ratio Age before $\left(\begin{array}{lll}4 & : & 1 \\ 3 & : & 1\end{array}\right) \times 2$ 2 years

9 units \qquad 18 years

3 units \qquad 6 years

Now, A.T.Q,
$\frac{18+x}{6+x}=\frac{2}{1}$
$\Rightarrow 18+x=12+2 x$
$\Rightarrow x=6$ years
After 4 years, age of Saurabh and Shalini is
$(18+6=24),(6+6)=12$ in ratio $2: 1$
So, ans is 4 years
55. (A) Given $\mathrm{OA}=13 \mathrm{~cm}$
$\mathrm{AB}=10 \mathrm{~cm}$
$\Rightarrow A Z=5 \mathrm{~cm}$
Now in $\triangle \mathrm{AO}_{1} \mathrm{Z}$

$$
\mathrm{AO}_{1}^{2}=\mathrm{AZ}^{2}+\mathrm{O}_{1} \mathrm{Z}^{2}
$$

$\Rightarrow(13)^{2}=(5)^{2}+\mathrm{O}_{1} \mathrm{Z}^{2}$
$\Rightarrow \mathrm{O}_{1} \mathrm{Z}=12 \mathrm{~cm}$
Given $\mathrm{PQ}=3$
$\mathrm{O}_{1} \mathrm{Q}=13$
$\Rightarrow \mathrm{ZQ}=\mathrm{O}_{1} \mathrm{Q}-\mathrm{Q}_{1} \mathrm{Z}$
$\Rightarrow Z Q=13-12$
$\Rightarrow \mathrm{ZQ}=1$
$\Rightarrow \mathrm{PZ}=2$
Let r is radius of other circle
$\Rightarrow \mathrm{Q}_{2} \mathrm{Z}=\mathrm{r}-2$
$\Rightarrow \mathrm{AO}_{2}=\mathrm{r}$
In $\triangle \mathrm{AZO}_{2}$
$\mathrm{AO}_{2}{ }^{2}=\mathrm{AZ}^{2}+\mathrm{O}_{2} \mathrm{Z}^{2}$
$\Rightarrow \mathrm{r}^{2}=(5)^{2}+(\mathrm{r}-2)^{2}$
$\Rightarrow \mathrm{r}^{2}=25+\mathrm{r}^{2}+4-4 \mathrm{r}$
$\Rightarrow \mathrm{r}=\frac{29}{4} \mathrm{~cm}$
56. (A)

3: 5
Total mixture of brass is 3 units Total mixture of bronze is 5 units

Now,

$$
\begin{aligned}
& \text { Brass Bronze } \\
& \operatorname{Zn}\left(\begin{array}{lr}
3 & 5 \\
x \% & 4 \% \\
& 16 \%
\end{array}\right)_{\times 4}^{5} \\
& \Rightarrow x=36 \% \\
& \Rightarrow \text { Brass } \mathrm{Cu}=100-36=64 \% \\
& \mathrm{Zn}=36 \%
\end{aligned}
$$

57. (D) A.T.Q,

$$
\begin{align*}
& \Rightarrow \mathrm{Q}-\mathrm{p}=17 \mathrm{k} \tag{i}\\
& \Rightarrow \mathrm{Q}-\mathrm{q}=5 \mathrm{k} \tag{ii}\\
& \Rightarrow \mathrm{Q}-\mathrm{r}=8 \mathrm{k} \tag{iii}
\end{align*}
$$

Put value of $\mathrm{Q}=\frac{p+q+r}{2}$ in equation
(i), (ii) and (iii) we get,
$\Rightarrow \mathrm{q}+\mathrm{r}-\mathrm{p}=34 \mathrm{k}$
$\Rightarrow \mathrm{p}+\mathrm{q}-\mathrm{q}=10 \mathrm{k}$
$\Rightarrow \mathrm{p}+\mathrm{q}-\mathrm{r}=16 \mathrm{k}$
Adding equation (iv), (v) and (vi) we get $p+q+r=60 k$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow \mathrm{Q}=\frac{p+q+r}{2}=30 \mathrm{k}$
Now put value of Q in equation (i), (ii) and (iii) we get,
$\mathrm{P}=13 \mathrm{k}, \mathrm{q}=25 \mathrm{k}, \mathrm{r}=22 \mathrm{k}$
$\Rightarrow \mathrm{p}: \mathrm{q}: \mathrm{r}=13: 25: 22$
58. (A) $\left(3^{123}-3^{122}-3^{121}\right)\left(2^{121}-2^{120}-2^{119}\right)$
$\Rightarrow 3^{121}\left(3^{2}-3-1\right) 2^{119}\left(2^{2}-2-1\right)$
$\Rightarrow 3^{121} \times 2^{119} \times 5$
$\Rightarrow 3^{121} \times 2^{118} \times 2 \times 5$
We knon that we have only one pair of (2×5)
\Rightarrow Only 1 zero in unit digit
59. (B) We know that when number repeated by 6 times is always divisible by '13'
Now, (777 \qquad 100 times)
$\Rightarrow(777$ \qquad 96 times) \rightarrow is always divisible by 13
$\Rightarrow(777 \ldots \ldots . .96$ times $) 0000+7777$
Now, $7777 \rightarrow$ divided by 13 get remainder
$R=3$
60. (D) If accident occurs after $111 \mathrm{~km} \rightarrow 1 \mathrm{~h}$ save

$$
\begin{aligned}
& 444 \rightarrow 4 \mathrm{~h} \text { save } \\
& \frac{+333}{777 \mathrm{~km}}
\end{aligned}
$$

61. (C) 23 Boggies $\rightarrow 115$ seconds

1 Boggy $\rightarrow 5$ seconds
14 Boggies $\rightarrow 70$ seconds
62. (A) $\sqrt{3 x^{2}-12 x+19}+\sqrt{3 x^{2}-12 x-11}=6$

$$
\begin{equation*}
\sqrt{3 x^{2}-12 x+19}-\sqrt{3 x^{2}-12 x-11}=t \tag{i}
\end{equation*}
$$

On multiplying equation (i) and (ii) We get,

$$
\begin{array}{ll}
& 19-(-11)=6 t \\
\therefore \quad & t=5
\end{array}
$$

63. (A) Let

$6-x=2 x$
$6=3 x$ or $x=2$ litres
64. (A) Answers is independent of x

So, Put $x=1$
$4\left(a^{3}+b^{3}\right)=4 \Rightarrow a^{3}+b^{3}=1$
$4\left(a^{3}-b^{3}\right)=4 \Rightarrow a^{3}-b^{3}=1$
By solving equation (i) and (ii) we get, $a=1$ and $b=0$
By puting these value in
$4\left(a^{2}-b^{2}\right)=4(1-0)=4$
65. (C) Answer is independent of b,

So put $\mathrm{b}=0$
Then, $x=(2 a)^{1 / 3}$
$x^{3}=2 a \Rightarrow x^{3}-2 a=0$
66. (A) $10 \sin ^{4} \alpha+15 \cos ^{4} \alpha=6$
$\left(\frac{10}{6} \sin ^{2} \alpha\right) \sin ^{2} \alpha+\left(\frac{15}{6} \cos ^{2} \alpha\right)\left(\cos ^{2} \alpha\right)=1$
We know that, $\sin ^{2} \alpha+\cos ^{2} \alpha=1$
To make the equation (i) in the from given identity above, we put
$\frac{10}{6} \sin ^{2} \alpha=1 \Rightarrow \sin ^{2} \alpha=\frac{6}{10}$
and, $\cos ^{2} \alpha=\frac{6}{15}$
$\Rightarrow \operatorname{cosec}^{2} \alpha=\frac{5}{3}$ and $\sec ^{2} \alpha=\frac{5}{2}$
$\Rightarrow 27 \operatorname{cosec}^{6} \alpha+8 \sec ^{6} \alpha=27 \times \frac{125}{27}+$
$8 \times \frac{125}{8}$

$$
=125+125=250
$$

67. (A) Put $\mathrm{A}=135^{\circ}(\tan 135=\cot 135=-1)$

$$
\begin{gathered}
\frac{-1}{1+1}+\frac{-1}{1+1}=\mathrm{k}-1-1 \\
\mathrm{k}=1
\end{gathered}
$$

68. (C)

$4 \% \rightarrow 308-60$
$1 \% \rightarrow 62$
$100 \% \rightarrow 6200$
69. (D)

$\triangle \mathrm{BCD} \sim \triangle \mathrm{ABC}$
$\triangle \mathrm{ABC} \quad \alpha \quad \beta \quad \gamma$
$\triangle \mathrm{BCD}$

$$
\frac{20}{16}=\frac{b}{8}=\frac{a+16}{20}
$$

$\Rightarrow a=9, b=10$
On solving perimeter of $\mathrm{BDA}=9+10+8$

$$
=27
$$

70. (A)

$$
\begin{aligned}
& \sqrt{x+\sqrt{x-\sqrt{x+\ldots \ldots \ldots \ldots \infty}}}=\frac{\sqrt{4 x-3}+1}{2} \\
& \sqrt{4+\sqrt{4-\sqrt{4+\sqrt{4 \ldots \ldots .}}}}=\frac{\sqrt{4 \times 4-3}+1}{2} \\
& =\frac{\sqrt{13}+1}{2}
\end{aligned}
$$

71. (A)

Area of base,
$=\frac{1}{2} \times 3 \sqrt{2} \times 3 \sqrt{2}+3 \times 6=27 \mathrm{~cm}^{2}$
Volume $=$ area of base \times height

$$
=27 \times 10=270 \mathrm{~cm}^{3}
$$

72. (A)

Let base of pyramid is a triangle of vertices A, B, C, O is a point on the base at which height is standing and P is top of heights,

$$
\begin{aligned}
& \frac{\sqrt{3} a^{2}}{4}=16 \sqrt{3} \\
& a=8 \mathrm{~cm}
\end{aligned}
$$

$\mathrm{PD}=\sqrt{5^{2}-4^{2}}=3 \mathrm{~cm}=$ Slant height

TSA $=\frac{1}{2} \times$ base of prism \times slant height + Area of base.

$$
\begin{aligned}
& =\frac{1}{2} \times 24 \times 3+16 \sqrt{3} \\
& =(36+16 \sqrt{3}) \mathrm{cm}^{2}
\end{aligned}
$$

73. (C) Total work done by $(\mathrm{A}+\mathrm{B}+\mathrm{C})$ in 3 days is 37% and work done by $(A+B)$ in 7 days is 63%
1 day $\rightarrow 9 \%$
And, $\mathrm{A}+\mathrm{B} \xrightarrow[3 \text { days }]{ } 27 \%$

$$
\begin{aligned}
& \mathrm{C} \longrightarrow 37-27=10 \% \text { in } 3 \text { days } \\
& 100 \% \longrightarrow 30 \text { days }
\end{aligned}
$$

74. (A) $a^{4}+a^{3}+a^{2}+a+1=0$

Multiply by a
$a^{5}+a^{4}+a^{3}+a^{2}+a=0$
$a^{5}-1=0$ or $a^{5}=1$
$a^{100}+a^{100}+a^{10}=\left(a^{5}\right)^{200}+\left(a^{5}\right)^{20}+\left(a^{5}\right)^{2}$
$=1+1+1=3$
75. (A) $x+y=5, x-y+1=0$

Both lines are perpendicular.
\therefore Triangle is right angle triangle.
Circumcentre will be on hypotenuse.

$$
y-1=0
$$

So, y co-ordinate of circumcentre is 1 ,
76. (B) $\left[(\sec 2 \theta+1) \sqrt{\sec ^{2} \theta}-1\right] \times \frac{1}{2}(\cot \theta-\tan \theta)$
$=\left(\frac{1+\cos 2 \theta}{\cos 2 \theta} \sqrt{\tan ^{2} \theta}\right) \times \frac{1}{2}\left(\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta}\right)$
$=\frac{1+2 \cos ^{2} \theta-1}{\cos 2 \theta} \times \tan \theta \times \frac{1}{2} \frac{\cos 2 \theta}{\sin \theta \cos \theta}$
$=\frac{2 \cos ^{2} \theta}{2} \frac{\sin \theta}{\cos \theta} \times \frac{1}{\sin \theta \cos \theta}=1$
77. (C) Let, the work is 100 units
A.T.Q,

Efficiency fall by 19% so work will complete in 10 days.
100, 81, \qquad , 10 days
When work increases by 90% and efficiency falls by 10% then one day work will complete in 2 days
100, 90, 81, \qquad 20 days
Hence, whole work will be completed in 20 days

$K D$
 Campus

 KD Campus Pvt. Ltd

 KD Campus Pvt. Ltd}
78. (C) A.T.Q,
$x^{2}-2 x+4=0$
Multiply equation (i) by $(x+2)$ both side,
$\Rightarrow(x+2)\left(x^{2}-2 x+4\right)=0$
$\Rightarrow x^{3}+8=0$
$\Rightarrow x^{3}=-8$
$\Rightarrow x^{5}-2 x^{4}+30$
$\Rightarrow-8 x^{2}+16 x+30$
$\Rightarrow-8\left(x^{2}-2 x\right)+30$
$\Rightarrow 32+30=62$
79. (D) A.T.Q,
$(2 a-1)^{3}+(3 a+2)^{3}+(4 a+5)^{3}$
$=3(2 a-1)(3 a+2)(4 a+5)$
$\Rightarrow 2 a-1=3 a+2=4 a+5$
$\Rightarrow a=-3$

$$
\left(\therefore a^{3}+b^{3}+c^{3}=3 a b c\right.
$$ when $a+b+c=0$ and

$$
a=b=c)
$$

80. (C) $\sin ^{2} \theta=\frac{x^{2}+y^{2}+1}{2 x}$
$0 \leq \sin ^{2} \theta \leq 1$
$\frac{x^{2}+y^{2}+1}{2 x} \leq 1$
$x^{2}+y^{2}+1 \leq 2 x$
$(x-1)^{2}+y^{2} \leq 0$
Only number square not equal to zero possible,
Now,
$(x-1)^{2}=0$
$x=1$
81. (A) $\sec ^{2} \theta-\frac{\sin ^{2} \theta-2 \sin ^{4} \theta}{2 \cos ^{4} \theta-\cos 2 \theta}$
$=\sec ^{2} \theta-\frac{\sin ^{2} \theta\left(1-2 \sin ^{2} \theta\right)}{\cos ^{2} \theta\left(2 \cos ^{2} \theta-1\right)}$
$=\sec ^{2} \theta-\tan ^{2} \theta=1$
82. (A)

$B D=160 \mathrm{~m}$
In $\triangle A C D$
$\angle \mathrm{ACB}=\angle \mathrm{CAD}+\angle \mathrm{ADC}$
$\Rightarrow 2 \theta=\angle \mathrm{CAD}+\theta$
$\Rightarrow \angle \mathrm{CAD}=\theta$
$\therefore \quad \mathrm{AC}=\mathrm{CD}$
$\mathrm{AC}=100$ metres
In $\triangle \mathrm{ABC}$
$\mathrm{AC}=100$ metres
$\mathrm{BC}=160-100=60$ metres
Then, $\mathrm{AB}=80$ metres
[By pythagoras theorem]
83. (D) $a^{4}+a^{2} b^{2}+b^{4}=8$
$a^{2}+b^{2}+a b=4$
$a^{2}+b^{2}=4-a b$
Squaring both side
$a^{4}+b^{4}+2 a^{2} b^{2}=16+a^{2} b^{2}-8 a b$
$a^{2}+b^{2}+a^{2} b^{2}=16-8 a b$
$8=16-8 a b$
$8 a b=8$
$a b=1$
84. (A) 5 th term is $=81$
A.T.Q,
$a=16$
$\mathrm{r}^{4}=\frac{81}{16}$
$r=\frac{3}{2}$
Then, 4th term is
$\operatorname{ar}^{3}=16 \times\left(\frac{3}{2}\right)^{3}=54$
85. (B) A.T.Q,
$T_{7}=6$
$\Rightarrow a+6 d=6$
$\mathrm{T}_{21}=-22$
$a+20 d=-22$
Subtracting equation (i) and (ii)
$14 d=-28$
$\Rightarrow d=-2$
Putting the value of d equation in (ii)
$a=40-22$
$\mathrm{a}=18$
$\mathrm{T}_{26}=18+25 \times(-2)=-32$
86. (D) A. T. Q,

Milk and water are in the ratio is $=\frac{7}{2}$
Quantity of milk in 729 litres of mixture

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$=\frac{7}{9} \times 729=567$ litres
Quantity of water $=729-567$

$$
\text { = } 162 \text { litres }
$$

Let, x litres of water be added to mixture
become ratio $=\frac{7}{3}$
$\Rightarrow \frac{567}{162+x}=\frac{7}{3}$
$x=81$ litres water is to be added
87. (A) CI : SI $=25: 24$ for 2 years
$\mathrm{SI}=\frac{24}{2}=12$ for 2 years
difference between CI and $\mathrm{SI}=1$
rate of interest $=\frac{1}{12} \times 100=8 \frac{1}{3} \%$
for 3 years,
12
$12 \quad 1$

12

$$
\begin{array}{lll}
1 & 1 & \frac{1}{12}
\end{array}
$$

$\mathrm{CI}: \mathrm{SI}=\left[39+\frac{1}{12}\right]: 36$

$$
=469: 432
$$

88. (B) Let the C.P $=100$ units

Now, M.P = 120 units
S.P $=\frac{120 \times 80}{100}=96$

Loss $=100-96=4$
Loss $\%=\frac{4}{100} \times 100=4 \%$
89. (C) $\mathrm{A}=2^{32}$
$B=2^{0}+2^{1}+2^{2}+$ \qquad 2^{31}
$a=1, r=2$
$\mathrm{B}=$ sum of G.P is $=\frac{a\left[r^{n}-1\right]}{r-1}$
$\Rightarrow \mathrm{B}=\frac{1\left[2^{31}-1\right]}{2-1}$
$\Rightarrow \mathrm{B}=2^{31}-1$
And,
$C=3^{0}+3^{1}+3^{2}+3^{3}+$----------- $+3^{15}$
It is in a G. P
Hence,
$\mathrm{C}=$ sum of GP $=a=1, r=3$
$\Rightarrow \mathrm{C}=\frac{\left[3^{15}-1\right]}{2}$
Hence proved

$$
\Rightarrow \mathrm{A}>\mathrm{B}>\mathrm{C}
$$

90. (A) Let amount 100 units

$$
\text { Suresh } \rightarrow 100 \times \frac{30}{100} \rightarrow 30 \text { units }
$$

\rightarrow Friend
Remaining $\rightarrow 70$ units
$70 \times \frac{40}{100}=28$ units \rightarrow chit fund
Remaining $\rightarrow 70-28=$

(Chit fund + Insurance scheme) (Friend)

$$
\begin{aligned}
& 28+24-30 \\
& 22 \text { units } \rightarrow 30 \\
& 22 \text { units } \rightarrow 19800 \\
& 100 \text { units } \rightarrow \frac{19800 \times 100}{22}=90000
\end{aligned}
$$

91. (B) Number of employees in HR department

$$
=\frac{10}{100} \times 800=80
$$

Number of females $=80-12=68$
Ratio $=68: 80$

$$
=17: 20
$$

92. (A) Number of employees in marketing departments,

$$
=\frac{24}{100} \times 800=192
$$

$\therefore \quad$ Required percentage $=\frac{165}{192} \times 100=86 \%$
93. (A) Number of employees in IT departments,

$$
=800 \times \frac{15}{100}=120
$$

Number of females $=120-74=46$
$\therefore \quad$ Required percentage $=\frac{46}{800} \times 100=5.75 \%$
94. (A) Total employees in marketing department $=192$
Males $=165$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Females $=192-165=27$
Required ratio $=\frac{165}{27}=\frac{55}{9}$
95. (A) Number of employees in account department,

$$
=\frac{16}{100} \times 800=128
$$

Males $=93$
Females $=128-93=35$
$\therefore \quad$ Required ratio $=\frac{93}{35}$
96. (D) Average no of girls,
$=\frac{80+100+50+80+90}{5}=80$
Class X boys is nearest to the average number of girls passed per class.
97. (A) Total number of boys passed,
$=90+40+90+70+80$
Average $=\frac{370}{5}=74$
98. (A) Class VI $=90+80=170$ (high)

Class VII $=40+100=140$
Class VIII $=90+50=140$
Class IX $=70+80=150$
Class X $=80+90=170$ (high)
99. (B) Required ratio,

$$
=\frac{40+90+70}{100+50+80}=\frac{200}{230}=\frac{20}{23}
$$

100. (A) Total no of girls,

$$
=80+100+50+80+90=400
$$

$$
\text { Average }=\frac{400}{5}=80
$$

Avallableat: amazon Flipkart f \& Nearest Book Stores www.kdpublication.com

SSC TIER II (MATHS) MOCK TEST - 47 (ANSWER KEY)

1. (D)	11. (D)	21. (C)	31. (D)	41. (A)	51. (B)	61. (C)	71. (A)	81. (A)	91. (B)
2. (C)	12. (B)	22. (A)	32. (B)	42. (C)	52. (B)	62. (A)	72. (A)	82. (A)	92. (A)
3. (B)	13. (A)	23. (B)	33. (C)	43. (D)	53. (B)	63. (A)	73. (C)	83. (D)	93. (A)
4. (D)	14. (B)	24. (B)	34. (B)	44. (B)	54. (B)	64. (A)	74. (A)	84. (A)	94. (A)
5. (D)	15. (A)	25. (A)	35. (D)	45. (D)	55. (A)	65. (C)	75. (A)	85. (B)	95. (A)
6. (C)	16. (B)	26. (A)	36. (A)	46. (B)	56. (A)	66. (A)	76. (B)	86. (D)	96. (D)
7. (D)	17. (A)	27. (A)	37. (A)	47. (C)	57. (D)	67. (A)	77. (C)	87. (A)	97. (A)
8. (A)	18. (A)	28 (B)	38. (A)	48. (C)	58. (A)	68. (C)	78. (C)	88. (B)	98. (A)
9. (A)	19. (B)	29. (C)	39. (C)	49. (D)	59. (B)	69. (D)	79. (D)	89. (C)	99. (B)
10. (D)	20. (C)	30. (B)	40. (D)	50. (A)	60. (D)	70. (A)	80. (C)	90. (A)	100.(A)

II

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

