## SSC Mains (Maths) Answer with Explanation

1. (A)
$4^{3.5}: 2^{5}$
$=\left(2^{2}\right)^{3.5}: 2^{5}=2^{7} \quad: \quad 2^{5}$

$$
\begin{array}{lll}
=2^{2} & : & 1 \\
=4 & : & 1
\end{array}
$$

2. (D) Now,

Required ratio $=$ T.S.A of one small cube : T.S.A of the big cube
$=6 \times(1)^{2}: 6 \times(5)^{2}$
$=1: 25$
3. (B) Money left $=100 \%-(80 \%+6 \%$ of $20 \%)$
$=100 \%-81.2 \%$
$=18.8 \%$ of total pocket money And,
$18.8 \%$ of total pocket money $=47$ paise

$$
=₹ \frac{47}{100}
$$

So, Total pocket money
(i.e $100 \%$ ) $=₹ \frac{47}{100} \times \frac{100}{18.8}=₹ 2.5$
4. (B) Total C.I in 2 years @ $12.5 \%$ p.a
$=12.5 \%+12.5 \%+12.5 \%$ of $12.5 \%$ of sum
$=25 \%+\frac{12.5}{8} \%$ of sum
$=\frac{212.5}{8} \%$ of sum
= ₹ 510
So,
Total S.I in 2 years @ $12.5 \%$ p.a
$=(2 \times 12.5 \%)$ of the sum
$=25 \%$ of the sum
$=\frac{510 \times 8}{212.5} \times 25=₹ 480$
5. (C) Let $x=$ initial C.P of the article.

| $\underline{\text { C.P }}$ |  |  |  | $\underline{\text { S.P }}$ |
| ---: | :--- | :---: | :---: | :---: |
| $1^{\text {st }}$ condition $x \xrightarrow[20 \% \text { loss }]{ }$ | $0.8 x$ |  |  |  |
| $2^{\text {nd }}$ condition $x \xrightarrow[5 \% \text { profit }]{ }$ | $0.8 x+100$ |  |  |  |
| $\Rightarrow 1.05 x=0.8 x+100$ | $=10.5 x$ |  |  |  |
| $\Rightarrow$ |  |  |  |  |

$\Rightarrow x=\frac{100}{0.25}=400$
6. (D) Total S.I $=(3 \times 12) \%$ of the principal amount $=36 \%$ of the principal amount

$$
\text { = ₹ } 5400
$$

So, The principal amount (i.e $100 \%$ )

$$
=₹ \frac{5400}{36} \times 100=₹ 15000
$$

7. (C) Required distance
$=\frac{\text { Average Speed } \times \text { Total Time }}{2}$
$=\frac{\frac{2 \times(5+1)(5-1)}{(5+1)+(5-1)} \times 1}{2} \mathrm{~km}$
$=\frac{4.8}{2} \mathrm{~km}=2.4 \mathrm{~km}$
8. (D) Money spent on article
$=25 \%$ of total amount
Money spent on cloths
$=10 \%$ of remaining ( $75 \%$ ) amount
$=7.5 \%$ of total amount
$=(25 \%+7.5 \%)$ of total amount $+₹ 531.25$
= Total amount - ₹ 8000
$=$ Total $(100 \%)$ amount $-32.5 \%$ of total
amount $=₹ 8000+531.25$
= ₹ 8531.25
$\Rightarrow 67.5 \%$ of the total amount $=₹ 8531.25$
So,
Money spent on clothes
i.e $7.5 \%$ of the total amount
$=\frac{8531.25}{67.5} \times 7.5=₹ 948$
9. (D) Required time $=\frac{60 \times 40}{60-40}$ minutes

$$
\begin{aligned}
& =\frac{2400}{20} \text { minutes } \\
& =120 \text { minutes }
\end{aligned}
$$

10. (A) $\frac{x^{2}+y^{2}+x y}{x^{3}-y^{3}}=\frac{1}{x-y}$

$$
\begin{aligned}
& {\left[\therefore\left(x^{3}-y^{3}\right)=(x-y)\left(x^{2}+y^{2}+x y\right)\right] } \\
= & \frac{1}{19-18}=\frac{1}{1}=1
\end{aligned}
$$

11. (A) $(0.5 \times 5+0.25 \times 0.5+0.5 \times 4+0.5 \times 0.75)$
$=2.5+0.125+2+0.375$
$=5$

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
12. (D) $\mathrm{A}: \mathrm{B}: \mathrm{C}$
$1: 2: 3 \quad\left[\right.$ Average $\left.=\frac{1+2+3}{3}=2\right]$
$\therefore$ Average $=600 \Rightarrow 2 \cong 600$
So, A : B : C 1 : 2 : 3 300600900
Now,
A $\xrightarrow{+10 \%} 300+30=330$ (new value of $A$ )
$B \xrightarrow{+10 \%} 600-120=480$ (new value of $B$ )
Average $\xrightarrow{+5 \%} 600+30=630$ (new average)
Now,
$\Rightarrow \frac{330+480+\text { new value of } \mathrm{C}}{3}=630$
$=$ new value of $C(630 \times 3)-(330+480)$
$=1080$
$=$ Increase in $\mathrm{C}=1080-900=180$
13. (D) $116-92=24$

Let $x=$ profit when S.P $=92$
i.e $3 x-x=24$

So, $3 x=$ profit when S.P $=116$
$\Rightarrow x=12$
$\Rightarrow$ When S.P $=92$, profit $=₹ 12$
So, C.P = $92-12=₹ 80$
14. (D)

here,

vol. of bigger cone
Volume of smaller cone $=\frac{\text { vol. of bigger }}{27}$
i.e. $\frac{1}{3} \pi\left(r_{s}\right)^{2}\left(h_{s}\right)=\frac{\frac{1}{3} \pi\left(r_{b}\right)^{2}\left(h_{b}\right)}{27}$
or, $\left(\mathrm{r}_{\mathrm{s}}\right)^{2}\left(\mathrm{~h}_{\mathrm{s}}\right)=\frac{\left(\mathrm{r}_{\mathrm{b}}\right)^{2}\left(\mathrm{~h}_{\mathrm{b}}\right)}{27}$
$\Rightarrow \frac{\left(\mathrm{r}_{\mathrm{b}}\right)^{2}\left(\mathrm{~h}_{\mathrm{b}}\right)}{\left(\mathrm{r}_{\mathrm{s}}\right)^{2}\left(\mathrm{~h}_{\mathrm{s}}\right)}=27$
or, $\frac{r_{b} \times r_{b} \times h_{b}}{r_{s} \times r_{s} \times h_{s}}=\frac{3 \times 3 \times 3}{1 \times 1 \times 1}$
or, $\frac{\mathrm{h}_{\mathrm{b}}}{\mathrm{h}_{\mathrm{s}}}=\frac{3}{1} \Rightarrow \mathrm{~h}_{\mathrm{s}}=\frac{\mathrm{h}_{\mathrm{b}}}{3}=\frac{30}{3}=10 \mathrm{~cm}$
$\Rightarrow$ The required height above the base,
$=(30-10) \mathrm{cm}=20 \mathrm{~cm}$
15. (C)


Volume of metal $=$ External volume of cylindrical tube - Internal volume of cylindrical tube
$=\pi\left(r_{e x}\right)^{2} h-\pi\left(r_{i n}\right)^{2} h=\pi h\left\{\left(r_{e x}\right)^{2}-\left(r_{i n}\right)^{2}\right\}$
$=\pi h\left\{\left(\frac{12}{2}\right)^{2}-\left(\frac{11.2}{2}\right)^{2}\right\}$
$=\frac{22}{7} \times 21 \times(36-31.36)$
$=22 \times 3 \times 4.64=306.24 \mathrm{~cm}^{3}$
16. (B) $1 \div[1+1 \div\{1+1 \div(1+1 \div 2)\}]$
$=1 \div\left[1+1 \div\left\{1+1 \div\left(1+\frac{1}{2}\right)\right\}\right]$
$=1 \div\left[1+1 \div\left\{1+1 \times\left(\frac{2}{3}\right)\right\}\right]$
$=1 \div\left[1+1 \div\left\{\left(\frac{5}{3}\right)\right\}\right]=1 \div\left[1+\frac{5}{3}\right]$
$=1 \div \frac{8}{5}=1 \times \frac{5}{8}=\frac{5}{8}$
17. (B) L.C.M for $4,6,10$ and $15=60$

N will be in form of $\mathrm{N}=60 \mathrm{n}+2$
Now,
least six digit number of form 60n
(i.e divisible by 60) $=100020$

So,
$\Rightarrow$ least six digit number of form N
$=100020+2=100022$
$\Rightarrow$ Sum of digits of $\mathrm{N}=1+0+0+0+2+2=5$
18. (A) Present age of son $=x$ years

Present age of father $=3 x+3$ years
After 3 years, son $=x+3$ years

$$
\begin{aligned}
\text { father } & =3 x+3+3 \\
& =3 x+6 \text { years }
\end{aligned}
$$

A.T.Q,
$3 x+6=2(x+3)+10$
$3 x+6=2 x+6+10$
$3 x-2 x=10$
$x=10$
Father's present age $=3 \times 10+3$

$$
=33 \text { years }
$$

19. (C) A B C $\leftarrow$ Let the three co-prime numbers
A.T.Q, $A \times B=551$ and $B \times C=1073$

And $19 \times 29=551$ and $29 \times 37=1073$
$\Rightarrow \mathrm{A}=19, \mathrm{~B}=29$ and $\mathrm{C}=37$
$\Rightarrow$ Sum of three numbers $=19+29+37$

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
20. (C)

## ₹ 500

Rate of interest $12 \%$
S.I after 4 yrs 480

## $\begin{array}{r}\text { Required } \\ \hline 10 \%\end{array}$ 480

S.I is same
$\Rightarrow \frac{500}{\text { Required Sum }}=\frac{10 \%}{12 \%}$
$\Rightarrow \frac{500}{\text { Required Sum }}=\frac{5}{6}$
$\Rightarrow$ Required sum $=₹ \frac{500}{5} \times 6=₹ 600$
21. (B) Total ages of 40 students $=40 \times 15$
$=600$ years
Let the average age of 10 new students $=x$ years
$=\frac{600+10 x}{50}=15.2$
$=600+10 x=15.2 \times 50$
$=600+10 x=760$
$x=\frac{760-600}{10}=\frac{160}{10}=16$ years
22. (B) $\mathrm{T}_{1}=\frac{24}{6}=4$ hours, $\mathrm{T}_{2}=\frac{24}{8}=3$ hours
$\mathrm{T}_{3}=\frac{24}{12}=2$ hours
Average speed $=\frac{24+24+24}{4+3+2}=\frac{72}{9}$
$=8 \mathrm{~km} / \mathrm{h}$
23. (B) Radius of the shot put ball $=7 \mathrm{~cm}$

Height of the cylinder $=\frac{7}{3} \mathrm{~cm}$
Volume of the shot put = Volume of the cylinder
$\frac{4}{3} \pi \times 7^{3}=\pi \times \mathrm{R}^{2} \times \frac{7}{3}$
$\mathrm{R}^{2}=\underline{\frac{4}{3} \pi \times 7^{3} \times \frac{3}{7}}$
$\pi$
$\mathrm{R}=\sqrt{4 \times 7^{2}}=2 \times 7=14 \mathrm{~cm}$
$\mathrm{D}=2 \mathrm{R}=2 \times 14=28 \mathrm{~cm}$
24. (D) $\mathrm{h}=1+\frac{25}{100} \mathrm{~m}=\frac{5}{4} \mathrm{~m}$

Total area of the wet surface
$=$ Area of the cistern without top
$=2[l b+b h+l h]-l b$
$=2\left[6 \times 4+4 \times \frac{5}{4}+6 \times \frac{5}{4}\right]-24$
$=2\left[24+5+\frac{30}{4}\right]-24$
$=2\left[\frac{29 \times 4+30}{4}\right]-24$
$=2 \times \frac{146}{4}-24=73-24=49 \mathrm{~m}^{2}$.
25.
(C) $(\sqrt[3]{3.5}+\sqrt[3]{2.5})\left\{(\sqrt[3]{3.5})^{2}-\sqrt[3]{8.75}+(\sqrt[3]{2.5})^{2}\right\}$
$=(\sqrt[3]{3.5})^{3}+(\sqrt[3]{2.5})^{3}$
[by using $\left.(a+b)\left(a^{2}-a b+b^{2}\right)=a^{3}+b^{3}\right]$
$=3.5+2.5=6$
26. (A) Total $\mathrm{CP}=\mathrm{CP}+$ repairing charge

$$
=1200+200=₹ 1400
$$

S. $\mathrm{P}=₹ 1680$
$\%$ of profit $=\frac{(1680-1400) \times 100}{\mathrm{CP}}$

$$
=\frac{280 \times 100}{1400}=20 \%
$$

27. (D) Let $x=$ the larger number
and $y=$ the smaller number
Now,

$$
\begin{equation*}
x-y=2395 \tag{i}
\end{equation*}
$$

and $\frac{x}{y}$; Quotient $=7$ and remainder $=25$ $\Rightarrow x=7 y+25$
Now on putting value of $y$ from (i) in (ii) we get,
$x=7(x-2395)+25$
$x=7 x \quad 16765+25$
$6 x=16765-25$
$\Rightarrow x=\frac{16740}{6}=2790$
28. (A) $\sqrt[3]{4}+\sqrt[3]{16}+1=\sqrt[3]{2 \times 2}+\sqrt[3]{2 \times 8}+1$
$=(\sqrt[3]{2} \times \sqrt[3]{2})+(2 \times \sqrt[3]{2} \times 1)+(1 \times 1)$
$=(\sqrt[3]{2})^{2}+(2 \times \sqrt[3]{2} \times 1)+(1)^{2}$
$=(\sqrt[3]{2}+1)^{2}$
So, square root of $(\sqrt[3]{4}+\sqrt[3]{16}+1)$
i.e $(\sqrt{\sqrt[3]{4}+\sqrt[3]{16}+1})=\sqrt[3]{2}+1$
29. (C) $\frac{0.7 \times 0.7 \times 0.7+0.3 \times 0.3 \times 0.3 \times 0.3 \times 0.7 \times 3}{0.7 \times 0.7+0.3 \times 0.3+0.42}$
$=\frac{0.7 \times 0.7 \times 0.7+0.3 \times 0.3 \times 0.3 \times 3 \times 0.7 \times 0.3 \times 1}{0.7 \times 0.7+0.3 \times 0.3+2 \times 0.7 \times 0.3}$
$=\frac{(0.7)^{2}+(0.3)^{2}+0.3 \times 0.7 \times 0.3 \times(0.7+0.3)}{(0.7)^{2}+(0.3)^{2}+2 \times 0.7 \times 0.3}$
$=\frac{(0.7+0.3)^{2}}{(0.7+0.3)^{2}}=\frac{1^{3}}{1^{2}}=\frac{1}{1}=1$

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
30. (B) $\mathrm{A}+\mathrm{C}=\frac{22}{37}$ part
$\Rightarrow \mathrm{B}=1-\frac{22}{37}$ part $=\frac{15}{37}$ part
And,
$\mathrm{B}+\mathrm{C}=\frac{21}{37}$ part
or $\frac{15}{27}+\mathrm{C}=\frac{21}{37} \Rightarrow \mathrm{C}=\frac{21}{37}-\frac{15}{37}=\frac{6}{37}$ part
So,
Wage of $C=\frac{6}{37} \times 9250=₹ 1500$
31. (A)


Distance covered by B before movement of A i.e. Distance covered by B in 20 minutes
$=\left(90 \times \frac{20}{60}\right) \mathrm{km}=30 \mathrm{~km}$
$\Rightarrow$ When train from station A starts to move; the other train will be at $\mathrm{B}^{\prime}$ and distance between A \& B
(600-30) km= 570 km
Now,
Relative speed of trains
$=(100+90) \mathrm{km} / \mathrm{hr}$
$=190 \mathrm{~km} / \mathrm{hr}$
So, Time taken by each train to reach
each other $=\left(\frac{570}{190}\right) \mathrm{hr}=3$ hours
And in 3 hours, distance travelled by A
$=(100 \times 3) \mathrm{km}=300 \mathrm{kms}$
$\Rightarrow$ Both train will cross each other at a distance 300 kms and from A i.e at the exact middle point of $A$ and $B$.
32. (C) Let $\mathrm{x}=$ no. of girls

So,
$600 \times 11$ years 9 months
$=x \times 11$ years $+(600-x) \times 12$ years
$\Rightarrow 7050$ years $=(11 x+7200-12 x)$ years
$\Rightarrow x=7200-7050=150$
33. (D) $1^{\text {st }}$ no. : $2^{\text {nd }}$ no. and $2^{\text {nd }}$ no. : $3^{\text {rd }}$ no.

$$
\begin{aligned}
& =\quad 3: 2 \\
& \Rightarrow 1^{\text {st }} \text { no. }: 2^{\text {nd }} \text { no. }: 3^{\text {rd }} \text { no. } \\
& =9: 64
\end{aligned}
$$

$$
3: 2
$$

So, Let the no, are $9 x, 6 x$ and $4 x$
A.T.Q, $(9 x)^{2}+(6 x)^{2}+(4 x)^{2}+532$
$\Rightarrow 133 x^{2}=532$
$\Rightarrow x=2$
So, the 2 nd no. i.e $6 x=6 \times 2=12$
34. (B) We know that,
$5^{2}+12^{2}=13^{2}$
$5^{\sqrt{x}}+12^{\sqrt{x}}=13^{\sqrt{x}}$
from equation (i) and (ii)
$\sqrt{x}=2 \Rightarrow x=4$
35. (C) $20 \%$ discount on L.P $-25 \%$ discount on L. P = ₹ 500
$\Rightarrow 80 \%$ value of L.P - 75\% value of L.P
= ₹ 500
$\Rightarrow 5 \%$ value of L.P = ₹ 500
$\Rightarrow$ L.P (i.e $100 \%$ ) $=₹ \frac{500 \times 100}{5}=₹ 10000$
So, Tarun bought the TV at $80 \%$ of L.P
$=₹ \frac{80}{100} \times 10000=₹ 8000$
36. (B) SI@ $3 \%$ p.a for 4 years $=12 \%$ of sum

SI@ $2 \%$ p.a for 5 years $=10 \%$ of sum
A.T.Q,
$(12 \%-10 \%)$ of sum = ₹ 150
$\Rightarrow 2 \%=150$
$\Rightarrow$ sum $=\frac{150 \times 100}{2}=₹ 7500$
37. (C)
S.I
C.I

For $1^{\text {st }}$ year ₹ 135 ₹ 135
For $2^{\text {nd }}$ years ₹ 135 ₹ $162=135+27$
Now,
if $\mathrm{r}=$ rate of interest per annum
$\Rightarrow r \%$ of $135=27$
$\Rightarrow \mathrm{r}=\frac{27 \times 100}{135}=20$
Also,
$\Rightarrow 20 \%$ of the sum $=135$
$\Rightarrow$ sum $=\frac{135 \times 100}{20}=₹ 675$
38. (B) A.T.Q,
$\mathrm{P}\left(1+\frac{20}{100}\right)^{t}>2 \mathrm{P}$
(where $\mathrm{P} \rightarrow$ Principal and $\mathrm{t} \rightarrow$ required no. of years)
or $\left(1+\frac{1}{5}\right)^{t}>2 \quad$ or $\left(\frac{6}{5}\right)^{t}>2$
Now,
$\left(\frac{6}{5}\right)^{t}<2,\left(\frac{6}{5}\right)^{2}<2,\left(\frac{6}{5}\right)^{3}<2 \operatorname{but}\left(\frac{6}{5}\right)^{4}>2$
$\Rightarrow$ Required least no. of complete years
$=4$ years

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
39. (B) Let $x$ hour $=$ time taken by pipe A alone to empty the pool
$2 x$ hours $=$ time taken by pipe $B$ alone to empty the pool
So, Time taken by pipes A and B together to empty the pool
$=\frac{x \times 2 x}{x+2 x}$ hours
$=\frac{2 x^{2}}{3 x}$ hours $=\frac{2}{3} x$ hours
$\Rightarrow$ Time taken by pipe C alone to empty the pool $=\left(\frac{2}{3} x \times 2\right)$ hours $=\frac{4}{3} x$ hours $\Rightarrow$ Part of the pool which will be empty when $\mathrm{A}, \mathrm{B}$ and C work together,
$=\left(\frac{1}{x}+\frac{1}{2 x}+\frac{3}{4 x}\right)$ part
$=\left(\frac{4+2+3}{4 x}\right)$ part $=\frac{9}{4 x}$ part
$\Rightarrow$ Total time taken by A, B and C working together to empty the pool
$=\frac{4 x}{9}=400$ minutes
[ $\therefore 6$ hours 40 minutes $=400$ minutes ]
$\Rightarrow x=\frac{400 \times 9}{4}$ minutes
$=900$ minutes $=15$ hours
40. (C) $-24,-20,-16$

Let $\mathrm{n}=$ required no. of terms
Now,
$\mathrm{S}_{n}=\frac{n}{2}\{2 a+(n-1) d\}$
i.e. $180=\frac{n}{2}\{2 \times(-24)+(n-1) 4\}$
or, $180=\frac{n}{2}\{-48+4 n-4\}$
or, $360=4 n^{2}-52 n$
or, $4 n^{2}-52 n-360=0$
$\Rightarrow n=18$
41. (D) $a^{2} d^{2}+b^{2} c^{2}-2 a b c d+a^{2} c^{2}+b^{2} d^{2}+2 a b c d$
$=a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right)$
$=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)$
$=2 \times 1=2$
42. (A) $\frac{(\mathrm{K}-1)}{(2-\mathrm{K})}=\frac{1}{-3}=\frac{-2}{1}$
or, $-3(\mathrm{~K}-1)=2-\mathrm{K}$
or, $-3 \mathrm{~K}+3=2-\mathrm{K}$
or, $-3 K+K=2-3$
$\Rightarrow-2 \mathrm{k}=-1$
$\Rightarrow \mathrm{K}=\frac{1}{2}$
43. (D) $\left(x^{2}+5 x+10\right)^{-1}=\frac{1}{\left(x^{2}+5 x+10\right)}$
$\frac{1}{\left(x^{2}+5 x+10\right)}$ will be maximum when $x^{2}+5 x+10$ is minimum and maximum value of $x^{2}+5 x+10=-\left(\frac{5^{2}-4 \times 1 \times 10}{4}\right)$ $=\frac{15}{4}$

So, Required maximum value $=\frac{\frac{1}{15}}{4}=\frac{4}{15}$
44. (D) $\mathrm{P}=\sqrt{\frac{1-\sin x}{1+\sin x}} \Rightarrow \mathrm{P}=\frac{1-\sin x}{\cos x}$
and $\mathrm{Q}=\frac{1-\sin x}{\cos x}$
$\mathrm{R}=\frac{\cos x}{1+\sin x} \times \frac{1-\sin x}{1-\sin x}$
$=\frac{\cos x(1-\sin x)}{\cos ^{2} x}$
$\Rightarrow \mathrm{R}=1-\sin x$
$P=Q=R$
45. (D) $\sin \theta+\sin ^{2} \theta+\sin ^{3} \theta=1$
$\Rightarrow \sin \theta+\sin ^{3} \theta=\cos ^{2} \theta$
$\Rightarrow \sin \theta\left(1+\sin ^{2} \theta\right)=\cos ^{2} \theta$
$\Rightarrow \sin \theta\left(2-\cos ^{2} \theta\right)=\cos ^{2} \theta$
$\Rightarrow \sqrt{1-\cos ^{2} \theta}\left(2-\cos ^{2} \theta\right)=\cos ^{2} \theta$
$\Rightarrow\left(1-\cos ^{2} \theta\right)\left[4+\cos ^{4} \theta-4 \cos ^{2} \theta\right]=\cos ^{4} \theta$
$\Rightarrow 4+\cos ^{4} \theta-4 \cos ^{2} \theta-4 \cos ^{2} \theta-\cos ^{6} \theta$
$+4 \cos ^{4} \theta=\cos ^{4} \theta$
$\Rightarrow-\cos ^{6} \theta+4 \cos ^{4} \theta-8 \cos ^{2} \theta+4=0$
$\Rightarrow+\cos ^{6} \theta-4 \cos ^{4} \theta+8 \cos ^{2} \theta=4$
46. (B) $\sec ^{2} \theta-(1+\sqrt{3}) \tan \theta+\sqrt{3}-1=0$
$\Rightarrow 1+\tan ^{2} \theta-\tan \theta-\sqrt{3} \tan \theta+\sqrt{3}-1=0$
$\Rightarrow \tan ^{2} \theta-\sqrt{3} \tan \theta-\tan \theta+\sqrt{3}=0$
$\Rightarrow \tan \theta(\tan \theta-\sqrt{3})-1(\tan \theta-\sqrt{3})=0$
$\Rightarrow(\tan \theta-\sqrt{3})(\tan \theta-1)=0$
$\Rightarrow \tan \theta-\sqrt{3}=0$
$\Rightarrow \tan \theta=\sqrt{3}$

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
47. (D)


In $\triangle E C D$
$\tan \theta=\frac{\mathrm{h}}{\frac{\mathrm{A}}{2}}=\frac{2 h}{\mathrm{~A}}$
In $\triangle \mathrm{ACB}$
$\tan (90-\theta)=\frac{2 h}{A} \times 2$
$\cos \theta=\frac{4-h}{A}$
$\tan \theta=\frac{\mathrm{A}}{4 h}$
From equ ${ }^{\mathrm{n}}$ (i) and (ii)
$\frac{2 h}{\mathrm{~A}}=\frac{\mathrm{A}}{4 h^{2}}$
$8 h^{2}=A^{2}$
$h^{2}=\frac{\mathrm{A}^{2}}{8}=h=\frac{\mathrm{A}}{2 \sqrt{2}}$
48. (D) $2 \sin \left(\frac{\pi x}{2}\right)=x^{2}+\frac{1}{x^{2}}$
$\Rightarrow 2 \sin \left(\frac{\pi x}{2}\right)=\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+2$
$\left[\therefore a^{2}+b^{2}=(a-b)+2 a b\right]$
$\Rightarrow\left(x-\frac{1}{x}\right)^{2}=2\left\{\sin \left(\frac{\pi x}{2}\right)-1\right\}$
$\Rightarrow\left(x-\frac{1}{x}\right)=\sqrt{2 \times 0}$
$\left[\sin \frac{\pi}{2}=1\right]$
$=0 \quad$ Also, $\left[1=\sin \frac{\pi x}{2}\right]$
49. (D) $\frac{\operatorname{Per}(\triangle \mathrm{ABC})}{\operatorname{Per}(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}}{\mathrm{DE}}$
$\frac{\operatorname{Per}(\triangle \mathrm{ABC})}{25}=\frac{9.1}{6.5}$
$\operatorname{Per}(\triangle \mathrm{ABC})=35$
50. (B)

$\triangle \mathrm{ADB} \cong \triangle \mathrm{ABC}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}$
51. (D) Sum of all interior angles $=2 \times$ sum of all exterior angles
$\Rightarrow(\mathrm{n}-2) \times 180^{\circ}=2 \times 360^{\circ}$
$\Rightarrow(\mathrm{n}-2) \times 180^{\circ}=720^{\circ}$
$\Rightarrow(\mathrm{n}-2)=4 \Rightarrow \mathrm{n}=6$
$\Rightarrow$ Required no. of sides of the polygon $=6$
52. (B)

$\angle \mathrm{ABC}=65^{\circ}$
$\Rightarrow \angle \mathrm{IBC}=\frac{\angle \mathrm{ABC}}{2}=32.5^{\circ}$
Also, $\angle \mathrm{ACB}=55^{\circ}$
$\Rightarrow \angle \mathrm{ICB}=\frac{\angle \mathrm{ACB}}{2}=27.5^{\circ}$
$\Rightarrow \angle \mathrm{BIC}=180^{\circ}-(\angle \mathrm{IBC}+\angle \mathrm{ICB})$
$=180^{\circ}-60^{\circ}=120^{\circ}$
53. (A)

$\mathrm{r}=10 \mathrm{~cm}$
Let radius is increased by $x \mathrm{~cm}$
New volume of cylinder $=\pi(10+x)^{2} \times 4$
Again,
Let the height is increased by $x \mathrm{~cm}$
New volume of cylinder $=\pi \times 10^{2} \times(4+x)$
$\Rightarrow \pi(10+x)^{2} \times 4=\pi \times 10^{2} \times(4+x)$
$\Rightarrow(10+x)^{2} \times 4=100(4+x)$
$\Rightarrow(10+x)^{2}=25(4+x)$
$\Rightarrow 100+x^{2}+20 x=100+25 x$
$\Rightarrow x^{2}-5 x=0 \Rightarrow x(x-5)=0$
$\Rightarrow x=5 \mathrm{~cm}$

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
54. (B)


Volume of the
cylinder $=\pi r^{2} h$
$\Rightarrow 2 \pi \mathrm{r}=44 \mathrm{~cm}$
$=\pi \times 7^{2} \times 10$
$\Rightarrow \mathrm{r}=\frac{44 \times 7}{22 \times 2} \mathrm{~cm}$
$=\frac{22}{7} \times 49 \times 10$
$\Rightarrow \mathrm{r}=7 \mathrm{~cm}$
$=1540 \mathrm{~m}^{3}$.
55. (C)


Volume of water needed to fill the empty space
$=$ Volume of cylinder - Volume of cone
$=\pi r^{2} h-\frac{1}{3} \pi r^{2} h=\frac{2}{3} \pi r^{2} h$
$=2 \times\left(\frac{1}{3} \pi r^{2} h\right)$
$=2 \times 27 \pi \mathrm{~cm}^{3}$
$=54 \pi \mathrm{~cm}^{3}$
56. (C) T.S.A of prism $=$ C.S.A $+2 \times$ Area of base
$\Rightarrow 608=$ Perimeter of base $\times$ height $+2 \times$ Area of base
$\Rightarrow 608=4 x \times 15+2 \times x^{2}$
(where $x=$ side of square)
$\Rightarrow x^{3}+30 x-304=0$
$\Rightarrow(x-8)(\mathrm{x}+38)=0$
$\Rightarrow x=8$
$\Rightarrow$ Volume of prism $=$ Area of base $\times$ height
$=8 \times 8 \times 15=960 \mathrm{~cm}^{3}$
57. (B) Volume of water due to 2 cm rain on a square km land
$=1 \mathrm{~km} \times 1 \mathrm{~km} \times 2 \mathrm{~cm}$
$=1000 \mathrm{~m} \times 1000 \mathrm{~m} \times \frac{2}{100} \mathrm{~m}$
$=20000 \mathrm{~m}^{3}$
$\Rightarrow 50 \%$ of volume of rain drops
$=10000 \mathrm{~m}^{3}$
Now,
Required level by which the water level in the pool will be increased
$=\frac{10000 \mathrm{~m}^{3}}{100 \mathrm{~m} \times 10 \mathrm{~m}}=10 \mathrm{~m}$
58. (A)

A.T.Q,
$\mathrm{AB}+\mathrm{BC}=22 \mathrm{~cm}$
$\mathrm{AC}=12 \mathrm{~cm}$
Let $B C=a$
$\mathrm{AB}=\mathrm{c}$
$\mathrm{AP}=\mathrm{m}$ and $\mathrm{PC}=\mathrm{n}$
In $\triangle \mathrm{ABP}$,
$\mathrm{c}-\mathrm{m}<x<\mathrm{c}+\mathrm{m}$
$\mathrm{a}-\mathrm{n}<x<\mathrm{a}+\mathrm{n}$
In $\triangle \mathrm{BPC}$
Adding equation (i) and (ii)
$(\mathrm{c}+\mathrm{a})-(\mathrm{m}+\mathrm{n})<2 x<(\mathrm{c}+\mathrm{a})+(\mathrm{m}+\mathrm{n})$
$22-12<2 x<22+12$
$5<x<17$
Smallest integer value $=6 \mathrm{~cm}$
59. (B) ATQ,


In $\triangle \mathrm{ABC}$
$12 x+180-2 \alpha+3 x+5 x=180$
$\Rightarrow 20 x=2 \alpha$
$\Rightarrow 10 x=\alpha$
In $\triangle \mathrm{OBC}, \angle \mathrm{B}=2 x$
So, $\triangle \mathrm{ABO}$
becomes an equilateral triangle
$10 x=60^{\circ}$
$x=6^{\circ}$
60. (D)


AD is extended through a point E and AB is extended to a point F
So, $\angle \mathrm{ABF}=64^{\circ}$ and $\angle \mathrm{ADE}=66^{\circ}$
Point C is exterior angle bisector and line AC is angle bisector of $\angle \mathrm{A}$
In $\triangle A C D$
$\angle \mathrm{C}=180^{\circ}-40^{\circ}-114^{\circ}=26^{\circ}$
Now, In $\triangle$ COD
$=180^{\circ}-66^{\circ}-26^{\circ}=88^{\circ}$
61. (A)

$\Rightarrow \mathrm{AE}^{2}+\mathrm{BE}^{2}+\mathrm{CE}^{2}+\mathrm{DE}^{2}$
In $\triangle \mathrm{AEC}$ and $\triangle \mathrm{DEB}$,
$\mathrm{AC}^{2}=\mathrm{AE}^{2}+\mathrm{EC}^{2}$
$\mathrm{BD}^{2}=\mathrm{BE}^{2}+\mathrm{DE}^{2}$
Adding equation (i) and (ii)
$\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AE}^{2}+\mathrm{EC}^{2}+\mathrm{BE}^{2}+\mathrm{DE}^{2}$
$\Rightarrow(8 \sqrt{2})^{2}+(8 \sqrt{2})^{2}=\mathrm{AE}^{2}+\mathrm{EC}^{2}+\mathrm{BE}^{2}+\mathrm{DE}^{2}$

$$
=256 \mathrm{~cm}
$$

62. (A)


In $\triangle \mathrm{AOC}$
$\angle \mathrm{O}=60^{\circ}, \angle \mathrm{O}=60^{\circ}$ and $\angle \mathrm{C}=60^{\circ}$ $(\because \mathrm{OA}=\mathrm{OC}=$ radius $)$
In $\triangle \mathrm{CDB}$
$\angle \mathrm{ADC}=\angle \mathrm{DCB}+\angle \mathrm{DBC}=70^{\circ}$

In $\triangle \mathrm{ADC}$
$\angle \mathrm{A}=180^{\circ}-\left(40^{\circ}+70^{\circ}\right)=70^{\circ}$
Now, in $\triangle \mathrm{ADO}$
$\angle \mathrm{A}=10^{\circ}$
In $\triangle \mathrm{ADC}$
$\because \angle \mathrm{A}=70^{\circ}$ and $\angle \mathrm{D}=70^{\circ}$
$\therefore \mathrm{AC}=\mathrm{DC}$
$\because \mathrm{OC}=\mathrm{AC}$
$\therefore \mathrm{AC}=\mathrm{DC}=\mathrm{OC}$
So, $\triangle \mathrm{DOC}$ become a Isosceles
Triangle $\angle \mathrm{DCO}=20^{\circ}$
Now, $\angle \mathrm{D}=\angle \mathrm{O}=80^{\circ}$
63. (D)


Draw a tangent at point $P$
Using alternate theorem for smaller circle
If $\angle \mathrm{P}=\alpha$ then $\angle \mathrm{E}=\alpha$ for another side of point $P, \angle P=\beta$, then $\angle D=\beta$
Similarly for larger circle
If $\angle P=\alpha$ then $\angle B=\alpha$, for another side of point $P \angle P=\beta$ then $\angle A=\beta$
$\triangle \mathrm{PDE}$ and $\triangle \mathrm{PAB}$ become similar triangles
$\Rightarrow \frac{\mathrm{PD}}{\mathrm{PA}}=\frac{\mathrm{DE}}{\mathrm{AB}}=\frac{\mathrm{PE}}{\mathrm{PB}}$
Draw a line between points P and C and between points D and C ,
Using same arc property
$\angle \mathrm{PED}=\angle \mathrm{PCD}$
By alternate segment
$\angle \mathrm{PDC}=\angle \mathrm{PCB}$
Now, $\angle \mathrm{DPC}=\angle \mathrm{CPB}$
Hence, PC becomes an angle bisector $\angle \mathrm{A}$
$\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{PA}}{\mathrm{PB}}$
From equation (i)
$\Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{PD}}{\mathrm{PE}}=\frac{x}{15-x}=\frac{3}{2}$
$\Rightarrow 2 x=45-3 x$
$\Rightarrow \mathrm{AC}=x=9 \mathrm{~cm}$

## Campus

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
64. (C)

$\mathrm{S}_{\mathrm{n}}=\frac{b \times h^{n}}{(b+h)^{n}}$
Let $A D=h$
$\mathrm{h}^{2}=100-(21-x)^{2}$
$h^{2}=17^{2}-x^{2}$
From equation (i) and (ii)
$\Rightarrow 100-441-x^{2}+42 x=289-x^{2}$
$\Rightarrow x=15 \mathrm{~cm}$
$\Rightarrow \mathrm{h}=8 \mathrm{~cm}$
$\mathrm{S}_{3}=\frac{21 \times 8^{3}}{(21+8)^{3}}=\frac{21 \times 8^{3}}{29^{3}}$
65. (A)


Let, radius r
In $\triangle \mathrm{ABO}$
$(3+r)^{2}-r^{2}=A B^{2}$
$\Rightarrow \mathrm{AB}=\sqrt{(3+r)^{2}-r^{2}}$
$\triangle \mathrm{ABO}$ and $\triangle \mathrm{ADC}$ are similar triangles
$\Rightarrow \frac{r}{9}=\frac{\sqrt{(3+r)^{2}-r^{2}}}{3+2 r}$
By options
Put $r=\frac{9}{2}$
Diameter $=9 \mathrm{~cm}$
66. (A) ATQ,


Let $\mathrm{OC}=\mathrm{r}, \mathrm{AO}=\mathrm{r}-2$ and $\mathrm{OB}=\mathrm{r}$
$\mathrm{r}^{2}=(\mathrm{r}-2)^{2}+36$
$\Rightarrow \mathrm{r}^{2}=\mathrm{r}^{2}+4-4 \mathrm{r}+36$
$\Rightarrow \mathrm{r}=10 \mathrm{~cm}$
67. (C)

$\Rightarrow \mathrm{r}=\frac{6}{2 \sqrt{3}}=\sqrt{3}$
Radius of $\mathrm{O}_{1}$ circle
$r=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}$
$\mathrm{O}_{1} \mathrm{C}$ is a angle bisector of $\angle \mathrm{C}$
Area of $\Delta \mathrm{O}_{1} \mathrm{PC}$
$=\frac{1}{2} \times \frac{1}{\sqrt{3}} \times 1 \times 2=\frac{1}{\sqrt{3}}$
Area of shaded region
$=\frac{1}{\sqrt{3}}-\frac{\pi r^{2}}{360} \times 120^{\circ}$
$=\frac{1}{\sqrt{3}}-\frac{\pi}{9}$
68. (B)

$\mathrm{AB}=\sqrt{\left(u^{2}+v^{2}\right)^{2}-\left(u^{2}-v^{2}\right)^{2}}=2 u v$
$\Rightarrow \frac{1}{2} 2 u v \times\left(u^{2}-v^{2}\right)=2016$
$\Rightarrow \mathrm{uv}(\mathrm{u}-\mathrm{v})(\mathrm{u}+\mathrm{v})=2016$
$32 \times 63$
$u \times v(u-v)(u+v)=16 \times 2 \times 9 \times 7$
$\mathrm{u}=9, \mathrm{v}=7$
$\mathrm{AB}=2 \times 9 \times 7=126$
$B C=u^{2}-v^{2}=81-49=32$
$A C=u^{2}+v^{2}=81+49=130$
Perimeter of $\triangle \mathrm{ABC}=130+32+126$

$$
=288 \text { units }
$$

## Campus

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
69. (B) A.T.Q,

Area of 4 - walls
$=2 \mathrm{~h}(l+b)$
$=2 \times 2.5(6+4) \times 5$
Two rooms have one square window each,
Now remaining area
$\Rightarrow 250-2.5 \times 2.5 \times 2=237.5$
Number of cans required $=\frac{237.5}{20}$

$$
=11.87=12
$$

70. (B) A.T.Q,

Let three term of A.P is are
$18 \mathrm{~K}-\mathrm{d}, 18 \mathrm{~K}, 18 \mathrm{~K}+\mathrm{d}$
End of one year $\rightarrow 45 \mathrm{~K} \times 1.1=49.5 \mathrm{~K}$
Amount repaid $\rightarrow \frac{-18 \mathrm{~K}-\mathrm{d}}{31.5 \mathrm{~K}+\mathrm{d}}$
End of two years $\rightarrow(31.5 \mathrm{~K}+\mathrm{d}) \times 1.1$ (34.65K + 1.1d)

Amount repaid $\rightarrow \frac{-18 \mathrm{~K}}{16.65 \mathrm{~K}+1.1 \mathrm{~d}}$
End of three years $\rightarrow(16.65 \mathrm{~K}+1.1 \mathrm{~d}) \times 1.1$
$(16.65 \mathrm{~K}+1.1 \mathrm{~d}) \times 1.1=18 \mathrm{~K}+\mathrm{d}$
$\Rightarrow 18.315 \mathrm{~K}+1.21 \mathrm{~d}=18 \mathrm{~K}+\mathrm{d}$
$\Rightarrow 0.315 \mathrm{~K}=-0.21 \mathrm{~d}$
Put K = 1000
$315=-0.21 d$
d $=-1500$

| $18 \mathrm{~K}-\mathrm{d}$ | 18 K | $18 \mathrm{~K}+\mathrm{d}$ |
| :--- | :--- | :--- |
| $18000+1500$ | 18000 | $18000-1500$ |
| $₹ 19,500$ | $₹ 18,000$ | $₹ 16,500$ |

71. (A) ATQ, 3 years interval
$\frac{5000}{4000}=\frac{5}{4}$
9 years $\longrightarrow ₹ 5000$
12 years $\longrightarrow ₹ 5000 \times \frac{5}{4}$
15 years $\longrightarrow ₹ 5000 \times \frac{5}{4} \times \frac{5}{4}=₹ 7812.5$
Amount = ₹ 7812.5
For principal
6 years $\longrightarrow ₹ 4000$
3 years $\longrightarrow ₹ 4000 \times \frac{4}{5}$
0 year $\longrightarrow ₹ 4000 \times \frac{4}{5} \times \frac{4}{5}=₹ 2560$

Principal $=₹ 2560$
Amount = ₹ 7812.5
72. (B) ATQ, $\sin \theta+\sin \phi=a, \cos \theta+\cos \phi=b$ putting the value $\theta=90^{\circ}$ and $\phi=30^{\circ}$
$a=1+\frac{1}{2}=\frac{3}{2}, b=\frac{\sqrt{3}}{2}$
$\tan \left(\frac{\theta-\phi}{2}\right)=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
By options,
(B) $\Rightarrow \frac{\sqrt{4-a^{2}-b^{2}}}{a^{2}+b^{2}}=\sqrt{\frac{4-\frac{9}{4}-\frac{3}{4}}{\frac{9}{4}+\frac{3}{4}}}=\frac{1}{\sqrt{3}}$
73. (B) ATQ, $\frac{\sec 8 A-1}{\sec 4 A-1}=\frac{1-\cos 8 A}{1-\cos 4 A} \times \frac{\cos 4 A}{\cos 8 A}$
$=\frac{2 \sin ^{2} 4 \mathrm{~A}}{2 \sin ^{2} 2 \mathrm{~A}} \times \frac{\cos 4 \mathrm{~A}}{\cos 8 \mathrm{~A}}$
$=\frac{2 \sin 4 A \cdot \cos 4 A \cdot \sin 4 A}{2 \sin ^{2} 2 A \cdot \cos 8 A}$
$=\frac{\sin 8 \mathrm{~A} \times 2 \sin 2 \mathrm{~A} \cos 2 \mathrm{~A}}{\cos 8 \mathrm{~A} \times 2 \sin ^{2} 2 \mathrm{~A}}$
$=\tan 8 A \cdot \frac{\cos 2 A}{\sin 2 A}=\frac{\tan 8 A}{\tan 2 A}$
74. (D) A.T.Q,

Let the roots of equation $\alpha$ and $\beta$
$\alpha+\beta=\tan \mathrm{A}+\tan \mathrm{B}=\frac{a}{b}+\frac{b}{a}=\frac{a^{2}+b^{2}}{a b}$
$\alpha \beta=\tan \mathrm{A} \cdot \tan \mathrm{B}=\frac{a}{b} \cdot \frac{b}{a}=1$


Then equation,
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-\left(\frac{a^{2}+b^{2}}{a b}\right) x+1=0$
$a b x^{2}-\left(a^{2}+b^{2}\right) x+a b=0$
$a b x^{2}-c^{2} x+a b=0 \quad\left(\because a^{2}+b^{2}=c^{2}\right)$

## Campus

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
75. (A) $\tan 5 x-\frac{\tan 3 x-\tan 2 x}{1-\tan 3 x \tan 2 x}$
$=\tan 5 x-\tan 5 x \tan 3 x \tan 2 x-\tan 3 x+\tan 2 x$
$=\tan 5 x \tan 3 x \tan 2 x=\tan 5 x-\tan 3 x-\tan 2 x$
76. (A) $\frac{3-\tan ^{2} \mathrm{~A}}{1-3 \tan ^{2} \mathrm{~A}}=k \Rightarrow \tan ^{2} \mathrm{~A}=\frac{k-3}{3 k-1}$
$=\operatorname{cosec} A\left(3 \sin A-4 \sin ^{3} A\right)=\left(3-4 \sin ^{2} A\right)$
$\Rightarrow 3-\frac{4}{\operatorname{cosec}^{2} \mathrm{~A}}=3-\frac{4}{1+\cot ^{2} \mathrm{~A}}$
$\Rightarrow 3-\frac{4}{1+\frac{3 k-1}{k-3}}=\frac{2 k}{k-1}$
$\Rightarrow \sin ^{2} \mathrm{~A}=\frac{1}{\operatorname{cosec}^{2} \mathrm{~A}}=\frac{1}{1+\cot ^{2} \mathrm{~A}}=\frac{k-3}{4(k-1)}$
$0 \leq \sin ^{2} \mathrm{~A} \leq 1$
$0 \leq \frac{k-3}{4(k-1)} \leq 1 \Rightarrow \mathrm{k} \geq \frac{1}{3}$ or $\mathrm{k} \geq 3$
77. (D) $m+n=a(\cos \alpha+\sin \alpha)\left(\cos ^{2} \alpha-\cos \alpha \sin \alpha+\sin ^{2} \alpha\right)$ $+3 \cos \alpha \sin \alpha(2 \cos \alpha+\sin \alpha)$
$=a(\cos \alpha+\sin \alpha)(1+2 \cos \alpha \sin \alpha)$
$=a(\cos \alpha+\sin \alpha)^{3}$
$m-n=a(\cos \alpha-\sin \alpha)\left(\cos \alpha+\cos \alpha \sin \alpha+\sin ^{2} \alpha\right)$
$-3 \cos \alpha \sin \alpha(\cos \alpha-\sin \alpha)$
$=a(\cos \alpha-\sin \alpha)(1-2 \sin \alpha \cos \alpha)$
$=a(\cos \alpha-\sin \alpha)^{3}$
$=(m+n)^{2 / 3}+(m-n)$
$=a^{2 / 3}(1+2 \sin \alpha \cos \alpha)+a^{2 / 3}(1-2 \sin \alpha \cos \alpha)$
$=2 a^{2 / 3}$
78. (D) $\cos (\theta-\alpha), \cos \theta, \cos (\theta+\alpha)$ in h.p.

Then,
$\Rightarrow \cos \theta=\frac{2 \cos (\theta-\alpha) \cdot \cos (\theta+\alpha)}{\cos (\theta-\alpha)+\cos (\theta+\alpha)}$
$\Rightarrow \cos \theta=\frac{\cos 2 \theta+\cos 2 \alpha}{2 \cos \theta \cdot \cos \alpha}$
$\Rightarrow 2 \cos ^{2} \theta \cdot \cos \alpha=2 \cos ^{2} \theta-1+\cos 2 \alpha$
$\Rightarrow 2 \cos ^{2} \theta(\cos \alpha-1)=-1+1-2 \sin ^{2} \alpha$
$\Rightarrow 2 \cos ^{2} \theta\left[1-2 \sin ^{2} \frac{\alpha}{2}-1\right]=-2 \sin ^{2} \alpha$
$\Rightarrow 2 \cos ^{2} \theta\left(-2 \sin ^{2} \frac{\alpha}{2}\right)=-2.4 \sin ^{2} \frac{\alpha}{2} \cdot \cos ^{2} \frac{\alpha}{2}$
$\Rightarrow \cos ^{2} \theta=2 \cos ^{2} \frac{\alpha}{2}$
$\Rightarrow \cos ^{2} \theta \cdot \sec ^{2} \frac{\alpha}{2}=2$
$\Rightarrow \cos \theta \cdot \sec \frac{\alpha}{2}= \pm \sqrt{2}$
79. (D) $\sin A+\sin B=x$
$\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}+2 \sin \mathrm{~A} \cdot \cos \mathrm{~A}=x^{2}$
$2 \sin \mathrm{~A} \cdot \cos \mathrm{~A}=x^{2}-1$
we know that,
$\sin ^{6} \mathrm{~A}+\cos ^{6} \mathrm{~A}=1-3 \sin ^{2} \mathrm{~A} \cdot \cos ^{2} \mathrm{~A}$
$\frac{1}{4}\left(4-3\left(x^{2}-1\right)^{2}\right)=1-\left(\frac{x^{2}-1}{2}\right)^{2}$
$1-\frac{3}{4}\left(x^{2}-1\right)^{2}=1-\frac{3}{4}\left(x^{2}-1\right)^{2}$
L.H.S = R.H.S

Hence, for all values of $x$ are true
But $\sin \mathrm{A}+\cos \mathrm{A}=x$
So, $-\sqrt{2} \leq x \leq \sqrt{2} \Rightarrow x^{2} \leq 2$
80. (A)


Difference between selling price = ₹ 3040 - ₹ 2800 = ₹ 240
81. (D) A.T.Q,

A : B : C

CP-7:8:4
Total CP = 19 units
Total SP = 22 units
Profit $\%=\frac{3}{19} \times 100=15 \frac{15}{19} \%$

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
82. (C) Alcohol Water

| 5 | 9 | $\times 1$ |
| :--- | :--- | :--- |
| 2 | 5 | 52 |

Now, New ratio is-
Alchol Water
$1\left(\begin{array}{cc}5 & 9 \\ 4 & 10\end{array}\right.$
Here, mixture to be taken out $=\frac{1}{5}$
Now, $\frac{1}{5}$ unit $=5$ litres
Then, total quantity $=1$ unit
$=5 \times 5=25$ litres
83. (C) A.T.Q,
$1 \mathrm{M}=2 \mathrm{C}$
and,
$(4 \mathrm{M}+5 \mathrm{~W}+6 \mathrm{C}) \times 15=(2 \mathrm{M}+3 \mathrm{~W}+2 \mathrm{C}) \times 31$
$\Rightarrow(7 \mathrm{M}+5 \mathrm{~W}) \times 15=(3 \mathrm{M}+3 \mathrm{~W}) \times 31$
On solving, we get
$4 \mathrm{M}=6 \mathrm{~W}$
Then, the ratio of capacity of man, woman and child $=6: 4: 3$
Let 1 man, 1 woman and 1 child can complete the work in $x$ days.
Then,
$(6 \times 4+4 \times 5+6 \times 3) \times 15$
$=(6+4+3) \times x$
$\Rightarrow 62 \times 15=13 x$
$\Rightarrow x=\frac{930}{13}=71 \frac{7}{13}$ days
$\therefore$ Required number of days $=71 \frac{7}{13}$ days
84. (B) Let the coordinates of A and B be $(x, 0)$ and $(0, y)$ respectively.


Now, using mid point formula, we get,
$\frac{x+0}{2}=4 \Rightarrow x=8$
and, $\frac{y+0}{2}=6 \Rightarrow y=12$
Then, area of $\Delta \mathrm{OAB}=\frac{1}{2} \times x \times y$
$=\frac{1}{2} \times 8 \times 12=48$ sq. units
85. (A) A.T.Q,

$\mathrm{BD}=20 \mathrm{~m}$
Now,
$(\sqrt{3}-1)$ units $=20 \mathrm{~m}$
Then, height of the lamp post
1 unit $=\frac{20}{\sqrt{3}-1} \mathrm{~m}=10(\sqrt{3}+1) \mathrm{m}$
$\therefore$ Height of the lamp post $=10(\sqrt{3}+1) \mathrm{m}$
86. (C) Total age of couple at the time of marriage $=23 \times 2=46$ years
and, total age of family at the time birth of first child $=16 \times 3=48$ years and, total age of family at the time of birth of second child $=15 \times 4=60$ years

Here, age of the first child $=\frac{60-48}{3}$
$=4$ years
Now,
total age of family $=20 \times 4=80$ years
then, age of the first child $=4+\frac{80-60}{4}$
$=4+5=9$ years
87. (A) A.T.Q,

|  | upstream | downstream |
| :--- | :---: | :---: |
| Time | 3 | 1 |
| Speed | 1 | 3 |

Then,
Speed of man in still water $=\frac{1+3}{2}=2$ units
and, speed of current $=\frac{3-1}{2}=1$ unit
Now, speed of man (2 units) $=\frac{23}{3} \mathrm{kmph}$
Then, speed of current (1 unit)
$=\frac{23}{3} \times \frac{1}{2}=\frac{23}{6}=3 \frac{5}{6} \mathrm{kmph}$

## Campus

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
88. (B) Let length, breadth and height of the cuboid be $4 x, 2 x$ and $x$ respectively.
Then, volume of the cuboid
$=4 x \times 2 x \times x=8 x^{3}$
After changes, the dimensions of the cuboid becomes $2 x, 4 x$ and $\frac{x}{2}$ respectively. Then,

Volume of the cuboid $=2 x \times 4 x \times \frac{x}{2}=4 x^{3}$
$\therefore$ Required percentage change
$=\frac{8 x^{3}-4 x^{3}}{8 x^{3}} \times 100 \%=50 \%$
89. (D) A.T.Q,
$x^{2}-\sqrt{3} x-1=0$
$\Rightarrow x-\frac{1}{x}=\sqrt{3}$
We know that,
$\left(x+\frac{1}{x}\right)^{2}-\left(x-\frac{1}{x}\right)^{2}=4$
Then,
$x+\frac{1}{x}=\sqrt{7}$
Multiply equation (i) and (ii), we get
$x^{2}-\frac{1}{x^{2}}=\sqrt{21}$
Taking cube both sides, we get
$x^{6}-\frac{1}{x^{6}}-3\left(x^{2}-\frac{1}{x^{2}}\right)=21 \sqrt{21}$
$\Rightarrow x^{6}-\frac{1}{x^{6}}=24 \sqrt{21}$
90. (D) We know that,


Circumradius of a right angle triangle is equal to half of its hypotenuse.
Then,
$\mathrm{c}=52 \times 2=104 \mathrm{~cm}$
Now,
perimeter of $\mathrm{ABC}=112 \times 2$
$\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=224 \mathrm{~cm}$
$\Rightarrow \mathrm{a}+\mathrm{b}=120 \mathrm{~cm}$
and,
$(a+b)^{2}=120^{2}$
$\Rightarrow a^{2}+b^{2}+2 \mathrm{ab}=120^{2}$
$\Rightarrow 2 a b=120^{2}-c^{2}$
$\Rightarrow 2 \mathrm{ab}=120^{2}-104^{2}$
$\Rightarrow 2 \mathrm{ab}=16 \times 224$
Then,
Area of $\mathrm{ABC}=\frac{1}{2} a b$

$$
=\frac{16 \times 224}{4}=896 \mathrm{~cm}^{2}
$$

91. (B) Graduate male population of state
$\mathrm{A}=\left(24 \times \frac{16}{100} \times \frac{7}{12}\right)$ lakh $=2.24$ lakh
XII std male population of state A
$=\left(32 \times \frac{15}{100} \times \frac{7}{16}\right)$ lakh $=2.1$ lakh
$\therefore$ Required difference $=(2.24-2.1)$ lakh = 14000
92. (D) Graduate female population of state
$\mathrm{E}=24 \times \frac{20}{100} \times \frac{7}{16}=2.1$ lakh
XII std femle population of state
$\mathrm{D}=32 \times \frac{12}{100} \times \frac{7}{12}=2.24$ lakh
$\therefore$ Required ratio $=2.1: 2.24$
= $210: 225=15: 16$
93. (C) Graduate female population of state
$\mathrm{C}=24 \times \frac{15}{100} \times \frac{4}{9}=1.6$ lakh
XII std female population of state
$\mathrm{C}=32 \times \frac{18}{100} \times \frac{5}{9}=3.2$ lakh
$\therefore$ Required percentage
$=\frac{1.6}{3.2} \times 100 \%=50 \%$
94. (A) XII std pass male population of state $\mathrm{C}=32 \times \frac{18}{100} \times \frac{4}{9}=2.56$ lakh
$\therefore$ Required percentage
$=\frac{2.56}{32} \times 100 \%=8 \%$

## KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
95. (D) Graduate male population of state
$\mathrm{E}=24 \times \frac{20}{100} \times \frac{9}{16}=2.7$ lakh
XII std pass female population of state
$\mathrm{E}=32 \times \frac{19}{100} \times \frac{10}{19}=3.2$ lakh
$\therefore$ Required ratio $=27: 32$
96. (C) Total numbers of obese men in 2007
$66000 \times 35 \%=23100$
Total number of obese women in
$2007=54000 \times 25 \%=13500$
Total numbers of obese children in 2007 $16000 \times 12.5 \%=2000$
Required average
$=(23100+1350+2000) \div 3$
$=38600 \div 3=12867$
97. (B) Required percentage
$=\frac{78000 \times 37.5 \%}{78000 \times 62.5 \%} \times 100=60 \%$
98. (D) Required ratio
$=\frac{60000 \times 20 \%}{70000 \times 27.5 \%} \times 100=48: 77$
99. (A) No. of obese women in 2006
$=20 \%$ of $60000=12000$
Numbers of obese children in 2006
$=25 \%$ of $12000=3000$

Numbers of obese men in
$2006=32.5 \%$ of $63000=20475$
Required difference $=20475-(12000+$ $3000)=20475-15000=5475$
100. (D) Number of children not suffering from obesity in $2005=90 \%$ of $21000=18900$ Number of children not in $2004=85 \%$ of $=15000$
Total of these two equals to 31650 .


| 1. (A) | 11. (A) | 21. (B) | 31. (A) | 41. (D) | (B) | (A) | . (A) | ) | (B) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (D) | (D) | 22. (B) | 32. (C) | 2. (A) | 52. (B) | 2. (A) | 72. (B) | 82. (C) | 92. (D) |
| (B) | 13. (D) | 23. (B) | 33. (D) | 3. (D) | 53. (A) | 63. (D) | 73. (B) | 83. | 93. (C) |
| 4. (B) | 14. (D) | 24. (D) | 34. (B) | 44. (D) | 54. (B) | 64. (C) | 74. (D) | 84. (B) | 94. (A) |
| 5. (C) | 15. (C) | 25. (C) | 35. (C) | 45. (D) | 55. (C) | 65. (A) | 75. (A) | 85. (A) | 95. (D) |
| 6. (D) | 16. (B) | 26. (A) | 36. (B) | 46. (B) | 56. (C) | 66. (A) | 76. (A) | 86. (C) | 96. (C) |
| 7. (C) | 17. (B) | 27. (D) | 37. (C) | 47. (D) | 57. (B) | 67. (C) | 77. (D) | 87. (A) | 97. (B) |
| 8. (D) | 18. (A) | 28. (A) | 38. (B) | 48. (D) | 58. (A) | 68. (B) | 78. (D) | 88. (B) | 98. (D) |
| 9. (D) | 19. (C) | 29. (C) | 39. (B) | 49. (D) | 59. (B) | 69. (B) | 79. (D) | 89. (D) | 99. (A) |
| 10. (A) | 20. (C) | 30. (B) | 40. (C) | 50. (B) | 60. (D) | 70. (B) | 80. (A) | 90. (D) | 100.(D) |

## Note:- If your opinion differs regarding any answer, please message the mock test

 and question number to $\mathbf{8 8 6 0 3 3 0 0 0 3}$Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

