

SSC Mains (Maths) Answer with Explanation

1. (D) Total number of marbles kept in 50th box,
$=$ sum of factors of 50
$=1+2+5+10+25+50=93$
2. (C) A.T.Q,
$\because\left(x^{2}-y^{2}\right)+\left(y^{2}-z^{2}\right)+\left(z^{2}-x^{2}\right)=0$
$\therefore\left(x^{2}-y^{2}\right)^{3}+\left(y^{2}-z^{2}\right)^{3}+\left(z^{2}-z^{2}\right)^{3}$
$=3\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right)\left(z^{2}-x^{2}\right)$
$\because(x-y)+(y-z)+(z-x)=0$
$\therefore(x-y)^{3}+(y-z)^{3}+(z-x)^{3}$
$=3(x-y)(y-z)(z-x)$
$\Rightarrow \frac{\left(x^{2}-y^{2}\right)^{3}+\left(y^{2}-z^{2}\right)^{3}+\left(z^{2}-x^{2}\right)^{3}}{(x-y)^{3}+(y-z)^{3}+(z-x)^{3}}$
$=\frac{3\left(x^{2}+y^{2}\right)\left(y^{2}-z^{2}\right)\left(z^{2}-x^{2}\right)}{3(x-y)+(y-z)(z-x)}$
$=\frac{3(x+y)(x-y)(y+z)(y-z)(z+x)(z-x)}{3(x+y)(y-x)(z-x)}$
$=(x+y)(y+z)(z+x)$
3. (A) Let the two digits number be $10 y+x$ where $x>y$
$\therefore 10 x+y-10 y-x=63$
$\Rightarrow 9 x-9 y=63$
$\Rightarrow x-y=7$
$\therefore x=7,8,9$ and $y=0,1,2$
\therefore possible values of x are $7,8,9$
4. (A) For every $n \geq 4$;
n ! will be divisible by 8
\Rightarrow remainder will be zero
[becomes for $n \geq 4,8$ will be a factor of n !] So, remainder of $1!+2!+3!+4!\ldots . .+100$! will be equal to the remainder of $1!+2$! +3 ! only
$1!+2!+3!=1+2+3$
and $\frac{9}{8} ; \mathrm{R}=1$
5. (D) H.C.F $=\mathrm{A}$ and L.C. $\mathrm{M}=\mathrm{B}$
$\Rightarrow \mathrm{A} \times \mathrm{B}=x \times y$
So, $\mathrm{A}^{3}+\mathrm{B}^{3}=(\mathrm{A}+\mathrm{B})^{3}-3 \mathrm{AB}(\mathrm{A}+\mathrm{B})$
$=(x+y)^{3}-3 x y(x+y)$
$=x^{3}+y^{3}+3 x y(x+y)-3 x y(x+y)$
$=x^{3}+y^{3}$
6. (A) $(x)^{\frac{1}{2}}=(y)^{\frac{1}{3}} \Rightarrow(x)^{\frac{1}{1} \times 3}=(y)^{\frac{1}{1} \times 2}=(x)^{3}=(y)^{2}$
7. (C) Required average age of 2 persons
$=\frac{30+34+(8 \times 3)}{2}=44$ years
8. (A) Required average age just before the birth of the youngest member
$=\frac{(10 \times 20)-(10 \times 10)}{10-1}=\frac{100}{9}=11.11$ years
9. (A) A.T.Q,
$x=\frac{\sqrt{240}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{20} \sqrt{12}}{\sqrt{5}+\sqrt{3}}$
$\frac{x}{\sqrt{20}}=\frac{\sqrt{12}}{\sqrt{5}+\sqrt{3}}=\frac{2 \sqrt{3}}{\sqrt{5}+\sqrt{3}}$
(Using componendo and dividendo)
$\frac{x+\sqrt{20}}{x-\sqrt{20}}=\frac{2 \sqrt{3}+\sqrt{5}+\sqrt{3}}{2 \sqrt{3}-\sqrt{5}-\sqrt{3}}$
$\frac{x+\sqrt{20}}{x-\sqrt{20}}=\frac{3 \sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}$
$\frac{x}{\sqrt{12}}=\frac{\sqrt{20}}{\sqrt{5}+\sqrt{3}}$
(Using componendo and dividendo)
$\frac{x+\sqrt{12}}{x-\sqrt{12}}=\frac{2 \sqrt{5}+\sqrt{5}+\sqrt{3}}{2 \sqrt{5}-\sqrt{5}-\sqrt{3}}$
$\frac{x+\sqrt{12}}{x-\sqrt{12}}=\frac{3 \sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$
Adding equation (i) and (ii)
$\frac{x+\sqrt{20}}{x-\sqrt{20}}+\frac{x+\sqrt{12}}{x-\sqrt{12}}=\frac{3 \sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}+\frac{3 \sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$
$=\frac{3 \sqrt{3}+\sqrt{5}-3 \sqrt{5}-\sqrt{3}}{\sqrt{3}-\sqrt{5}}$
$=\frac{2 \sqrt{3}-2 \sqrt{5}}{\sqrt{3}-\sqrt{5}}=\frac{2(\sqrt{3}-\sqrt{5})}{(\sqrt{3}-\sqrt{5})}=2$
10. (A) Average speed $=\frac{\text { Total distance covered }}{\text { Total time taken }}$
$=\frac{(6+8+40) \mathrm{km}}{(15+15+15) \mathrm{min}}=\frac{54 \mathrm{~km}}{45 \mathrm{~min}}=\frac{\frac{54 \mathrm{~km}}{45} \mathrm{hr}}{60}$
$=72 \mathrm{~km} / \mathrm{hr}$

Campus
 KD Campus Pvt. Ltd 1997, OUTRAM LINE, KINGSWAY CAMP, DELHI- 110009

11. (C) Age of the captain
$=(11 \times 30)-\{(5 \times 29)+(5 \times 27)\}$
$=(330-280)$ years $=50$ years
12. (B) $(2 m+4 b) \times 10=(4 m+5 b) \times 6$
$\Rightarrow 20 \mathrm{~m}+40 \mathrm{~b}=24 \mathrm{~m}+30 \mathrm{~b}$
$\Rightarrow 4 \mathrm{~m}=10 \mathrm{~b} \Rightarrow 2 \mathrm{~m}=5 \mathrm{~b}$
So, $5 \mathrm{~b}=2 \times 40$
$\Rightarrow \mathrm{b}=\frac{2 \times 40}{5}=16$
\therefore Required ratio $=40: 16=5: 2$
13. (B) In case I.

Let the number of shirts of brand B be x. Let the cost of a shirt of brand B be ₹ 1
\therefore Original cost $=4 \times 2+x=(8+x)$

In case II.

$4+2 x=(8+x) \times \frac{140}{100}=(8+x) \frac{7}{5}$
$\Rightarrow 20+10 x=56+7 x$
$\Rightarrow 10 x-7 x=56-20=36$
$\Rightarrow 3 x=36 \Rightarrow x=12$
\therefore Required ratio $=4: 12=1: 3$
14. (C) Half the sum $=18$
\Rightarrow total sum $=36$
\Rightarrow Nos. will be 6,12 and 18
So, ratio of squares $=6^{2}: 12^{2}: 18^{2}$

$$
=36: 144: 324
$$

15. (B) A.T.Q,
$\frac{N}{6}=\frac{R}{4}=\frac{2}{5} S$
$\Rightarrow \mathrm{N}: \mathrm{R}: \mathrm{S}$
$=6: 4: \frac{5}{2}$
$=12: 8: 5$
\Rightarrow Neelam's share
$=\frac{12}{(12+8+5)} \times 2250=₹ 1080$
16. (A) S.P at 20% profit $=₹ 9 /$ litres

$$
\begin{aligned}
\Rightarrow \text { Cost of mixture } & =\frac{9}{120} \times 100 \\
& =₹ 7.5 / \text { litres }
\end{aligned}
$$

Now, let the ratio of milk and water in the mixture $=x: y$
$\Rightarrow \frac{(10 \times x)+(0 \times y)}{x+y}=7.5$
$\Rightarrow 10 x=7.5(x+y)$
$\Rightarrow 2.5 x+7.5 y$
$\Rightarrow x=3 y$
$\Rightarrow x: y=3: 1$
17. (D) Ratio of equivalent capitals of A, B and C for 1 month,
$=(40500 \times 6+45000 \times 6):(45000 \times 12)$
$:(60000 \times 6+45000 \times 6)$
$=(405+450):(450 \times 2):(600+450)$
= $855: 900: 1050$
= $171: 180: 210$
= $57: 60: 70$
Sum the ratio $=57+60+70=187$
Required difference $=\frac{70-57}{187}=56100$

$$
=\frac{13}{187} \times 56100=₹ 3900
$$

18. (A) Let the cost price of 1 orange $=₹ 1$
\therefore C.P of 1 banana $=₹ \frac{3}{4}$
and C.P of 1 apple $=₹ \frac{3}{2}$
New price:
1 orange = ₹ 1.1
1 banana $=\frac{3}{4} \times \frac{110}{100}=₹ 0.825$
1 apple $=\frac{3}{2} \times \frac{110}{100}=₹ 1.65$
Original price of (4 bananas +2 apples +3 oranges)
$=₹(3+3+3)=₹ 9$
$=₹(3.3+3.3+3.3)=9.9$
\therefore Percentage increase
$=\frac{9.9-9}{9} \times 100=10 \%$
19. (A) Let the number be x
\Rightarrow \% change
$=\frac{\text { original result }- \text { changed result }}{\text { original result }} \times 100 \%$
$=\frac{5 x-\frac{x}{5}}{5 x} \times 100 \%=\frac{25 x-x}{25 x} \times 100 \%$
$=\frac{24 x}{25 x} \times 100 \%=96 \%$
20. (C) 20% decrease in price
$\Rightarrow 25 \%$ increase in consumption (when expenditure is constant)
\Rightarrow increased amount of sugar $=25 \%$ of 20 kg
$=5 \mathrm{~kg}$
\Rightarrow Total amount now of sugar $=(20+5) \mathrm{kg}$
$=25 \mathrm{~kg}$

Campus
 KD Campus Pvt. Ltd
 1997, OUTRAM LINE, KINGSWAY CAMP, DELHI- 110009

21. (C) Votes got by Candidate A
$=(100-10) \%$ of $\frac{4}{5}$ of total voters
$=90 \%$ of $\frac{4}{5}$ of total voters
$=\frac{9}{10} \times \frac{4}{5}$ of total voters
$=\frac{18}{25}$ of total voters
= 216 voters
Now, votes got by Candidate B
$=(100-20) \%$ of $\left(1-\frac{4}{5}\right)$ th of the total voters
$=80 \%$ of $\frac{1}{5}$ th of total voters
$=\frac{4}{5} \times \frac{1}{5}$ of total voters
$=\frac{4}{25}$ of total voters
$=\frac{216}{18} \times 4=48$ voters
So, total number of votes polled
$=(216+48)$ votes $=264$ votes
22. (D) $\cos x=\frac{2 \cos y-1}{2-\cos y}$

Let $\mathrm{y}=60^{\circ}$
$\cos x=\frac{2 \times \frac{1}{2}-1}{2-\frac{1}{2}}$
$\Rightarrow x=90^{\circ}$
Then,
$\tan \left(\frac{x}{2}\right) \cot \left(\frac{y}{2}\right)=\tan 45^{\circ} \cot 30^{\circ}=\sqrt{3}$
23. (C) If the C.P of wrist watch be ₹ x then
C.P of wall clock $=₹(390-x)$

So, $\frac{x \times 10}{100}+\frac{(390-x) \times 15}{100}=51.50$
$\Rightarrow 10 x+5850-15 x=5150$
$\Rightarrow 5 x=5850-5150=700$
$\Rightarrow x=\frac{700}{5}=₹ 140$
\therefore C.P of wall clock $=390-140=₹ 250$
\therefore Required difference $=250-140=₹ 110$
24. (A) $\because(40-20) \%=₹ 1$

So, $120 \%=\frac{1}{20} \times 120=₹ 6$
25. (B) Required Marked price
$=210 \times \frac{120}{100} \times \frac{100}{(100-12.5)}$
$=210 \times \frac{120}{87.5}=₹ 288$
26. (D) Let the C.P $=x$

So, S.P in 1st case $=1.05 x$
now, C.P in 2 nd case $=0.95 x$
and S.P in 2 nd case $=1.05 x-2$
Now, A.T.Q,
$0.95 x \times 1.1=1.05 x-2$
or, $1.045 x=1.05 x-2$
$\Rightarrow 1.05 x-1.045 x=2$
$\Rightarrow 0.005 x=2$
$\Rightarrow x=\frac{2}{0.005}=₹ 400$
27.
(C) Discount on $₹ 36000=\frac{36000 \times 7}{100}=₹ 2520$

Discount on first ₹ $20,000=\frac{20000 \times 8}{100}$

$$
\text { = ₹ } 1600
$$

Discount on next $₹ 10,000=\frac{10,000 \times 5}{100}$

$$
\text { = ₹ } 500
$$

\therefore Discount on remaining ₹ 6,0000
$=2520-(1600+500) ₹ 420$
\therefore Required percent $=\frac{420 \times 100}{6000}=7 \%$
28. (A) A.T.Q,
$\sin ^{2} \alpha+\sin ^{2} \beta+\cos ^{2} \gamma=3$
Let $\alpha=\beta=90^{\circ}$ and $\gamma=0^{\circ}$
$\tan \left(\frac{\alpha+\beta+\gamma}{4}\right)+\cot \left(\frac{\alpha+\beta+\gamma}{4}\right)$
$=\tan \left(\frac{180^{\circ}}{4}\right)+\cot \left(\frac{180^{\circ}}{4}\right)$
$=\tan 45^{\circ}+\cot 45^{\circ}$
$=1+1=2$

Campus
 KD Campus Pvt. Ltd 1997, OUTRAM LINE, KINGSWAY CAMP, DELHI- 110009

29. (D) A.T.Q, $4 \cos 20^{\circ}-\sqrt{3} \cot 20^{\circ}=4 \cos 20^{\circ}-$ $\sqrt{3} \frac{\cos 20^{\circ}}{\sin 20^{\circ}}$
$=\frac{4 \sin 20^{\circ} \cos 20^{\circ}-\sqrt{3} \cos 20^{\circ}}{\sin 20^{\circ}}$
$=\frac{2.2 \sin 20^{\circ} \cos 20^{\circ}-\sqrt{3} \cos 20^{\circ}}{\sin 20^{\circ}}$
$=\frac{2 \sin 40^{\circ}-\sqrt{3} \cos 20^{\circ}}{\sin 20^{\circ}}$
$=\frac{2\left[\sin 40^{\circ}-\frac{\sqrt{3}}{2} \cos 20^{\circ}\right]}{\sin 20^{\circ}}$
$=\frac{2\left[\sin 40^{\circ}-\sin 60^{\circ} \cos 20^{\circ}\right]}{\sin 20^{\circ}}$
$=\frac{2 \sin 40^{\circ}-2 \sin 60^{\circ} \cos 20^{\circ}}{\sin 20^{\circ}}$
$=\frac{2 \sin 40^{\circ}-\sin 80^{\circ}-\sin 40^{\circ}}{\sin 20^{\circ}}$
$=\frac{\sin 40^{\circ}-\sin 80^{\circ}}{\sin 20^{\circ}}$
$=\frac{2 \cos 60^{\circ} \cdot\left(-\sin 20^{\circ}\right)}{\sin 20^{\circ}}=-1$
30. (D) Let x be the required annual payment So, also, $r=10 \%$ p.a and $t=3$ years

$$
[1 \xrightarrow{+10 \%} 1.1]
$$

So, $(1+1.1+1.21) x=3310 \times(1.1)^{3}$
or, $3.31 x=3310 \times 1.331$
$x=\frac{3310 \times 1.331}{3.31}=₹ 1331$
31. (C) $A=P\left(1+\frac{R}{100}\right)^{T}$
$\Rightarrow 3=1\left(1+\frac{\mathrm{R}}{100}\right)^{3}$
On squaring both sides,
$9=1\left(1+\frac{\mathrm{R}}{100}\right)^{6}$
32. (A) Cash price of refrigerator
$=1500+\left(1020 \times \frac{10}{11}\right)+\left(1003+\frac{100}{121}\right)+\left(990 \times \frac{1000}{1331}\right)$
$=1500+\left\{\frac{(10200 \times 121)+(100300 \times 11)+990000}{1331}\right\}$
$=1500+\left(\frac{1234200+1103300+990000}{1331}\right)$
$=1500+\frac{3327500}{1331}$
$=1500+2500=₹ 4000$
33. (D) When B works normally then days taken by B to complete the work
$=\frac{20 \times 12}{20-12}$ days $=30$ days
Now, If B does the work only half a day daily,
$\Rightarrow \mathrm{B}$ will take twice the total days to complete the whole work alone
\Rightarrow Now number of days taken by B,
$=(30 \times 2)$ days $=60$ days
So, Now days taken by $(A+B)$ together to do the whole work $=\frac{20 \times 60}{20+60}=15$ days
34. (A) A.T.Q,
$\mathrm{u}_{\mathrm{n}}=\cos ^{\mathrm{n}} \delta+\sin ^{\mathrm{n}} \delta$
$2 u_{6}-3 u_{4}+2=2\left(\cos ^{6} \delta+\sin ^{6} \delta\right)-$
$3\left(\cos ^{4} \delta+\sin ^{4} \delta\right)+2$
Let $\delta=0^{\circ}$
$2-3+2=1$
35. (C) Let days taken by A to do the whole work $=x$ days
So, days taken by B to do the whole work $=(x-5)$ days
and, days taken by C to do the whole work $=(x-9)$ days
Now, A.T.Q,
Days taken by $(\mathrm{A}+\mathrm{B})$ together to do the whole work = Days taken by C alone to do the whole work
$\Rightarrow \frac{x(x-5)}{x+(x-5)}=x-9$
or, $x^{2}-5 x=(x-9)(2 x-5)$
or, $x^{2}-5 x=2 x^{2}-5 x-18 x+45$
or, $x^{2}-18 x+45=0$
or, $x^{2}-15 x-3 x+45=0$
or, $x(x-15)-3(x-15)=0$
or $(x-3)(x-15)=0 \Rightarrow x=3$ or 15
but $x=3$ is not possible as $x-5$ or $x-9$ will become negative.
So, $x=15$ days
36. (B) Time $\alpha \frac{1}{\text { cross - sectional area of the pipe }}$

Time $\alpha \frac{1}{\frac{\pi}{4} \mathrm{~d}^{2}}$
Time $\alpha \frac{1}{\mathrm{~d}^{2}}$
$\therefore \frac{\mathrm{t}_{2}}{\mathrm{t}_{1}}=\frac{\left(\mathrm{d}_{1}\right)^{2}}{\left(\mathrm{~d}_{2}\right)^{2}}$
So, $t_{2}=t_{1}\left(\frac{d_{1}}{d_{2}}\right)^{2}$
$\mathrm{t}_{1}=40$ minutes, $\mathrm{d}_{1}=\mathrm{d}, \mathrm{d}_{2}=2 \mathrm{~d}$
$\therefore t_{2}=40\left(\frac{d}{2 d}\right)^{2}$
$t_{2}=40\left(\frac{1}{2}\right)^{2}$
$\mathrm{t}_{2}=10$ minutes
\Rightarrow time taken by a pipe of diameter 2 d for doing the same job $=10$ minutes
37. (C) Let the capacity of the tank be x gallons. Quantity of water filled in the tank in 1 minutes when all the pipes A, B and C are opened simultaneously $=\frac{x}{20}+\frac{x}{24}-3$ According to the question, $\frac{x}{20}+\frac{x}{24}-3$

$$
=\frac{x}{15}
$$

$\Rightarrow \frac{x}{20}+\frac{x}{24}-\frac{x}{15}=3$
$\Rightarrow \frac{6 x+5 x-8 x}{120}=3$
$\Rightarrow 3 x=3 \times 120$
$\Rightarrow x=\frac{3 \times 120}{3}=120$ gallons
38. (A) A.T.Q,
$\sec ^{2} \theta=\frac{4 x y}{(x+y)^{2}}$
$\cos ^{2} \theta=\frac{(x+y)^{2}}{4 x y}$
$0 \leq \cos ^{2} \theta \leq 1$
$\frac{(x+y)^{2}}{4 x y} \leq 1$
$\frac{(x+y)^{2}}{4 x y} \leq 1$
$(x+y)^{2} \leq 4 x y \Rightarrow x^{2}+y^{2}+2 x y-4 x y \leq 0$
$(x-y)^{2} \leq 0$
We know that square of any number can not be negative possible.
So, $(x-y)^{2}=0$
$x=y$
39. (D) In the race between Sonu and Monu. Distance travelled by Sonu and Monu in same time $=600$ metres and (600-60) metres $=600$ metres and 540 metres
\Rightarrow In the same time,
Ratio of distance travelled by Sonu and Monu = 10: 9
Similarly,
In the same time
Ratio of distance travelled by Monu and
Bablu $=500$: (500-25)

$$
\begin{aligned}
& =500: 475 \\
& =20: 19
\end{aligned}
$$

So, In the same time,
Ratio of distance travelled by Sonu, Monu and Bablu.
$=10 \times 20: 9 \times 20: 9 \times 19$
= 200: 180: 171
\Rightarrow When Sonu travels 200 m , Bablu will travel 171 m .
\Rightarrow In 400 me race between Sonu and Bablu required number of metres by which Sonu will win the race, $=400 \mathrm{~m}-342 \mathrm{~m}=58 \mathrm{~m}$
40. (A) Let $x=$ length of the faster train in (in metres),

So, 36 seconds $=\frac{x}{(40-20) \mathrm{km} \mathrm{ph}}$
$\Rightarrow x=36$ second $\times 20 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}$

$$
=200 \text { metres }
$$

41. (A) Speed of boat in still water $=\frac{\mathrm{S}_{\mathrm{down}}+\mathrm{S}_{\mathrm{up}}}{2}$
$=\frac{x+y}{2}=0.5(x+y)$

Campus
 KD Campus Pvt. Ltd

42. (C) Expression,
$=4+44+444+$ \qquad to n terms
$=4(1+11+111+$ to n terms)
$=\frac{4}{9}(9+99+999+$ \qquad to n terms)
$=\frac{4}{9}[(10-1)+(100-1)+(1000-1)+\ldots$ to n terms]
$=\frac{4}{9}\left[\left(10+10^{2}+10^{3}+\right.\right.$ \qquad to n terms) -n]
$=\frac{4}{9}\left[10\left(1+10+10^{2}+\right.\right.$ \qquad to n terms $)-n]$
$=\frac{40}{9}\left(\frac{10^{n}-1}{9}\right)-\frac{4}{9} n$
$\left[\therefore 1+10+102+\ldots\right.$. to n terms $\left.=\frac{10^{n}-1}{9}\right]$
$=\frac{40}{81}\left(10^{n}-1\right)-\frac{4}{9} n$
43. (A) $a^{4}+b^{4}=a^{4}+b^{4}+2 a^{2} b^{2}-2 a^{2} b^{2}$
$=\left(a^{2}+b^{2}\right)^{2}-(a b \sqrt{2})^{2}$
$=\left(a^{2}+b^{2}+a b \sqrt{2}\right)\left(a^{2}+b^{2}-a b \sqrt{2}\right)$
$\Rightarrow \frac{a^{4}+b^{4}}{a^{2}-a b \sqrt{2}+b^{2}}$
$=\frac{\left(a^{2}+b^{2}+a b \sqrt{2}\right)\left(a^{2}+b^{2}-a b \sqrt{2}\right)}{a^{2}-a b \sqrt{2}+b^{2}}$
$=a^{2}+b^{2}-a b \sqrt{2}=x-y$
$\Rightarrow x=a^{2}+b^{2}$
$x^{2}=a^{4}+b^{4}+2 a^{2} b^{2}$
$y^{2}=2 a^{2} b^{2}$
$\Rightarrow x^{2}-y^{2}=a^{4}+b^{4}$
$\frac{a^{4}+b^{4}}{a^{2}-a b \sqrt{2}+b^{2}}=\frac{x^{2}-y^{2}}{x-y}=x+y$
44. (D) $(x-a)(x-b)=1 \Rightarrow(x-b)=\frac{1}{(x-a)}$
$(x-a-5)=\frac{1}{(x-a)}(\because a+5=b)$
$(x-a)-\frac{1}{(x-a)}=5$
(Taking cube both sides)
$(x-a)^{3}-\frac{1}{(x-a)^{3}}-3(5)=125$
$(x-a)^{3}-\frac{1}{(x-a)^{3}}=140$
45. (C) Let x be the required number and a be its first part
so, $(x-a)$ will be its second part, Now, A.T.Q,
$0.8 a=0.6(x-a)+3$
or, $0.8 a+0.6 a=0.6 x+3$
or, $1.4 a=0.6 x+3$
$\Rightarrow a=\frac{0.6 x+3}{1.4}$
Also,
$0.9 a+6=0.8(x-a)$
or, $0.9 a+0.8 a=0.8 x-6$
or, $1.7=0.8 x-6$
$\Rightarrow a=\frac{0.8 x-6}{1.7}$
From equation (i) and (ii),
$\frac{0.6 x+3}{1.4}=\frac{0.8 x-6}{1.7}$
$\Rightarrow 1.02 x+5.1=1.12 x-8.4$
$\Rightarrow 0.1 x=13.5$
$\Rightarrow x=\frac{13.5}{0.1}=135$
46. (B) Adding 1 in all terms, $\left(\frac{a^{2}-b c}{a^{2}+b c}+1\right)\left(\frac{b^{2}-a c}{b^{2}+a c}+1\right)+\left(\frac{c^{2}-a b}{c^{2}+a b}+1\right)$
$=1+1+1+1$
$\left(\frac{2 a^{2}}{a^{2}+b c}\right)\left(\frac{2 b^{2}}{b^{2}+a c}\right)+\left(\frac{2 c^{2}}{c^{2}+a b}\right)=4$
$\frac{a^{2}}{a^{2}+b c}+\frac{b^{2}}{b^{2}+a c}+\frac{c^{2}}{c^{2}+a b}=2$
47. (A) A.T.Q
$18.75 \%=\frac{3}{16}$
I-article

Loss percentage on second-II article
$=\frac{3}{22} \times 100=13.63 \%$
48. (B) A.T.Q,

Let $\mathrm{x}=\sqrt{x^{2}-x+1}$
$\Rightarrow x+\frac{1}{x}=2-x^{2}$
Minimum value of $x+\frac{1}{x}=2$
$\Rightarrow x+\frac{1}{x} \geq 2=2-x^{2} \geq 2$
$\Rightarrow 0 \geq x^{2}, x^{2} \leq 0$
It is possible, when $x=0$
that why the value of x equal to 1 possible

Campus
 KD Campus Pvt. Ltd
 1997, OUTRAM LINE, KINGSWAY CAMP, DELHI- 110009

49. (C) A.T.Q,
$x^{2}-2(k-1) x+(2 k+1)=0$
For equal roots $\mathrm{D}=0 \Rightarrow b^{2}-4 a c=0$
$\therefore[-2(k-1)]^{2}-4(1)(2 k+1)=0$
$4\left(k^{2}+1-2 k\right)-4(2 k+1)=0$
$4 k^{2}+-8 k-8 k-4=0$
$4 k^{2}-16 k=0$
$4 k-16=0$
$4 k=16 \Rightarrow k=4$
50. (A) C.P of each book sold by publisher
$=₹ \frac{70,000}{2000-400}=₹ 43.75$
S.P of each book sold by publisher
$=(100-30) \%$ of $₹ 75=₹ 52.5$
So, \% gain $=\frac{52.5-43.75}{43.75} \times 100 \%$
(\because S.P > C.P)

$$
=20 \% \text { gain }
$$

51. (D) $x=a=1, y=b=2, z=c=3$
$=\frac{1-4}{3(-1)}+\frac{4-9}{5(-1)}+\frac{9-1}{4(2)}$
$=\frac{-3}{-3}+\frac{-5}{-5}+\frac{8}{8}=1+1+1=3$
52. (C) $15 \sin ^{3} \alpha+20 \cos ^{3} \alpha=12$
$\Rightarrow \frac{15}{12} \sin ^{3} \alpha+\frac{20}{12} \cos ^{3} \alpha=1$
$\left(\frac{5}{4} \sin \alpha\right) \sin ^{2} \alpha+\left(\frac{5}{3} \cos \alpha\right) \cos ^{2} \alpha=1$
\Downarrow
1
1
To making in the form of $\sin ^{2} \alpha+\cos ^{2} \alpha=1$ We put the value of
$\frac{5}{4} \sin \alpha=1$ and $\frac{5}{3} \cos \alpha=1$
Now, $\sin \alpha=\frac{4}{5}$ and $\cos \alpha=\frac{3}{5}$
Hence,
$\Rightarrow 10 \sin \alpha+15 \cos \alpha=10 \times \frac{4}{5}+15 \times \frac{3}{5}$

$$
=8+9=17
$$

53. (B) Required ratio $=(15 \times 22):(11 \times 25)$

$$
=330: 275=6: 5
$$

54. (D) Let ₹ $x=$ quarterly payment given, $r=16 \%$ per annum
So, rate of interest per quarter
$=\frac{16}{4}=4 \%$ per quarter
Also,
No. of quarters in 2 years $=4 \times 2$
= 8 quarter
So, $8 x+(7+6+4+3+2+1) \times 4 \%$ of $x=2280$ or, $8 x+\left(\frac{7 \times 8}{2}\right) 4 \%$ of $x=2280$

$$
\left[\because 1+2+3+\ldots .+n=\frac{n(n+1)}{2}\right]
$$

or, $8 x+112 \%$ of $x=2280$
or 800% of $x+112 \%$ of $x=2280$
$\Rightarrow 912 \%$ of $x=2280$
So, $x=\frac{2280 \times 100}{912}=₹ 250$
55. (A) $\sin 6^{\circ} \sin 42^{\circ} \sin 66^{\circ} \sin 78^{\circ}=$?
$\frac{\sin 6^{\circ} \sin 54^{\circ} \sin 66^{\circ}}{\Downarrow} \cdot \frac{\sin 42^{\circ} \sin 78^{\circ}}{\sin 54^{\circ}}$
$=\frac{\left(\frac{1}{4} \sin 18^{\circ}\right) \cdot \sin 42^{\circ} \cdot \sin 78^{\circ}}{\sin 54^{\circ}}$
$=\frac{1}{4} \times \frac{1}{4} \sin 54^{\circ} \cdot \frac{1}{\sin 54^{\circ}}=\frac{1}{16}$
56. (A) $9 \cos ^{2} x-6 \sin x \cdot \cos x+\sin ^{2} x+\left(\sin ^{2} x+\cos ^{2} x\right)$
$=(3 \cos x-\sin x)^{2}+1$

0
$\left[\because\right.$ Minimum value of $\left.10+x^{2}=10\right]$
Then minimum value $=1$
For maximum value
$(3 \cos x-\sin x)^{2}+1=\left(\sqrt{3^{2}+1}\right)^{2}+1=11$
Hence, maximum value $=11$
minimum value $=1$
57. (A) Let time taken by B in completing the work $=x$ days
\therefore Time taken by A $(x-10)$ days
$\therefore \frac{1}{x}+\frac{1}{x-10}=\frac{1}{12}$
$\Rightarrow \frac{x-10+x}{x(x-10)}=\frac{1}{12}$
$\Rightarrow 24 x-120=x^{2}-10 x$
$\Rightarrow x^{2}-34 x+120=0$
$\Rightarrow x^{2}-30 x-4 x+120=0$
$\Rightarrow x(x-30)-4 x(x-30)=0$
$\Rightarrow(x-4)(x-30)=0$
$\Rightarrow x-30$ because $x \neq 4$
58. (B) $5 \alpha+4 \alpha=90^{\circ}$
$\alpha=10^{\circ}$
$2 \sin 30^{\circ}-\sqrt{3} \tan 30^{\circ}=2 \times \frac{1}{2}-\sqrt{3} \times \frac{1}{\sqrt{3}}=0$

Campus
 KD Campus Pvt. Ltd
 1997, OUTRAM LINE, KINGSWAY CAMP, DELHI- 110009

59. (B) Let speed of car $=x \mathrm{~km} / \mathrm{hr}$

Here, Distance covered by the car in 27 minutes = Distance covered by the sound in (28 minutes 30 seconds - 27 minutes)
$\Rightarrow x \mathrm{~km} / \mathrm{hr} \times\left(\frac{27}{60}\right) \mathrm{hr}$
$=\left(330 \times \frac{18}{5} \mathrm{~km} / \mathrm{hr}\right) \times\left(\frac{1.5}{60} \mathrm{hr}\right)$
$\Rightarrow x=330 \times \frac{18}{5} \times \frac{1.5}{60} \times \frac{60}{27}=66$
\Rightarrow speed of car $=66 \mathrm{~km} / \mathrm{hr}$

60 (B) $\sin x+\cos x=c$
Squaring both sides
$\sin ^{2} x+\cos ^{2} x+2 \sin x \cdot \cos x=c^{2}$
$\sin x \cdot \cos x=\frac{c^{2}-1}{2}$
We know that,
$\sin ^{6} x+\cos ^{6} x=1-3 \sin ^{2} x . \cos ^{2} x$
$=1-3\left(\frac{c^{2}-1}{2}\right)^{2}$
$=1-3\left(\frac{c^{4}+1-2 c^{2}}{4}\right)=\frac{1+6 c^{2}-3 c^{4}}{4}$
61. (C) $A(\lambda, 2-2 \lambda), B(-\lambda+1,2 \lambda)$ and

C (-4- $\lambda, 6-2 \lambda)$
Area of $\triangle \mathrm{ABC}$,
$\Delta=\frac{1}{2}\left(x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right)$
$\{\lambda(2 \lambda-6+2 \lambda)+(-\lambda+1)(6-2 \lambda-2+2 \lambda)\}$
$+(-4-\lambda)(2-2 \lambda-2 \lambda)$
$140=\left(4 \lambda^{2}-6 \lambda+4-4 \lambda-8+16 \lambda-2 \lambda+4 \lambda^{2}\right)$
$140=8 \lambda^{2}+4 \lambda-4$
$2 \lambda^{2}+\lambda-36=0$
$2 \lambda^{2}+9 \lambda-8 \lambda-36=0$
$\lambda(2 \lambda+9)-4(2 \lambda+9)=0$
$(\lambda-4)(2 \lambda+9)=0$
$\lambda=4, \frac{-9}{2}$
The integer value of λ is 4
62. (A) Quality

11 units $\longrightarrow ₹ 264$
10 units $\longrightarrow ₹ 240$
CP of paint are $=₹ 240$

Case - I

Case-II

Case - III

In cases (II) and (III)
B > A
So, case - (I) is true
63. (D) Let ' a ' and ' b ' are those two numbers.
$\Rightarrow a^{2}+b^{2}=97$
$\Rightarrow a^{2}+b^{2}-2 a b=97-2 a b$
$\Rightarrow(a-b)^{2}=97-2 a b$
We know that $(a-b)^{2} \geq 0$
$\Rightarrow 97-2 \mathrm{ab} \geq 0$
$\Rightarrow a b \leq 48.5$
Hence, $a b \neq 0$
64. (D) $S=7 \times 11+11 \times 15+15 \times 19+\ldots .+95 \times 99$

Nth term of the series can be written as
$\mathrm{T}_{\mathrm{n}}=(4 n+3) \times(4 n+7)$
Last term, $(4 \mathrm{n}+3)=95$ i.e $\mathrm{n}=23$
$\sum_{n=0}^{n=23}(4 n+3) \times(4 n+7)$
$\Rightarrow \sum_{\substack{n=23 \\ n=0}}^{n} 16 n^{2}+40 n+21$
$23 \times 24 \times 47 \quad 23 \times 24$
$\Rightarrow 16 \times 23 \times 4 \times 47+40 \times 23 \times 12+21$
$\Rightarrow 80245$
65. (D) It is given that $\mathrm{N}^{\mathrm{N}}=2^{160}$

We can rewrite the equation as
$\mathrm{N}^{\mathrm{N}}=\left(2^{5}\right)^{160 / 5}=32^{32}$
$\Rightarrow \mathrm{N}=32$
$\mathrm{N}^{2}+2^{\mathrm{N}}=32^{2}+2^{32}=2^{10} \times\left(1+2^{22}\right)$
Hence, we can say that $\mathrm{N}^{2}+2^{\mathrm{N}}$ can be divided by 2^{10}
Therefore, $\mathrm{X}_{\max }=10$
66. (C) Let 't' pm the time when the tank is the emptied everyday. Let 'a' and 'b' be the litres/hr filled by pump A and pump B respectively,
On Monday, A alone completed filling the tank at 8 pm . Therefore we can say that pump A worked for $(8-t)$ hours. Hence, the volume of the tank $=a \times(8-t)$ litres Similarly, on Tuesday, B alone completed filling the tank at 6 pm .

$\sum{ }^{K}$ Campus \longrightarrow
 KD Campus Pvt. Ltd 1997, OUTRAM LINE, KINGSWAY CAMP, DELHI- 110009

Therefore we can say that pump B worked for $(6-t)$ hours. Hence the volume of the tank $=b \times(6-t)$ lites
On Wednesday, A alone worked till 5pm, and then B worked alone from 5 pm to 7 pm to fill the tank. Therefore we can say that pump A worked for $(5-t)$ hours and pump B worked for 2 hours. Hence the volume of the tank $=a \times(5-t)+2 b$ litres
We can say that a $(8-\mathrm{t})=\mathrm{b} \times(6-\mathrm{t})=\mathrm{a}$
$\times(5-\mathrm{t})+2 \mathrm{~b}$
$\mathrm{a} \times(8-\mathrm{t})=\mathrm{a} \times(5-\mathrm{t})+2 \mathrm{~b}$
$\Rightarrow 3 \mathrm{a}=2 \mathrm{~b}$
$a \times(8-t)=b \times(6-t)$
Using equation (i), we can say that
$\mathrm{a} \times(8-\mathrm{t})=\frac{3 \mathrm{a}}{2} \times(6-\mathrm{t})$
$t=2$
Therefore, we can say that the tank gets emptied at 2 pm daily. We can see that A takes 6 hours and pump B takes 4 hours alone.
Hence, working together both can fill the tank in $=\{6 \times 4\} /\{6+4\}=2.4$ hours or 2 hours and 24 minutes.
The pumps started filling the tank at $2: 00 \mathrm{pm}$. Hence the tank will be filled by 4:24 pm
67. (B) Let 'a', 'b' and 'c' be the contraction of salt in solutions A, B and C respectively. It is given that three salt solutions $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are mixed in the proportion $1: 2: 3$, then the resulting solution has strength 20%
$a+2 b+3 c$
$\Rightarrow 1+2+3=20$
$\Rightarrow \mathrm{a}+2 \mathrm{~b}+3 \mathrm{c}=120$
If instead the proportion is $3: 2: 1$, then the resulting solution has strength 30% $3 a+2 b+c$
$\Rightarrow 1+2+3=30$
$\Rightarrow 3 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=180$
From equation (i) and (ii), we can say that
$\Rightarrow \mathrm{b}+2 \mathrm{c}=45$
$\Rightarrow \mathrm{b}=45-2 \mathrm{c}$
Also, on subtracting (i) and (ii) we get
$a-c=30$
$\Rightarrow \mathrm{a}=30+\mathrm{c}$
In solution D, B and C are mixed in the ratio 2:7
So, the concentration of salt in
$2 \mathrm{~b}+7 \mathrm{c}=\begin{gathered}90-4 \mathrm{c}=7 \mathrm{c}=90+3 \mathrm{c} \\ \mathrm{D}=9\end{gathered}$
$90+3 \mathrm{c} \quad 90+3 \mathrm{c}$
Required ratio $=9 \mathrm{a}=9(30+\mathrm{c})=1: 3$
68. (A) A.T.Q,

Let the CP of table $=\mathrm{T}$ CP f chair $=\mathrm{C}$
$\mathrm{T} \times \frac{25}{3} \%=\mathrm{C} \times \frac{25}{2}$
$\Rightarrow \frac{\mathrm{T}}{\mathrm{C}}=\frac{3}{2}$
$\mathrm{T} \times \frac{25}{2} \%-\mathrm{C} \times \frac{25}{3} \%=25$
$3 \mathrm{~T}-2 \mathrm{C}=₹ 600$
Putting the value of T in equation (ii),
$3 \times \frac{3}{2} \mathrm{C}-2 \mathrm{C}=₹ 600$
$\Rightarrow \frac{9}{2} \mathrm{C}-2 \mathrm{C}=₹ 600$
$\Rightarrow \frac{5 C}{2}=₹ 600$
$C=₹ 240$
69. (A) A.T.Q,

$\angle \alpha-\angle \theta=33^{\circ}$
Draw an altitude from B on side $A C$,
OG parallel to BP.
In $\triangle \mathrm{BGO}$ and $\triangle \mathrm{PBG}$,
$\angle \mathrm{G}=\angle \mathrm{B}=20^{\circ}$
Line OG extended to side AC
$\angle \mathrm{GNC}=90^{\circ}-\theta$
In $\triangle \mathrm{PBC}$ and $\triangle \mathrm{GNC}$
$\angle \mathrm{N}=\angle \mathrm{B}=90^{\circ}-\theta$
Now, In $\triangle \mathrm{PBC}$,
$20^{\circ}+x^{\circ}+\beta=90^{\circ}-\theta$
In $\triangle \mathrm{ABP}$,
$\alpha+\beta=90^{\circ}$
From equation (i) and (ii),
$20^{\circ}+x^{\circ}+90-\alpha=90^{\circ}-\theta$
$\Rightarrow x^{\circ}=\alpha-\theta-20^{\circ}=33^{\circ}-20^{\circ}=13^{\circ}$
70. (B) A.T.Q,

Draw a line from G on side $A B$
\because GP is angle bisector of $\angle G$
$\therefore \mathrm{AP}=\mathrm{BP}=\mathrm{GP}=5 \mathrm{~cm}$
$\because G$ is centroid and CP is median,
1 unit $=5 \mathrm{~cm}$
2 units $=10 \mathrm{~cm}$
71. (B) A.T.Q,

Draw a line from Q to C
In $\triangle \mathrm{ABC}$,
$\because \angle \mathrm{G}=65^{\circ}$
$\therefore \angle \mathrm{Q}=2 \angle \mathrm{~A}=130^{\circ}$
Draw a circle from O
$\angle \mathrm{PBC}=25^{\circ}, \angle \mathrm{POC}=50^{\circ}$
$\mathrm{OC}=\mathrm{OP}=$ radius
So, In $\triangle \mathrm{OPC}$,
$\angle \mathrm{P}=\angle \mathrm{C}=65^{\circ}$
72. (A) A.T.Q,

$\because \mathrm{AE}$ is angle bisector of $\angle \mathrm{A}$
So in $\triangle P A E$ and $\triangle E A C$.
Draw lines from B to D and P to C
$\Delta \mathrm{ABD}=\theta$
Now, in $\triangle \mathrm{CPC}=90^{\circ}-\theta$
In $\triangle \mathrm{APC}$
$2 \alpha+2 \theta+90^{\circ}=180^{\circ}$
$\alpha+\theta=45^{\circ}$
$x=45^{\circ}$
$\because x$ is the sum of interior angle,
73. (C) A.T.Q,

In $\triangle \mathrm{APB} \angle \mathrm{P}=50^{\circ}$
and $\angle B=50^{\circ}$
So, sides
$\mathrm{AB}=\mathrm{AP}$
Now, In $\triangle A Q B$,
$\angle \mathrm{Q}=40^{\circ}$
Draw a line AT
$\angle \mathrm{T}=80^{\circ}$
In $\triangle \mathrm{ABT}$,
$\angle \mathrm{A}=20^{\circ}$
$\mathrm{AB}=\mathrm{AP}=\mathrm{AT}=\mathrm{TQ}$
In $\triangle \mathrm{ATC}$
$\angle \mathrm{A}=20^{\circ}$ and in $\triangle \mathrm{AQT}$
$\angle \mathrm{A}=40^{\circ}$
Now In $\triangle \mathrm{PTQ}$
$\mathrm{PT}=\mathrm{TQ}$

74. (C) A.T.Q,

$=\frac{\pi}{4} r^{2}-\frac{\pi}{4} r^{2}+\frac{4}{7} \times \frac{r^{2}}{4}=\frac{4}{7} \times \frac{r^{2}}{4}$
Area of lif $=\frac{4}{7} \times$ side 2
$=\frac{4}{7} \times \frac{225}{4} \times 8$
$=\frac{8}{7} \times 225$
75. (C) A.T.Q,

$\frac{4}{3} \pi r^{3}=\frac{1}{3} \pi r^{2} h+\pi r^{2} h$
$\frac{4}{3} \pi \times 343=\frac{1}{3} \pi \times 2 \times 2 \times 2 \times 2 n+\pi \times 2 \times 2 \times 4 \times n$
$\Rightarrow 16 n=343$

$$
n=21.43
$$

Hence maximum numbers of cones $=42$
76. (B) A.T.Q,
 white tiles
$m+m+(n-2) \times 2$
$=2 \mathrm{~m}+2(\mathrm{n}-2)$
white tiles $=2[m+n-2]$
Total tiles $=m \times n$
Red tiles $=m \times n-2[m+n-2]$
$\Rightarrow 2(\mathrm{~m}+\mathrm{n}-2)=\mathrm{m} \times \mathrm{n}-2[\mathrm{~m}+\mathrm{n}-2]$
$\Rightarrow 4(\mathrm{~m}+\mathrm{n}-2)=\mathrm{m} \times \mathrm{n}$
$\Rightarrow \mathrm{m} \times \mathrm{n}-4 \mathrm{~m}-4 \mathrm{n}+8=0$
$m(n-4)-4(n-4)=8$
$(n-4)(m-4)=8$
Possible cases
$\mathrm{m}>\mathrm{n}$
4×2,
Case - I
8×1
$m-4=4$
Case-II
$\mathrm{m}=8$
$\mathrm{m}-4=8$
B) A.T.Q,

Present year
Last year

$x^{2}-y^{2}=131$
$(x+y)(x-y)=131$
$x+y=131$
$x-y=1$
$x=66$
Total Potatoes produce farmer this year $=4356$
78. (A) A.T.Q,

Let CP of a cycles $=100 x$
$\operatorname{MRP}=120 x$

Case - I

Cash value $1 \% \longrightarrow$ Discount

$$
\begin{aligned}
& \mathrm{SP}=108 x \\
& \text { Profit }=8 \%
\end{aligned}
$$

Case - II

Credit sales,
$5 \% \longrightarrow$ Discount
$\mathrm{SP}=144 x$
Profit $=14 \%$
$\frac{45 \times 100 x \times 8}{100}+\frac{15 \times 100 x \times 14}{100}=₹ 11400$
$\Rightarrow x=₹ 20$
Hence, cost price of a cycles is ₹ 2000
79. (A) A.T.Q,

$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$
$=\mathrm{AC} \times \mathrm{AC}+\mathrm{BP}^{2}-\mathrm{PC}^{2}$
$=\mathrm{AC} \times(\mathrm{AP}-\mathrm{PC})+\mathrm{BP}^{2}-\mathrm{PC}^{2}$
$=\mathrm{AC} \times \mathrm{AP}-\mathrm{AC} \times \mathrm{PC}+\mathrm{BP}^{2}-\mathrm{PC}^{2}$
$=A C \times A P-P C(A C+P C)+B P^{2}$
$=A C \times A P-P C \times A P+B P^{2}$
$=\mathrm{AC} \times \mathrm{AP}-\mathrm{PD} \times \mathrm{PB}+\mathrm{PB}^{2}(\mathrm{PC} \times \mathrm{PA}=\mathrm{PD} \times \mathrm{PB})$
$=A C \times A P+P B(P B-P D)$
$=A C \times A P+P B \times B D$
80. (B) A.T.Q,

$=\sqrt{400-200}=\sqrt{200}=10 \sqrt{2}$
\because Two sphere are already lies below
$=10 \sqrt{2}+10$
81. (D) A.T.Q,

$$
\begin{aligned}
& \mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{DF}^{2}+\mathrm{DC}^{2} \mathrm{AE}^{2} \\
& \mathrm{DF}^{2}+\mathrm{DC}^{2}+\mathrm{AE}^{2}=4+25+49=78 \mathrm{~cm}^{2}
\end{aligned}
$$

82. (A) A.T.Q,

$\because B C=6 \mathrm{~cm}$
$A B=6 \mathrm{~cm}$
$A C=6 \mathrm{~cm}$
So it is a an equilateral triangle,
Draw an altitude AM,
$\mathrm{AO}=2 \mathrm{~cm}, \mathrm{AQ}=3 \mathrm{~cm}$
$=\frac{1}{3} \pi r^{2} h-\frac{4}{3} \pi r^{3}$
$=\frac{1}{3} \times \pi \times 3 \times 3-\frac{4}{3} \pi \times 1$
$=\frac{5 \pi}{3} \mathrm{~cm}^{3}$
83. (A) A.T.Q,

ABCD : NMID

EFGH : VXYN
side $=\frac{b \times h}{b+h}$

side $=\frac{b \times b}{2 b}=\frac{b}{2}$
$\mathrm{ABCD}: \mathrm{NMID}=64: 4=16: 1$
EFGH : VXYN $=(4 \sqrt{2})^{2}: 1=32: 1$
84. (D)

According to the question.
$\Rightarrow \mathrm{A}+\mathrm{B}$
30 days
$\Rightarrow \mathrm{B}+\mathrm{C}$ \qquad 20 days
$\Rightarrow \mathrm{A}$ \qquad 5
$\Rightarrow \mathrm{B}$ \qquad $5+10$
$\Rightarrow \mathrm{C}$ \qquad $10+8$ days
\Rightarrow work done by $(\mathrm{A}+\mathrm{B})$ in 5 days $=2 \times 5$
$=10$ work
\Rightarrow Work done by $(\mathrm{B}+\mathrm{C})$ in 5 days $=10 \times 3$
= 30 work
\Rightarrow Total work \qquad 40 work
\Rightarrow Remaining work $=60-40=20$ work
\Rightarrow Here we find that C does remaining 20 work in 8 days
\Rightarrow C's efficiency $=\frac{\text { work }}{\text { Day }}$

$$
=\frac{20 \text { work }}{8 \text { Day }}=\frac{5}{2}
$$

\Rightarrow C's efficiency $=\frac{5}{2}$ work per day
\Rightarrow Therefore time taken by C alone to complete the work $=\frac{60}{5} \times 2=24$ days
85. (D) $\mathrm{X}^{2018} \mathrm{Y}^{2017}=\frac{1}{2}$
$x^{2016} y^{2019}=8$
$\frac{x^{2}}{y^{2}}=\frac{1}{16} \Rightarrow \frac{x}{y}=\frac{1}{4}$
$x=\frac{1}{2}$ and $y=2$
$x^{2}+y^{3}=\left(\frac{1}{2}\right)^{2}+2^{3}=\frac{33}{4}$
86. (A) A.T.Q,

Let total work is = $16(\mathrm{R}+\mathrm{G})$
Total work done by Ramesh and Ganesh before sick $=7(\mathrm{R}+\mathrm{G})$
After sick 30\% efficiency fell by
$\Rightarrow 16(\mathrm{R}+\mathrm{G})=7(\mathrm{R}+\mathrm{G})+10(7 \mathrm{R}+\mathrm{G})$
$\Rightarrow \mathrm{R}=0.5 \mathrm{G}$
Total amount of work left when Ramesh got, sick $=16(R+G)-7(R+G)=9(R+$ G)
$=9(0.5 \mathrm{G}+\mathrm{G})=13.5 \mathrm{G}$
Time taken by Ganesh to finish the remaining work $=\frac{13.5 \mathrm{G}}{\mathrm{G}}=13.5$ days
87. (A) A.T.Q,

Before Appeal
Amal $=11 \mathrm{k}$
Bimal $=14 \mathrm{k}$
After appeal $=11 \mathrm{k}+x$

$$
\begin{equation*}
=14 \mathrm{k}+x \tag{i}
\end{equation*}
$$

$11 \mathrm{k}+x=47$
$14 \mathrm{k}+\mathrm{x}=56$
From equation (i) and (ii),
$\mathrm{k}=3$
$x=14$
Bimal's ratio $=\frac{14 \times 3+14}{14 \times 3}=\frac{4}{3}$
88. (B) Let O be the centre of the equilateral $\triangle \mathrm{ABC}$ and OP the tower of height H . Then each of the $\triangle \mathrm{PAB}, \triangle \mathrm{PBC}$ and $\triangle \mathrm{PCA}$ equilateral. Thus $\mathrm{PA}=\mathrm{PB}=\mathrm{PC}=\mathrm{a}$. Therefore from right-angle triangle POA, we have,

$\mathrm{PA}^{2}=\mathrm{PO}^{2}+\mathrm{OA}^{2}$
$\Rightarrow \mathrm{a}^{2}=\mathrm{h}^{2}+\left(\frac{a}{2} \sec 30^{\circ}\right)^{2}$
$=h^{2}+\frac{a^{2}}{4} \frac{4}{3}=h^{2}+\frac{\mathrm{a}^{2}}{3}$
$\Rightarrow \frac{2}{3} \mathrm{a}^{2}=\mathrm{h}^{2} \Rightarrow 2 \mathrm{a}^{2}=3 \mathrm{~h}^{2}$
89. (D) Let P be the cloud at height H above the level of the water. In the lake Q is its image.

$\therefore \mathrm{OQ}=\mathrm{OP}=\mathrm{H}$
B is a point at a height $A B=h$, above the water, Angle of elevation of P and depression of Q from B are α and β respectively
In $\triangle \mathrm{PBM}$,
$\tan \alpha=\frac{\mathrm{H}-\mathrm{h}}{B M}$
$\mathrm{MB}=(\mathrm{H}-\mathrm{h}) \cos \alpha$
In $\triangle \mathrm{QMB}$,
$\tan \beta=\frac{\mathrm{QM}}{\mathrm{BM}}$
$\therefore \mathrm{BM}=(\mathrm{H}+\mathrm{h})$ cotb
From equation (i) and (ii),
$(\mathrm{H}-\mathrm{h}) \cot \alpha=(\mathrm{H}+\mathrm{h}) \cot \beta$
$\Rightarrow \mathrm{H}(\cot \alpha-\cot \beta)=\mathrm{h}(\cot \alpha+\cot \beta)$
$\therefore H=\frac{h(\cot \alpha+\cot \beta)}{\cot \alpha-\cot \beta}$
90. (B) A.T.Q,

Let Tea $\mathrm{A} \longrightarrow \mathrm{akg}$
Tea $\mathrm{B} \longrightarrow \mathrm{b}$ kg
Case - I
$\frac{3 a+2 b}{5}=40 \times \frac{10}{11}$
$3 a+2 b=\frac{2000}{11}$
Case - II
$\frac{2 a+2 b}{5}=40 \times \frac{20}{21}$
$2 a+2 b=\frac{4000}{21}$

$$
\begin{aligned}
& b=\frac{3200}{77}, a=\frac{7600}{77 \times 3} \\
& \frac{a}{b}=\frac{7600}{3200 \times 3}=\frac{19}{24}
\end{aligned}
$$

91. (D) Use figure from 91 to 95

92. (A)
93. (C)
94. (B)
95. (B)
96. (C) Average sales of grade
$1=\frac{(20+40+50+60)}{4}=42.5$ tonnes
Average sales of grade
$2=\frac{(40+60+20+110)}{4}=57.5$ tonnes
Difference $=57.5-42.5=15$ tonnes
97. (A) Total income of companies

$$
\begin{aligned}
A & =(75000 \times 20)+(60000 \times 40) \\
& =₹ 3900000
\end{aligned}
$$

Total income of companies
$C=(75000 \times 50)+(60000 \times 20)$

$$
=₹ 4950000
$$

Difference $=₹ 1050000=₹ 1.05$ million.
98. (D) 3 companies $=A, B$ and D. See the table below.

Grade 1 company (tonnes)	Grade 2 (tonnes)	
A	20	40
B	40	60
C	50	20
D	60	110

99. (D) Net time of company
$A=(75000 \times 20)+(40 \times 6000)$
= ₹ 3900000
Grade 1 constitutes 38.46%

$$
\frac{150000}{3900000} \times 100=38.46 \%
$$

100. (D) Total production by company
$D=60+110=170$ tonnes
Total production by company
$B=40+60=100$ tonnes
Total production by company D is 170
\% that of company.

SSC TIER II (MATHS) MOCK TEST - 51 (ANSWER KEY)

1. (D)	11. (C)	21. (C)	31. (C)	41. (A)	51. (D)	61. (C)	71. (B)	81. (D)	91. (D)
2. (C)	12. (B)	22. (D)	32. (A)	42. (C)	52. (C)	62. (A)	72. (A)	82. (A)	92. (A)
3. (A)	13. (B)	23. (C)	33. (D)	43. (A)	53. (B)	63. (D)	73. (C)	83. (A)	93. (C)
4. (A)	14. (C)	24. (A)	34. (A)	44. (D)	54. (D)	64. (B)	74. (C)	84. (D)	94. (B)
5. (D)	15. (B)	25. (B)	35. (C)	45. (C)	55. (A)	65. (D)	75. (B)	85. (D)	95. (B)
6. (A)	16. (A)	26. (D)	36. (B)	46. (B)	56. (A)	66. (C)	76. (B)	86. (A)	96. (C)
7. (C)	17. (D)	27. (C)	37. (C)	47. (A)	57. (A)	67. (B)	77. (B)	87. (A)	97. (A)
8. (A)	18. (A)	28. (A)	38. (A)	48. (B)	58. (B)	68. (A)	78. (A)	88. (B)	98. (D)
9. (A)	19. (A)	29. (D)	39. (D)	49. (C)	59. (B)	69. (A)	79. (A)	89. (D)	99. (D)
10. (A)	20. (C)	30. (D)	40. (A)	50. (A)	$60 \quad$ (B)	70. (B)	80. (B)	90. (B)	100.(D)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to $\mathbf{8 8 6 0 3 3 0 0 0 3}$

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

