SSC MOCK TEST - 211 (SOLUTION)

1. (C) Clock shows time. Similarly, thermometer shows temperature.
2. (D)

3. (D)

4. (D) Except Assam all others are capital of states.
5. (C) Except 59 all other numbers are divisible by 3.
6. (D) Single vowel is used in option (A), (B) and (C). Whereas three vowels are used in option (D).
7. (D) $20+90+40+60=210$ $20+90+60=170$ $90+40+60=190$
$\therefore 200 \mathrm{~kg}$. cannot be the total weight of any combination of these boxes.
8. (D) DJ6E/GP9H/JV12K/MB15N
9. (A) $\mathbf{a c d b} / \mathrm{dacb} / \mathrm{cdab} / \mathrm{acdb} / \mathbf{d a}$
10. (A)

Here $\mathrm{BC}=\mathrm{DE}=50 \mathrm{~m}$ and $\mathrm{BE}=\mathrm{CD}=$ 30 m
Required distance $=\mathrm{AB}-\mathrm{BE}$

$$
\begin{aligned}
& =40 \mathrm{~m}-30 \\
& =10 \mathrm{~m}
\end{aligned}
$$

11. (C)

$$
2 \quad 6 \frac{8}{2+6} \frac{16}{2+6+8} \frac{30}{6+8+16} \frac{54}{8+16+30} \frac{100}{16+30+54}
$$

12. (B)

13. (A) Letters: $\mathrm{W} \xrightarrow{-2} \mathbf{U} \xrightarrow{-2} \mathrm{~S} \xrightarrow{-2} \mathrm{Q} \xrightarrow{-2} \mathrm{O}$ Numbers:
$144(12)^{2} \longrightarrow 121(11)^{2} \longrightarrow 100(10)^{2} \longrightarrow 81(9)^{2} \longrightarrow 64(82)^{2}$
14. (B) $x+y=54$

| $x-y=12$ |
| ---: | :--- |
| $2 x=66$ |

$x=33$
From equation (i)
$33+y=54$
$y=54-33$

$$
=21
$$

Here $x=33$ and $y=21$, So, 33 is higher number.
15. (B)

Similarly,

16. (C) Raju \longrightarrow Raghu

Guru \longrightarrow Krishna
17. (A) $9 \times 5 \times 6=270$
$3 \times 7 \times 20=420$
Similarly,
$4 \times x \times 8=224$

$$
\begin{aligned}
32 x & =24 \\
x & =224 \div 32 \\
x & =7
\end{aligned}
$$

18. (A) $2+3(2 \times 3)-(2+3) 6-5=1$
$5+7(5 \times 7)-(5+7) 35-12=23$
$3+9(3 \times 9)-(3+9) 27-12=15$
$4+8(4 \times 8)-(4+8) 32-12=20$
19. (C)

20. (B)
21. (D)
22. (C)
23. (C)
24. (C)
25. (B)

R	A	I	N
\downarrow	\downarrow	\downarrow	\downarrow
76,	$\mathbf{1 4}$,	$\mathbf{3 4}$	$\mathbf{5 9}$

26. (D) Six organs of the United Nations - the General Assembly, the Security Council, the Trusteeship Council, the Economic and Social Council, the International Court of Justice, and the Secretariat. The Court has its seat at The Hague, Netherlands.
27. (A) Malic acid is found in many fruits and vegetables and largely responsible for the sour taste found in apples and pears.
Perchloric acid $\left(\mathrm{HClO}_{4}\right)$ is usually found as an aqueous solution. It is an important rocket fuel component.
Nitric acid $\left(\mathrm{HNO}_{3}\right)$ is known as aqua fortis and spirit of niter. It is used as a strong oxidizing agent.
28. (B) Governor General Lord Irwin
(1926-1931)

Lord Wavell
(1943-1947)

Lord Mountbatten
Feb 1947 June 1948

Events

Simon Commission (1928), Fourteen Points of Jinnah (1929), Chittagong armoury raid (1930) and The First Round Table (1930) etc.
C. R. formula (1944), Shimla conference (1945), cabinet mission (1946) and Direct Action Day (1946) etc. India Independence Act 1947
31. (C) Chandrayaan-2 is India's second lunar exploration mission after Chandrayaan-1 developed by the India Space Research Organisation the mission was launched from the second launch pad at Satish Dhawan Space Centre.
32. (D) Dynasty

Founder

Khilji (1290-1320) - Firuz Khalji
Sayyid (1414-1451)- Khizr Khan Slave (1206-1290) - Qutb-al-Din Aibak Lodhi (1451-1526) - Bahlul Khan Lodi
36. (A) Sodium Carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ - Washing Soda Calcium bicarbonate $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}-$ Cleansing lime.
37. (D) Leucoderma causes the loss of skin colour in blotches
Hypertension is condition in which force of the blood against the artery walls is too high.
Arthritis is the swelling and tenderness of one or more of your joints.
39. (C) The seoul peace prize was established to reflect the wishes of the Korean people and to crystalize their desire for everlasting peace on earth.
The order of Abdulaziz Al Saud is awarded to citizens of Saudi Arabia and foreigners for meritorious service to the Kingdom.
King Hamand Order - Bahrain (country) of Renaissance
45. (C) Repco Bank is a cooperative bank established by the Government of India in 1969 to improve financial needs of repatriates from Sri Lanka and Burma. It has been controlled by the Ministry of Home Affairs and operated only in the South India states of Andhra Pradesh, Karnataka, Kerala and Tamil Nadu.
46. (B) World Bank was established on July 1945, Headquartered at Washington D.C. Its members are 189 countries (IBRD) and 173 countries (IDA). Its Motto is Working for a World Free of Poverty. David Malpass is the President.
United Nations was established on $26^{\text {th }}$ June 1945, Headquartered at New York. It is 193 member states and 2 observer states. Antonio Guterres is the Secreatry General.
World Health Organization was established on $7^{\text {th }}$ April 1948 headquartered at Geneva. Tedros Adhanom is Director General.
World Trade Organization was the established on $1^{\text {st }}$ January 1945, Headquartered at Geneva. it has 164 member states. Pascal Lamy is the Director General.
51. (B) As, $25 x^{2}-15 x+2=0 \ldots$....(i)

If α and β are the roots of (i)
Then, $\alpha+\beta=-\frac{(-15)}{25}=\frac{3}{5}$
$\alpha \beta=\frac{2}{25}$
If $(2 \alpha)^{-1}$ and $(2 \beta)^{-1}$ would be roots then
Sum of roots $=\frac{1}{2 \alpha}+\frac{1}{2 \beta}=\frac{\alpha+\beta}{2 \alpha \beta}$
$=\frac{\frac{3}{5}}{2 \times \frac{2}{25}}=\frac{15}{4}$
Product of roots $=\frac{1}{2 \alpha} \times \frac{1}{2 \beta}$
$=\frac{1}{4 \alpha \beta}=\frac{1 \times 25}{4 \times 2}=\frac{25}{8}$
Quadratic equation be
$x^{2}-$ (Sum of roots) $x+$ Product of roots $=0$
$\Rightarrow x^{2}-\frac{15}{4} x+\frac{25}{8}=0$
$\Rightarrow 8 x^{2}-30 x+25=0$
52. (B) As, $x^{2}=y+z$

Then, $x^{2}+x=x+y+z$
$\Rightarrow x(1+x)=x+y+z$
$\Rightarrow \frac{1}{x+1}=\frac{y}{x+y+z}$
Similarly,
$\frac{1}{1+y}=\frac{y}{x+y+z}$
$\frac{1}{1+z}=\frac{z}{x+y+z}$
So,
$\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}$
$=\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}$
$=\frac{x+y+z}{x+y+z}=1$
53. (B) We have,
$\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left\{\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right\}$
$=(\sin x)(\cos x)(\tan x+\cot x)$
$\left[\begin{array}{l}\because \cos \left(\frac{3 \pi}{2}+x\right)=\sin x, \cos (2 \pi+x)=\cos x, \cot \left(\frac{3 \pi}{2}-x\right) \\ =\tan x \text { and } \cot (2 \pi+x)=\cot x\end{array}\right.$
$=\sin \mathrm{x} \cos x\left[\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right]$
$=\sin x \cos x\left\{\frac{\sin ^{2} x \cos ^{2} x}{\sin x \sin x}\right\}$
$=(\sin x \cos x) \times \frac{1}{\sin x \cos x}=1$
54. (C) Figure 1:

Figure 2:

$\sin \sin \theta=\frac{h}{b}$
$\Rightarrow h=b \sin \sin \theta$
Area of triangle $=\frac{1}{2} \times a \times b \sin \sin \theta$
$=\frac{1}{2} a b \sin \sin \theta$
Now, From figure (i)
Area of $\triangle \mathrm{BCD}+$ Area of $\triangle \mathrm{ACD}=$ Area of $\triangle \mathrm{ACD}$
$\Rightarrow \frac{1}{2} \times 5 \times x \times \sin \sin 30^{\circ}+\frac{1}{2} \times 12 \times x \times$
$\sin \sin 60^{\circ}=\frac{1}{2} \times 12 \times 5$
$\Rightarrow 5 x \times \frac{1}{2}+12 x \times \frac{\sqrt{3}}{2}=12 \times 5$
$\Rightarrow x\left(\frac{5}{2}+\frac{12 \sqrt{3}}{2}\right)=12 \times 5$
$\Rightarrow x\left(\frac{5+12 \sqrt{2}}{2}\right)=12 \times 5$
$\Rightarrow x \frac{120}{5+12 \sqrt{2}}$
Hence, the length of $\mathrm{CD}=x$
$=\frac{120}{5+12 \sqrt{2}} \mathrm{~cm}$
55. (C) Given diameter of base and height of cylinder vessel be 2 m and 3.5 m respectively.

Then, radius of base $(r)=\frac{2}{2}=1 \mathrm{~m}$
$h=3.5 \mathrm{~m}$
Let height of roof be 'H' m
Then, volume of roof $=22 \times 20 \times \mathrm{H} \ldots$...(i)
Volume of cylinder vessel $=\pi \mathrm{r}^{2} \mathrm{~h}$
$=\frac{22}{7} \times 1^{2} \times 3.5 \ldots$.
As, (i) = (ii)
Then, $22 \times 20 \times \mathrm{H}=\frac{22}{7} \times 1 \times 3.5$
$\Rightarrow \mathrm{H}=\frac{22 \times 3.5}{7 \times 22 \times 20}$
$\Rightarrow \mathrm{H}=2.5 \mathrm{~cm}$
56. (B) As, given $x \sin \theta=y \cos \theta=\frac{2 z \tan \theta}{1-\tan ^{2} \theta}$

Let $\theta=30^{\circ}$
Then, $x \sin 30^{\circ}=y \cos 30^{\circ}=\frac{2 z \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$
$\Rightarrow \frac{x}{2}=\frac{\sqrt{3} y}{2}=\frac{2 z \times \frac{1}{\sqrt{3}}}{1-\frac{1}{3}}$
$\Rightarrow \frac{x}{2}=\frac{\sqrt{3} y}{2}=\sqrt{3} z=k$ (say)
$\Rightarrow x=2 k, y=\frac{2 k}{\sqrt{3}}, z=\frac{k}{\sqrt{3}}$
Putting the value of x, y and z in $4 z^{2}\left(x^{2}\right.$ $+y^{2}$)
$4\left(\frac{k}{\sqrt{3}}\right)^{2}\left[(2 k)^{2}+\left(\frac{2 k}{\sqrt{3}}\right)^{2}\right]$
$=\frac{4}{3} k^{2}\left[4 k^{2}+\frac{4 k}{3}\right]$
$=\frac{4}{3} k^{2}\left(\frac{16 k^{2}}{3}\right)=\frac{\left(4 k^{2}\right)\left(16 x^{2}\right)}{9}=\frac{64 k^{4}}{9}$
Option (b)
$\left(x^{2}-y^{2}\right)^{2}$
$=\left((2 k)^{2} \frac{(2 k)^{2}}{(\sqrt{3})^{2}}\right)=\left[4 k^{2}-\frac{4 k^{2}}{3}\right]^{2}$
$=\left(\frac{8 k^{2}}{3}\right)^{2}=\frac{64 k^{4}}{9}$
Here, value of $4 z^{2}\left(x^{2}+y^{2}\right)=$ value of $\left(x^{2}-\right.$ $\left.y^{2}\right)^{2}$.
57. (A)

Here, AC parallel to ED.
So, height of all triangle be same.
Let height of triangle be ' h '
area of $\mathrm{ABDE}=5 \times \mathrm{h}$
area of triangle $\mathrm{BDE}=\frac{1}{2} \times 5 \times \mathrm{h}$
area of triangle $B C D=\frac{1}{2} \times 7 \times h$
Required ratio $=5 h: \frac{5 h}{2}: \frac{7 h}{2}=10 h:$
$5 h: 7 h=10: 5: 7$
58. (C) As, $a \%$ of $a+b \%$ of $b=2 \%$ of $a b$
$\frac{a \times a}{100}=\frac{b \times b}{100}=\frac{2 \times a b}{100}$
$\Rightarrow a^{2}+b^{2}=2 a b$
$\Rightarrow a^{2}+b^{2}-2 a b=0$
$\Rightarrow(a-b)^{2}=0$
$\Rightarrow a=b$
Thus, a is 100% of b.
59. (D) The highest power of 10 which would divide 25 ! is greater than 5 .
Hence, the correct option is (d).
60. (C) As,
$\mathrm{P}=\frac{x}{\left(1+\frac{r}{100}\right)}+\frac{x}{\left(1+\frac{r}{100}\right)^{2}}$
$8400=\frac{x}{\frac{11}{10}}+\frac{x}{\frac{121}{100}}$
$\Rightarrow 8400=\frac{10 x}{11}+\frac{100 x}{121}$
$\Rightarrow \frac{110 x+100 x}{121}=8400$
$\Rightarrow 210 x=8400 \times 121$
$\Rightarrow x=\frac{8400 \times 121}{210}$
$\Rightarrow x=4840$
61. (C) Given $\%$ discount be 25%
i.e. $\frac{25}{100}=\frac{1}{4}$ the part

As, marked price $=4$
Then, discount $=4 \times \frac{1}{4}=1$
Then, cost of mobile $=4-1=3$
As, 3 ratio costs be 4875
$\therefore 1$ ratio cost be $\frac{4875}{3}=1625$
Thus, original price $=(1625 \times 4)=6500$
62. (D) Let CP be ₹ x

Then,
$1.06 x-0.94 x=6$
$\Rightarrow x=₹ 50$
63. (C)

Let there be 2 circles with centre O_{1} and O
AB is the common chord
Since both passes through the center of each other as shown in figure So, $\mathrm{O}_{1} \mathrm{O}$ is the radius of both

Let $\mathrm{O}_{1} \mathrm{O}=r=\mathrm{AO}_{1}=\mathrm{AO}$
$\mathrm{AX}=\mathrm{AB} / 2=5 \sqrt{3} \mathrm{~cm}$ (since OX perpendicular to chord bisects it)
AOO_{1} forms an equilateral triangle with on side $=$ radius $=r$
$\sin 60=\frac{\sqrt{3}}{2}=\frac{\mathrm{AX}}{\mathrm{AO}}=\frac{5 \sqrt{3}}{r}$
So, $r=10 \mathrm{~cm}$
So, diameter $=20 \mathrm{~cm}$.
64. (C)

Initially the person is travelling from south to north i.e, D to A
He takes 150° right turn and moves AB distance and then he takes 60° left turn travels BC
$\mathrm{AB}=20 \mathrm{~km} / \mathrm{hr} \times 15 / 60 \mathrm{hr}=5 \mathrm{~km}$
$\mathrm{BC}=30 \times 20 / 60=10 \mathrm{~km}$
We know that distance between both the streets is $\mathrm{DC}=\mathrm{DB}+\mathrm{BC}$
$\mathrm{DB}=\mathrm{AB} \cos 60^{\circ}=5 . \frac{1}{2}=2.5 \mathrm{~km}$
So, the distance between streets $=12.5$ km .
65. (A) $\operatorname{Sin}^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cdot \cos ^{2} \theta-1$
$\operatorname{Sin}^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cdot \cos ^{2} \theta \cdot 1-1$
$\operatorname{Sin}^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cdot \cos ^{2} \theta-1$
$\operatorname{Sin}^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cdot \cos ^{2} \theta\left(\sin ^{2} \theta+\right.$ $\left.\cos ^{2} \theta\right)-1$
$\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}-1=1-1=0$
66. (C) $\frac{a}{b+a}=\frac{b}{c+a}=\frac{c}{a+b}$

Taking reciprocal and adding 1 to each ratio we get;
$\frac{(b+c)}{a+1}=\frac{b}{(c+a)+1}=\frac{c}{(a+b)+1}$
Or $\frac{(a+b+c)}{a}=\frac{(a+b+c)}{b}=\frac{(a+b+c)}{c}$
So, this can only be equal when $a=b=c$ or $a+b+c=0$

When, $a=b=c$ we get $\frac{a}{(b+c)}=\frac{1}{2}$
When, $a+b+c=0$ we get $b+c=-a$
So, $\frac{a}{(b+c)}=-1$
So, the ratios are $\frac{1}{2}$ or -1 .
67. (C) As, $=\frac{1}{t^{t-1}}, y=\frac{1}{t^{t-1}}$
$y=\left(t^{t}\right)^{\frac{1}{t-1}}$
$\Rightarrow y=(t) \frac{1}{\left(t^{t-1}\right)}$
$\Rightarrow y=t^{x}$
$\Rightarrow t=(y)^{\frac{1}{x}}$
$x=\frac{1}{t^{t-1}}$
$\Rightarrow x^{t}=\frac{1}{t^{t-1}}$

From (i) and (ii)
$x^{\frac{y}{x}}=y$
$\left(x^{y}\right)^{\frac{1}{x}}=y$
$\Rightarrow x^{y}=y^{x}$
68. (A) By alligation,

Girls		Boys 24
	30	32
2	$:$	6
1	$:$	3

So, the number of girls will be $=$
$\left(\frac{1}{(1+3)}\right) \times 100=25$
69. (C) Let present age of Kanchan be x
$x-4=n^{3}$
$x+4=\sqrt{k}$
Since, n is a no. > 1 on putting $n=2$ we get $x=12$
So, $x+4=16$ which is square of an integral number thus consistent with given information. Now, after how many years her age becomes such that age - 1 is a square and age +1 is a cube. Using option if we add 14 years to current age , we get age $=26$ years
Here, 25 is a square and 27 is a cube Thus, making 14 the correct answer
70. (A) $\frac{1+p x}{1-p x} \sqrt{\frac{1-q x}{1+q x}=1}$

On squaring and cross multiplying, we get
$\left(\frac{1+p x}{1-p x}\right)^{2}=\left(\frac{1+p x}{1-p x}\right)^{2}$
$\frac{1-p^{2} x^{2}+2 p x}{1+p^{2} x^{2}-2 p x}=\frac{1+q x}{1-q x}$
On applying componendo and dividendo
$\frac{2\left(1+p^{2} x^{2}\right)}{-4 p x}=\frac{2}{-2 p x}$
On solving the above equation, we get
$x= \pm \frac{1}{p} \sqrt{\frac{2 p-q}{q}}$
71. (D) Let the total work $=1$

For, full work let 'A' takes days $=a$
1 day work of 'A' = $\frac{1}{a}$
Similarly, 'B' takes days b
1 day work of 'B' = $\frac{1}{b}$
5 days work of:
$(A+B)=5\left(\frac{1}{a}+\frac{1}{b}\right)$
If ' A ' worked twice the original efficiency,
The 1 day of work of 'A' $=\frac{2}{a}$
If 'B' worked $\frac{1}{3} r d$ effectively, the 1 day
work of 'B' $=\frac{1}{3 b}$
3 days work both $=3\left(\frac{2}{a}+\frac{1}{3 b}\right)$
A.T.Q.,
$5\left(\frac{1}{a}+\frac{1}{b}\right)=3\left(\frac{2}{a}+\frac{1}{3 b}\right)$
$\Rightarrow \frac{5}{a}+\frac{5}{b}=\frac{6}{a}+\frac{1}{b}$
$\Rightarrow \frac{4}{b}=\frac{1}{a}$
$\Rightarrow 4 a=b$
Putting above eq. in (i)
$5\left(\frac{1}{a}+\frac{1}{b}\right)=1$
$\Rightarrow \frac{5}{4 a}=\frac{1}{5}$
$\Rightarrow \mathrm{a}=6 \frac{1}{4}$ days.
72. (B) Let the speed of stream $=x$
A.T.Q.,
$\frac{15}{10-x}=\frac{25}{10+x}$
$\Rightarrow x=5$
Then, speed of stream $=2.5 \mathrm{~km} / \mathrm{hrs}$

Direction (73-75):

73. (A)

The number of people who read only I, only II and only II are
$1 \%+19 \%+0 \%=20 \%$ of total population
$=\frac{20}{100} \times 100000=20000$.
74. (A) As we can see from the above venn diagram the number of people who read two or more newspapers are $1 \%+1 \%+$ $3 \%+7 \%=12 \%=\frac{12}{100} \times 100000=12000$
75. (D) Number of people who do not read any of these newspapers.
Number of people who read at least one of these newspapers $=1 \%+1 \%+3 \%+$ $1 \%+7 \%=19 \%=32 \%$ of total population $=32000$
Required number of people $=100000-$ $32000=68000$.

MEANINGS IN ALPHABETICAL ORDER

Word

Purlieu
Pittance
Congeries
Jejune
Parry
Ravel
Adolescence
Secretarial
Bibulous
Insolent
Flamboyant

Meaning in English

the area surrounding a place
a very small amount of money
a disorderly collection, a jumble too simple
Avoid or try to avoid fulfilling, answering or performing to become divided into separate threads the period of life between childhood and adulthood a government official in charge of a department fond of alcoholic beverages having or showing a lack of respect for other people having a very noticeable quality that attracts a lot of attention

Meaning in Hindi
अड . T' स पड. ${ }^{\prime}$ स
बहु तथा T' ड. T स पै स
ढ. र
रस्की न
कु छ करने से बचना
सु लझा ना
किश्र † रा वस था T
संचवी य
परा बी
बदतमी ज
ते जारा ${ }^{`}$ र

हा बरा हट

SSC MOCK TEST - 211 (ANSWER KEY)

1.	(C)	26.	(D)	51.	(B)	76.	(C)
2.	(D)	27.	(B)	52.	(B)	77.	(C)
3.	(D)	28.	(A)	53.	(B)	78.	(C)
4.	(D)	29.	(A)	54.	(C)	79.	(A)
5.	(C)	30.	(B)	55.	(C)	80.	(D)
6.	(D)	31.	(C)	56.	(B)	81.	(B)
7.	(D)	32.	(D)	57.	(A)	82.	(A)
8.	(D)	33.	(D)	58.	(C)	83.	(D)
9.	(A)	34.	(D)	59.	(D)	84.	(C)
10.	(A)	35.	(B)	60.	(C)	85.	(C)
11.	(C)	36.	(A)	61.	(C)	86.	(A)
12.	(B)	37.	(D)	62.	(D)	87.	(A)
13.	(A)	38.	(A)	63.	(C)	88.	(C)
14.	(B)	39.	(C)	64.	(C)	89.	(C)
15.	(B)	40.	(B)	65.	(A)	90.	(B)
16.	(C)	41.	(D)	66.	(C)	91.	(A)
17.	(A)	42.	(B)	67.	(C)	92.	(A)
18.	(A)	43.	(C)	68.	(A)	93.	(D)
19.	(C)	44.	(C)	69.	(C)	94.	(A)
20.	(B)	45.	(C)	70.	(A)	95.	(B)
21.	(D)	46.	(B)	71.	(D)	96.	(A)
22.	(C)	47.	(A)	72.	(B)	97.	(D)
23.	(C)	48.	(D)	73.	(A)	98.	(D)
24.	(C)	49.	(B)	74.	(A)	99.	(B)
25.	(B)	50.	(A)	75.	(D)	100.	(A)

76. (C) The correct sentence out of the given fragments will be- "Could she cite any precedent in support of her case?"
77. (C) 'Discuss' does not take any preposition.
78. (C) Replace 'done' by 'made'. 'make a mistake' is.
79. (A) Momentary means for a moment (क्षा पि क)
80. (D) 'Back up' means 'to support'.
81. (B) Call up - to make a telephone call (ष T^{\prime} न करना)
Call off - to cancel (रद्द करना)
Call in - to summon (बु ला ना)
Call down - to reprimand (ड T° ट ना)
88. (C) 'Cut both ways' means to serve both sides of an argument (of a point) or to
89. (C) 'Yesterday' on adverb does not take any preposition.

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock Test.

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

