52 SSC Mains (Maths) Answer with Explanation

1. (D) $(a-1) \sqrt{2}+3=b \sqrt{2}+a$

$$
\begin{aligned}
& \Rightarrow a=3, a-1=b \\
& \Rightarrow 3-1: b \Rightarrow b=2 \\
& \therefore a+b=3+2=5
\end{aligned}
$$

2. (B) $\mathrm{OP}=2$
$O Q=\frac{3}{2}$

$$
\begin{aligned}
\therefore \mathrm{PQ} & =\sqrt{\mathrm{OP}^{2}+\mathrm{OQ}^{2}} \\
& =\sqrt{2^{2}+\left(\frac{3}{2}\right)^{2}} \\
& =\sqrt{4+\frac{4}{9}} \\
& =\sqrt{\frac{16+9}{4}}=\sqrt{\frac{25}{4}}=\frac{5}{2}=2.5 \mathrm{~cm}
\end{aligned}
$$

3. (A) A.T.Q,

Putting $x=0$ in $9 x-12 y=108$, we get, $y=-9$
Putting $\mathrm{y}=0$ in $9 x-12 y=108$,
we get, $x=12$
$\therefore \mathrm{OA}=12, \mathrm{OB}=9$
$\mathrm{AB}=\sqrt{\mathrm{OA}^{2}+\mathrm{OB}^{2}}$

$$
\begin{aligned}
& =\sqrt{12^{2}+9^{2}} \\
& =\sqrt{144+81}=\sqrt{225}=15 \text { units }
\end{aligned}
$$

4. (A) $\left(x+\frac{1}{x}\right)^{2}$
$\Rightarrow x+\frac{1}{x}=\sqrt{3}$
On cubing both sides,
$x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)=3 \sqrt{3}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=3 \sqrt{3}-3 \sqrt{3}=0$
$\Rightarrow x^{6}+1=0$
$\therefore x^{206}+x^{200}+x^{90}+x^{84}+x^{18}+x^{12}+x^{6}+1$
$=x^{200}\left(x^{6}+1\right)+x^{84}\left(x^{6}+1\right)+x^{12}\left(x^{6}+1\right)+\left(x^{6}+1\right)=0$
5. (A) $\frac{\sqrt{7}}{\sqrt{16+6 \sqrt{7}}-\sqrt{16-6 \sqrt{7}}}$

$$
=\frac{\sqrt{7}}{\sqrt{9+7+2 \times 3 \times \sqrt{7}}-\sqrt{9+7-2 \times 3 \times \sqrt{7}}}
$$

$$
\sqrt{7}
$$

$$
\sqrt{(3)^{2}+(\sqrt{7})^{2}+2 \times 3 \times \sqrt{7}}-\sqrt{(3)^{2}+(\sqrt{7})^{2}-2 \times 3 \times \sqrt{7}}
$$

$$
=\frac{\sqrt{7}}{\sqrt{(3+\sqrt{7})^{2}}-\sqrt{(3-\sqrt{7})^{2}}}
$$

$$
=\frac{\sqrt{7}}{(3+\sqrt{7})-(3-\sqrt{7})}=\frac{\sqrt{7}}{2 \sqrt{7}}=\frac{1}{2}
$$

6. (B) $a \otimes b=a+b$ when, a and b both positive $a \otimes b=\sqrt{a^{2}+b^{2}}$ for any another value Then expression,
$\frac{10-4}{\sqrt{9+16}}=\frac{6}{5}$
7. (A) A.T.Q,

Internal side $=8 \mathrm{~cm}$

$\therefore \triangle \mathrm{OMN}$ is an equilateral triangle
$\mathrm{AO}=\frac{\sqrt{3}}{2} \times 8=4 \sqrt{3}$
$\mathrm{OA}=4 \sqrt{3}$
$O B=6 \sqrt{3}$
OB become height of the larger hexagon
$\frac{\sqrt{3}}{2} a=6 \sqrt{3}$
$\mathrm{a}=12$
side $=12 \mathrm{~cm}$
Area of shaded region
$=\frac{\sqrt{3}}{4}(12)^{2} \times 6-\frac{\sqrt{3}}{4} \times(8)^{2} \times 6$
$=\frac{\sqrt{3}}{4} \times 6[144-64]=120 \sqrt{3}$
8. (B) A.T.Q,

Intial age of Bigger son $=14$ years
Smaller son $=12$ years
$=\mathrm{B}\left(1+\frac{1}{20}\right)^{4}=\mathrm{S}\left(1+\frac{1}{20}\right)^{6}$
$\frac{B}{S}=\frac{441}{400}$
841 units $\rightarrow ₹ 120000$
400 units $\rightarrow ₹ 57074.9$
9. (C) ATQ,

He has to pay ₹ 7202 at the end of third year to clear the loan
10. (A) A.T.Q,

Here, $h=$ height of tower $A B$
$\tan \theta=\frac{h}{a}$
$\tan \left(90^{\circ}-\theta\right)=\frac{h}{b}$
or, $\cot \theta=\frac{h}{b}$
$\Rightarrow \tan \theta=\frac{b}{h}$
From equation (i) and (ii)
$\frac{h}{a}=\frac{b}{h} \Rightarrow h=\sqrt{a b}$
11. (A) Here,
$3^{50}=\left(3^{5}\right)^{10}=243^{10}$,
$4^{40}=\left(4^{4}\right)^{10}=256^{10}$,
$5^{30}=\left(5^{3}\right)^{10}=125^{10}$,
and,
$6^{20}=\left(6^{4}\right)^{10}=36^{10}$,
\therefore Greatest number $=256^{10}=4^{40}$
12. (C) A.T.Q,
$1 \mathrm{M}=2 \mathrm{C}$
and,
$(4 \mathrm{M}+5 \mathrm{~W}+6 \mathrm{C}) \times 15=(2 \mathrm{M}+3 \mathrm{~W}+2 \mathrm{C}) \times 31$
$\Rightarrow(7 \mathrm{M}+5 \mathrm{~W}) \times 15=(3 \mathrm{M}+3 \mathrm{~W}) \times 31$
On solving, we get
$4 \mathrm{M}=6 \mathrm{~W}$
Then, the ratio of capacity of man, woman and child $=6: 4: 3$
Let 1 man, 1 woman and 1 child can complete the work in x days.
Then,
$(6 \times 4+4 \times 5+6 \times 3) \times 15$
$=(6+4+3) \times x$
$\Rightarrow 62 \times 15=13 x$
$\Rightarrow x=\frac{930}{13}=71 \frac{7}{13}$ days
\therefore Required number of days $=71 \frac{7}{13}$ days
13. (B) Let the investments of the personbe P P_{2} and P_{3}
A.T.Q,
$P_{1}\left[\frac{r_{1} t_{1}}{100}+1\right]=P_{2}\left[\frac{r_{2} t_{2}}{100}+1\right]=P_{3}\left[\frac{r_{3} t_{3}}{100}+1\right]$
$\Rightarrow P_{1}\left[\frac{6 \times 5}{100}+1\right]=P_{2}\left[\frac{8 \times 5}{100}+1\right]=P_{3}\left[\frac{10 \times 6}{100}+1\right]$
$\Rightarrow 13 \mathrm{P}_{1}=14 \mathrm{P}_{2}=16 \mathrm{P}_{3}$
Then,
$P_{1}: P_{2}: P_{3}=14 \times 16: 13 \times 16: 13 \times 14$
= 112: 104: 91
\therefore Required ratio $=112: 104: 91$
14. (B) Let the total profit be $2 x$.

Now the amount which B gets
as allowance $=12 \times 150=₹ 1800$
Now,
The profit shared between A and B
$=\frac{2 x-1800}{2}=x-900$
Now, the amount which B pays to A
$=50,000 \times \frac{10}{100}=₹ 5000$
A.T.Q,
$\frac{x-900+5000}{x-900-5000+1800}=\frac{3}{2}$
$\Rightarrow \frac{x+4100}{x-4100}=\frac{3}{2}$
$\Rightarrow 2 x+2 \times 4100=3 x-3 \times 4100$
$\Rightarrow x=5 \times 4100$
$\Rightarrow x=20500$
Then,
Total profit
$=2 x=2 \times 20500=₹ 41000$
15. (A) Angles of triangle,
$\Rightarrow(a-d)^{\circ}, a^{\circ},(a+d)^{\circ}$
$\therefore a-d+a+a+d=180^{\circ}$
$\Rightarrow 3 a=180^{\circ} \Rightarrow \quad a=60$
$\therefore \frac{a-d}{a+d}=\frac{60}{\pi}=\frac{60}{180}=\frac{1}{3}$
$\Rightarrow \frac{60-d}{60+d}=\frac{1}{3}$
$\Rightarrow 180-3 d=60+d$
$\Rightarrow 4 d=120^{\circ} \Rightarrow \quad d=30^{\circ}$
$a-d=60^{\circ}-30^{\circ}=30^{\circ}$
$a=60^{\circ}$
$a+d=60^{\circ}+30^{\circ}=90^{\circ}$
So, Angles of triangle are $30^{\circ}, 60^{\circ}$ and 90°
16. (A) In the given figure after leaving the point A, balloon reaches point B vertically upward in 1.5 min

Here, $\mathrm{O} \rightarrow$ the observer
So, $\angle \mathrm{BOA}=60^{\circ}$ (observer)
$\Rightarrow \tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{OA}}$
$\Rightarrow \mathrm{AB}=\mathrm{OA} \tan 60^{\circ}$

$$
=200 \times \sqrt{3}
$$

So, speed of the balloon

$$
\begin{aligned}
& =\frac{\text { Distance }}{\text { Time }} \\
& =\frac{\mathrm{AB}}{\text { time to reach from A to B }} \\
& =\frac{200 \sqrt{3} \mathrm{~m}}{1.5 \times 60}=3.87 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

17. (C) A.T.Q,

Here,
$\mathrm{AB} \rightarrow$ height of the house
and CD \rightarrow height of the window
So, $\angle \mathrm{ADB}=90^{\circ}$
Also,
here line AD makes an angle θ° with the vertical line DE.
$\Rightarrow \angle \mathrm{ADE}=\theta^{\circ}$ also,
$\Rightarrow \angle \mathrm{BDC}=90^{\circ}-\theta^{\circ}$
In $\triangle B C D$,
$\tan \left(90^{\circ}-\theta\right)=\frac{B C}{C D}=\frac{d}{C D}$ or, $\cot \theta=\frac{d}{C D}$
$\Rightarrow \mathrm{CD}=\frac{\mathrm{d}}{\cot \theta}=d \tan \theta$
Also,
In $\triangle \mathrm{ADE}$,
$\tan \theta=\frac{\mathrm{AE}}{\mathrm{DE}}=\frac{\mathrm{d}}{\mathrm{DE}} \Rightarrow \mathrm{DE}=\frac{\mathrm{d}}{\tan \theta}=d \cot \theta$
So, the height of the house,
$\mathrm{AB}=\mathrm{CD}+\mathrm{DE}$
$=d(\tan \theta+\cot \theta)$
$=d\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)=d\left(\frac{1}{\cos \theta \times \sin \theta}\right)$
$=d \sec \theta \operatorname{cosec} \theta$
18. (A) A.T.Q,

Let $A B C$ is a Δ and a, b and c are the lengths of $B C, C A$ and $A B$ respectively.
$\because \sin A: \sin B: \sin C=1: 1: \sqrt{2}$

By sine formula:

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\Rightarrow a: b=\sin A: \sin B$ and $b: c=\sin B: \sin C$
$\Rightarrow a: b: c=1: 1: \sqrt{2}$
Let $a=x, b=x$ and $c=\sqrt{2} x$

$$
\begin{aligned}
c^{2}:\left(a^{2}+b^{2}\right) & =(\sqrt{2} x)^{2}:\left(x^{2}+x^{2}\right) \\
& =2 x^{2}: 2 x^{2}=1: 1
\end{aligned}
$$

19. (B) In $\triangle A C D$ and $\triangle A B C$,
$\angle \mathrm{CDA}=\angle \mathrm{CAB}=90^{\circ}$
$\because \angle \mathrm{C}$ is common.
$\triangle \mathrm{ACD} \sqcup \triangle \mathrm{ABC}$

$\therefore \frac{\triangle \mathrm{ACD}}{\triangle \mathrm{ABC}}=\frac{\mathrm{AC}^{2}}{\mathrm{BC}^{2}}$
$\Rightarrow \frac{10}{40}=\frac{9^{2}}{\mathrm{BC}^{2}}$
$\Rightarrow \mathrm{BC}^{2}=4 \times 9^{2}$
$\therefore \mathrm{BC}=2 \times 9=18 \mathrm{~cm}$
20. (B) A.T.Q,

$$
\begin{aligned}
\mathrm{OD} & =\sqrt{15^{2}-12^{2}} \\
& =\sqrt{225-144} \\
& =\sqrt{81}=9
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{OD}=\sqrt{13^{2}-12^{2}} \\
& \quad=\sqrt{169-144}=\sqrt{25}=5 \mathrm{~cm} \\
& \therefore \mathrm{OO}^{\prime}=9+5=14 \mathrm{~cm}
\end{aligned}
$$

21. (B) ATQ,

$\mathrm{DE} / / \mathrm{BC}$
$\angle \mathrm{ADE}=\angle \mathrm{ABC}$
$\angle \mathrm{AED}=\angle \mathrm{ACB}$
$\therefore \triangle \mathrm{ADE} \sqcup \triangle \mathrm{ABC}$
$\therefore \frac{\square \mathrm{BDEC}}{\triangle \mathrm{ADE}}=\frac{1}{1}$
$\Rightarrow \frac{\square \mathrm{BDEC}}{\triangle \mathrm{ADE}}+1=1+1$
$\Rightarrow \frac{\Delta \mathrm{ABC}}{\Delta \mathrm{ADE}}=2=\frac{\mathrm{AB}^{2}}{\mathrm{AD}^{2}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}=\sqrt{2} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}-1=\sqrt{2}-1$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{1}{\sqrt{2}-1}$
$\mathrm{AD}: \mathrm{BD}=1: \sqrt{2}-1$
22. (B) A.T.Q,

$\mathrm{XZ}=r+9$ and $\mathrm{YZ}=r+2$
$\therefore \mathrm{XY}^{2}=\mathrm{XZ}^{2}+\mathrm{ZY}^{2}$
$\Rightarrow 17^{2}=(r+9)^{2}+(r+2)^{2}$
$\Rightarrow 289=r^{2}+18 r+81+r^{2}+4 r+4$
$\Rightarrow 2 r^{2}+22 r+85-289=0$
$\Rightarrow 2 r^{2}+22 r-204=0$
$\Rightarrow r^{2}+11 r-102=0$
$\Rightarrow r^{2}+17 r-6 r-102=0$
$\Rightarrow r(r+17)-6(r+17)=0$
$\Rightarrow(r-6)(r+17)=0$
$\Rightarrow r=6 \mathrm{~cm}$
23. (A) A.T.Q,

Length of transverse tangent
$=\sqrt{X Y^{2}-\left(r_{1}+r_{2}\right)}$
$\Rightarrow 8=\sqrt{\mathrm{XY}^{2}-9^{2}}$
$\Rightarrow 64=\mathrm{XY}^{2}-81$
$\Rightarrow X Y^{2}=64+81=145$
$\Rightarrow X Y=\sqrt{145}$
24. (C) $\because \mathrm{AB}$ is diameter
$\Rightarrow \angle \mathrm{ADB}=90^{\circ}$
also $\mathrm{DO} \perp \mathrm{AB}$ at ' O^{\prime} the centre of the circle,
$\therefore \triangle \mathrm{ADO} \cong \triangle \mathrm{BDO}$ (by SAS cong. Rule)
$\Rightarrow \mathrm{AD}=\mathrm{DB} \quad$ (by CPCT)
$\therefore \angle \mathrm{DAB}=\angle \mathrm{ABD}=45^{\circ}$
But $\angle \mathrm{ACD}=\angle \mathrm{ABD}$ (angles in the same segment of a circle)
$=45^{\circ}$
25. (A) $\angle \mathrm{CAD}=\angle \mathrm{CBD}$ (Angles in the same segment of a circle)
$=60^{\circ}$
Now $\angle \mathrm{BAD}=\angle \mathrm{BAC}+\angle \mathrm{CAD}$

$$
=30+60^{\circ}=90^{\circ}
$$

Now $\angle \mathrm{BAD}+\angle \mathrm{BCD}=180^{\circ}$
($\therefore \square \mathrm{ABCD}$ is cyclic)
$\Rightarrow 90^{\circ}+\angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=180^{\circ}-90^{\circ}=90^{\circ}$
26. (A) Perimeter of the rope
$=3 \times\left(\frac{1}{3}\right.$ of circumference of a circle +
$3 \times$ diameter of a circle)
$=3 \times \frac{1}{3} \times 2 \pi+3 \times 2$
$=2 \pi+6$
27. (A) A.T.Q,
$\because \mathrm{DC}|\mid \mathrm{AB}$ (given)
$\Rightarrow \triangle \mathrm{AOB} \sim \triangle \mathrm{COD}$ (by AA similarity)
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\Delta \mathrm{COD})}=\frac{\mathrm{AB}^{2}}{\mathrm{DC}^{2}}$
$=\frac{(3 \mathrm{DC})^{2}}{\mathrm{DC}^{2}}=\frac{9 \mathrm{DC}^{2}}{\mathrm{DC}^{2}}=\frac{9}{1}=9: 1$
28. (B) In the given figure, $\triangle \mathrm{ABC}$ is a right angle triangle, where $\angle \mathrm{B}=90^{\circ}$
AE, BD and CF are the 3 medians
Now, $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$ and $\mathrm{AC}=15 \mathrm{~cm}$
$\mathrm{BD}=\frac{1}{2} \mathrm{AC} \Rightarrow \mathrm{BD}^{2}=\frac{1}{4} \mathrm{AC}^{2 \mid}$
$\Rightarrow \mathrm{AE}^{2}+\mathrm{CF}^{2}=\frac{5}{4} \mathrm{AC}^{2}$
Also,
$\Rightarrow \mathrm{BD}^{2}+\mathrm{AE}^{2}+\mathrm{CF}^{2}=\left(\frac{1}{4}+\frac{5}{4}\right) \mathrm{AC}^{2}$
$=\frac{6}{4} \mathrm{AC}^{2}=\frac{6}{4} \times 225=337.5 \mathrm{~cm}$
29. (A) A.T.Q,

	Red	Yellow	
Total	5	4	$\times 10$
Upper half	3	2	$\times 9$

New Ratio becomes

	Red	Yellow
Total	50	40
Upper half	27	18
lower half	23	22
Then,		
Required ratio $=23: 22$		

30. (A) d_{m} : diameter of the moon
d_{e} : diameter of the earth

Case - I

$\because \mathrm{d}_{\mathrm{m}}=\frac{1}{4} \mathrm{~d}_{\mathrm{e}}$
Let r unit be the radius of the earth.
then, $\mathrm{d}_{\mathrm{m}}=\frac{1}{4} 2 r=\frac{r}{2}$ unit
R_{m} : radius of the moon $=\frac{\mathrm{r}}{2 \times 2}=\frac{r}{4}$ unit
$\frac{V_{e}}{V_{m}}=\frac{\frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi\left(\frac{r}{4}\right)^{3}}=64: 1$
31. (B) Perimeter $=2(l+b)$

$$
\mathrm{P}=2(l+w)
$$

$\frac{P}{2}-w=l$
Its area $=l \times b$
$k=\left(\frac{P}{2}-w\right) \times w_{\mathrm{s}}$
$\Rightarrow 2 k=P w-2 w^{2}$
$\Rightarrow 2 w^{2}-\mathrm{P} w+2 k=0$
32. (C) Volume of the ice-cream in cylindrical container $=\pi r^{2} h=\frac{22}{7} \times 6 \times 6 \times 15 \mathrm{~cm}^{3}$
Let rcm be the radius of the cone its height $=4 r \mathrm{~cm}$
Volume of 1 cone with hemispherical top
$=\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}$
$=\frac{1}{3} \pi r^{2} \times 4 r+\frac{2}{3} \pi r^{3}$
$=\frac{4}{3} \pi r^{3}+\frac{2}{3} \pi r^{3}$
$=\frac{6}{3} \pi r^{3}=2 \pi r^{3}$
Volume of 10 such cones $=10 \times 2 \pi r^{3} \mathrm{~cm}^{3}$
A.T.Q,
$\frac{22}{7} \times 6 \times 6 \times 15=10 \times 2 \pi r^{3}$
$\frac{22}{7} \times 6 \times 6 \times 15=10 \times 2 \times \frac{22}{7} \times r^{3}$
$\Rightarrow r^{3}=\frac{6 \times 6 \times 15}{10 \times 5}=\frac{6 \times 6 \times 6}{2 \times 2 \times 2}$
$\Rightarrow r=\frac{6}{2} \mathrm{~cm}=3 \mathrm{~cm}$
33. (D) Time $=3: 18: 07-1: 55: 08$

$$
=1: 22: 59
$$

Total number of swith on

$$
\begin{aligned}
& =\frac{1 \times 3600+22 \times 60+59}{13} \\
& =384
\end{aligned}
$$

34. (A) Area of rectangular field $=\frac{1000}{1} \times 4 \mathrm{~m}^{2}$

$$
=4000 \mathrm{~m}^{2}
$$

\because breadth $=50 \mathrm{~m}$
\therefore Length $=\frac{4000}{50}=80 \mathrm{~m}$
New length of field $=(80+20) \mathrm{m}=100 \mathrm{~m}$
New area $=100 \times 50=5000$ sq.m
\therefore Required expenditure $=₹\left(5000 \times \frac{1}{4}\right)$

$$
\text { = ₹ } 1250
$$

35. (C) Increase in water level
$=\frac{\text { Volume of sphere }}{\text { Area of base of cylinder }}$
$=\frac{\frac{4}{3} \pi r^{2}}{\pi r^{2}}=\frac{4}{3} r=\frac{4}{3} \times 3.5=\frac{14}{3} \mathrm{~cm}$.
\therefore Required water level
$=7-\frac{14}{3}=\frac{7}{3} \mathrm{~cm}$.
36. (A) Curbed surface of cylinder $=2 \pi r h$

Case - II

Radius $=\frac{1}{3} r:$ height $=6 h$
Curved surface $=2 \pi \times \frac{1}{3} r \times 6 h$
$=(2 \pi \mathrm{rh}) \times 2$
\therefore Increase will be twice.
37. (A) Total cost price of 80 dozen

Bananas at ₹ 10 per dozen

$$
\text { = ₹ } 800
$$

12 dozen got rotten and its selling price is,

$$
\begin{aligned}
& =₹ 12 \times 6 \\
& =₹ 72
\end{aligned}
$$

Remaining dozens sell it 14 per dozen $=₹ 14 \times 68$
Total selling price $=1024$
Profit $\%=\frac{1024-800}{800} \times 100=28 \%$
38. (A) A.T.Q,
$2\left[2016^{2}-2015^{2}+2014^{2}-2013^{2}\right.$
$\left.+\ldots \ldots .+2^{2}-1^{2}\right]$
$=2[(2016+2015)(2016-2015)+(2014$
$+2013)(2014-2013) \ldots \ldots(2+1)(2-1)$
$=2[2016+2015+2014+2013+\ldots \ldots .+1]$
$=2 \times \frac{2016 \times 2017}{2}=2016 \times 2017$
Now, $2016 \times 2017=2016^{2}+2016$
\therefore The number which must be subtracted
to make it a perfect square $=2016$
39. (C) S.I for 2 years $=\frac{16000 \times 15 \times 2}{100}=4800$

Principal for C.I $=16000+4800=20800$
C.I Rate $\rightarrow 12 \%=\frac{12}{100}=\frac{3}{25}$

Compound Interest for $1^{\text {st }}$ year
$=20800 \times \frac{3}{25}=2496$
C.I for $2^{\text {nd }}$ year $=20800 \times \frac{3}{25}+2496 \times \frac{3}{25}$
$=2496+299.52=2795.52$
Total interest after 4 years $=4800+2496$

+ 2796.52 = 10091.52

40. (C) Let 1 kg tea $=₹ 1$

20 kg tea $=₹ 20$

Profit $=\frac{21-18}{18} \times 100=16.66 \%$
41. (A) A.T.Q,

Area of the minor segment
$=$ sector area OABO - area of $\triangle \mathrm{OAB}$
$=\frac{3.14 \times 10 \times 10 \times 90^{\circ}}{360^{\circ}}-\frac{1}{2} \times 10 \times 10$
$=\frac{314}{4}-50=78.5-50=28.5 \mathrm{~cm}^{2}$
Area of the major segment
$=$ area of circle - area of minor segment
$=3.14 \times 10 \times 10-28.5$
$=314-28.5=205.5 \mathrm{~cm}^{2}$
42. (C) A.T.Q,

Total area of the square field
$=(44 \times 44) \mathrm{m}^{2}=1936 \mathrm{~m}^{3}$
At the rate of ₹ 1 per sq. metre, the total cost would be ₹ 1936 ,
but the total cost = ₹ 3536
Difference = ₹ 3536 - ₹ $1936=₹ 1600$
$\Rightarrow ₹ 1600$ would be the extra cost on the flower bed and as the extra cost on the flower bed is ₹ 1 per sq. metre
\Rightarrow Area of flower bed $=1600$ sq. metres
\Rightarrow Side of flower bed $=\sqrt{1600} \mathrm{~m}^{2}=40 \mathrm{~m}$
So, width of the gravel path $=\frac{44-40}{2}$
= 2 metres
43. (B) A.T.Q,

$\square \mathrm{ABCD}$ is a trapezium
Draw $\mathrm{CE} \| \mathrm{DA}$ intersecting AB at E .
$\Rightarrow \square \mathrm{ABCE}$ is a $\| \mathrm{gm}$.
$\Rightarrow \mathrm{DA}=\mathrm{CE}=26 \mathrm{~cm}$
In $\triangle B C E$,
$S=\frac{17+25+26}{2}=\frac{68}{2}=34$
Area ($\triangle \mathrm{BCE}$),
$=\sqrt{34(34-17)(34-25)(34-26)} \mathrm{cm}^{2}$
$=\sqrt{34 \times 17 \times 9 \times 8}$
$=\sqrt{2 \times 17 \times 17 \times 3 \times 3 \times 2 \times 2 \times 2}$
$=2 \times 2 \times 3 \times 17=204 \mathrm{~cm}^{2}$
$\Rightarrow \frac{1}{2} \times \mathrm{BE} \times$ height $=204$
or, $\frac{1}{2} \times 17 \times \mathrm{CM}=204$
$\Rightarrow \mathrm{CM}=\frac{204 \times 2}{17}=24 \mathrm{~cm}$
Area $($ Trap. $A B C D)=\frac{1}{2} \times(60+77) \times 24$
$=\frac{1}{2} \times 137 \times 24=1644$ sq. cm
44. (B) A.T.Q,

$$
25 \%=\frac{1}{4}
$$

Time A : B
4:5
Effi 5: 4
Let, total work is W

A	A+B	B
$\frac{W}{2}$	4 days	$\frac{W}{20}$
5	9	4

$\frac{\mathrm{W}}{10}+4+\frac{\mathrm{W}}{80}=13$ days
$\Rightarrow \mathrm{W}=80$ units
B alone does the work,
$\frac{80}{4}=20$ days
45. (C) A.T.Q,

Age $\geq 51 \rightarrow 30$
Age $<51 \rightarrow 39$ (at most)
(y)
(x)
Overall average ages are $\rightarrow 38$ years
Largest possible average age,
$30 \times 51+x y=38(30+x)$
$\Rightarrow 390=(38-y)$
For y maximum $x=39$
$\Rightarrow 38-y=10$
$\Rightarrow y=28$ years
46. (D) A.T.Q,

Let the speed of Partha \rightarrow P km/hr
Speed of Narayan \rightarrow N km/hr

47. (B) Let the filling pipes capacity $\rightarrow x$

Draining pipes capacity $\rightarrow y$
$\frac{6}{x}-\frac{5}{y}=\frac{1}{6}$ and $\frac{5}{x}-\frac{6}{y}=\frac{1}{60}$
$x=12$ hours, $y=15$ hours
When 2 filling pipes and one draining pipe,
$\Rightarrow \frac{2}{12}-\frac{1}{15}=\frac{1}{10}$
Then the tank are filled in 10 hours
48. (D) A.T.Q,

$a+2 b+c=239$
$a+b+c=200$
From equation (i) and (ii)
So, maximum value of C is $=95$
Number of students who like Burger only
= 134 - $105=29$
$29 \leq$ Burger ≤ 95

Let the area of $\triangle \mathrm{ABC}=x$
$x+\frac{x}{4}+\frac{x}{16}+$
It is an infinite G.P
$\frac{x}{1-\frac{x}{4}}=\frac{4 x}{3}=4 \times \frac{\sqrt{3}}{4} \times 576=192 \sqrt{3}$
50. (D) A.T.Q,

In $\triangle \mathrm{AEN}$

$$
x^{2}+y^{2}=a^{2}
$$

Let $x+y=8$
Area of squares $\mathrm{ABCD}=64$
Area of squares $\mathrm{EFGH}=64 \times \frac{5}{8}=40$
$x^{2}+y^{2}=40$
$x+y=8$
Let, $x=2, y=6$
Required ratio $=\frac{\mathrm{EB}}{\mathrm{CG}}=\frac{2}{6}=\frac{1}{3}$
51. (B) ATQ,

Let Raju have $4 x$ marbels and Lalitha have $9 x$
After giving some marbles by lalitha to raju
$\frac{4 x+y}{9 x-y}=\frac{5}{6}$
$\Rightarrow \frac{x}{y}=\frac{11}{21}$
$\mathrm{L} \rightarrow 99$
Required ratio $=\frac{21}{99}=\frac{7}{33}$
52. (B) A.T.Q,

Radius $=1 \mathrm{~cm}$
$\mathrm{OC}=\mathrm{OD}$
Area of $\triangle \mathrm{OCD}=\frac{\mathrm{R}}{2}$
$=\frac{1}{2}\left(\pi(1)^{2} \times \frac{1}{6}\right)$
Area of $\triangle \mathrm{COD}=\frac{\pi}{12}$
Area of $\triangle \mathrm{OCD}=\frac{\pi}{12}$
$\frac{1}{2} \mathrm{OC}^{2} \times \frac{\sqrt{3}}{2}=\frac{\pi}{12}$
$\Rightarrow \mathrm{OC}^{2}=\left(\frac{\pi}{3 \sqrt{3}}\right)^{1 / 2}$
$\Rightarrow \mathrm{OC}=\left(\frac{\pi}{3 \sqrt{3}}\right)^{1 / 2}$
Then the length of $\mathrm{OC}=\left(\frac{\pi}{3 \sqrt{3}}\right)^{1 / 2}$
53. (B) A.T.Q,

Let two points A and B

Speed $2 y$
$\frac{3 x}{y}-\frac{x}{2 y}=1$
$\Rightarrow \frac{x}{y}=\frac{2}{5}$
$\Rightarrow \frac{x}{2 y}=\frac{2}{5 \times 2} \times 60=12$ minutes
54. (C) A.T.Q,

First
Ins $\frac{11}{10} \times \frac{11}{10}$
Second
121
$\overline{100}$

210 units $\rightarrow ₹ 2,10,000$

121 units \rightarrow ₹ 121,000
Hence, each instalments is $\rightarrow ₹ 121,000$
55. (A) A.T.Q,

Total sales tax $=₹(136.75-130)$
$\frac{9 y}{100}=6.75$
$y=₹ 75$
56. (D) When Sonu born sum of ages

$$
\begin{aligned}
& \mathrm{S} \rightarrow 66 \\
& \text { Age } \rightarrow 0
\end{aligned}
$$

Average of S family at born of
Sonu $=\frac{66}{5}=13.2$
Present Average
S
$\longrightarrow \frac{96}{5}=19.2$
Difference in average $=19.2-13.2=6$ years
Average is increased by 6
So, age of sonu $=6$ years
Father age's $=6 \times 6=36$ years
Present age's of sonu father $=48$ years
57. (B) A.T.Q,

4 lemon +10 oranges
\downarrow
2 bottles of oranges
Total 3 oranges bottles
x, y and z have one bottles each
z pays ₹50
Hence cost price of one bottle of orange is ₹50
58. (C) A.T.Q,

Let total property are $=16$ units
Mr. Sharma wife son $_{1} \quad$ son $_{2}$
16

After death 2 units given to his brother raj and to his brother raj and
2 units given his wife

11 units $\longrightarrow 88 \mathrm{k}$

1 unit $\longrightarrow 8 \mathrm{k}$
16 units $\longrightarrow ₹ 128,000$
59. (B) A.T.Q,

Case - I

Case - II

When two more observation median are lies between the 21 observation hence median does not change.
Because median are positional function So, median remains same
60. (D) $\mathrm{A}: \quad \mathrm{B}$

64,000 : 112,000
After C join total profit 11 units is divided among three

A B
$4-\frac{11}{3} \quad 7-\frac{11}{3}$
$\downarrow \quad \downarrow$
Loss of A Loss of B
$11 \rightarrow 2,20,000$
$1 \rightarrow 20,000$
A : B : C
$4: 7$
$\begin{array}{ll}\frac{11}{3} & \frac{11}{3} \\ \frac{1}{3} & \frac{10}{3}\end{array}$

61. (B) A.T.Q,

Case - I

Let cost price
Peanuts $\rightarrow ₹ x / \mathrm{kg}$
Walnut \rightarrow ₹ $3 x / \mathrm{kg}$

$\mathrm{P} \rightarrow x$	$\mathrm{~W} \rightarrow 3 x$
8 kg	6 kg
10%	20%

$8 \times \frac{11}{10} x+16 \times \frac{18 x}{5}=\mathrm{CP}$ for shopkeeper
Case - II
After losing 5 kg walnuts and 3 kg peanuts,
$\mathrm{CP} \times \frac{5}{4}=166 \times 16$
$\mathrm{CP}=\frac{166 \times 16 \times 4}{5}$
$\frac{8 \times 11 x}{16}+16 \times \frac{18 x}{5}=166 \times \frac{4}{5} \times 16$
$x=32$
$3 x=96$
Hence, cost price of walnuts is ₹ $96 / \mathrm{kg}$
62. (B) Let $\mathrm{CP}=₹ 100$
$700 \mathrm{~A} \longrightarrow \mathrm{SP}=160$
$1 \mathrm{~A} \longrightarrow \mathrm{SP}=\frac{160}{700}=\frac{8}{35}$
730 articles $\longrightarrow \mathrm{SP}=\frac{8}{35} \times 730=167$
Profit $=67 \%$
63. (A) A.T.Q,

\because Area $=48$
b $\times \mathrm{h}=48$

$$
\begin{aligned}
& h=6 \mathrm{~cm} \\
& \mathrm{~S} \geq 6
\end{aligned}
$$

64. (C) 33 men $\times 30$ days $=990$
$44+43+42 \ldots \ldots$.
$\frac{n}{2}[2 a+(n-1) d]$
$\frac{n}{2}[88+(n-1)(-1)]=990$
$\frac{n}{2}[89-n]=990$
Put value of n from options or assume yourself
$n=44$
$\frac{44}{2}[89-44] \Rightarrow 22 \times 45=990$
\therefore minimum number of days to finish the work $=44$ days
65. (D) A.T.Q,

Let numbers are x, y and 73
$x y \times 73-x y \times 37=720$
$x y=20$
minimum value of $x^{2}+y^{2}$
$x=20$
$x=2 \sqrt{5}$ and $y=2 \sqrt{5}$
minimum value $=x^{2}+y^{2}=2 \times x^{2}$

$$
\begin{aligned}
& =2 \times(2 \sqrt{5})^{2} \\
& =2 \times 4 \times 5=40
\end{aligned}
$$

66. (A) A.T.Q,

Total time taken to cover 150 km
$=\frac{50}{100}+\frac{50}{50}+\frac{50}{25}$
$=\frac{1}{2}+1+2=3$ hours 30 minutes
Time taken to car ${ }_{1}$ to total 20 km
$=\frac{20}{100}=\frac{1}{5}$ hours $=12$ minutes
Car_{2} start travel at A after 12 minutes Hence Car_{2} travel 3 hours 18 minutes Car_{2}, first $50 \mathrm{~km}+50 \mathrm{~km}$
30 minutes +1 hour $=1$ hour 30 minutes Remaining time $=1$ hour 48 minutes

$$
=\frac{9}{5} \text { hours }
$$

Distance $=\frac{9}{5} \times 25=45 \mathrm{~km}$
Difference $=50 \mathrm{~km}-45 \mathrm{~km}=5 \mathrm{~km}$
67. (B) A.T.Q,

$\frac{200}{\mathrm{C}_{1}}=\frac{100}{\mathrm{C}_{3}} \Rightarrow \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{2}{1}$
$\frac{\mathrm{C}_{3}}{\mathrm{C}_{2}}=\frac{2}{1}$
$\mathrm{C}_{1}: \mathrm{C}_{2}: \mathrm{C}_{3}$
2 : 1 : (1)
(2) $: 2: 1$

4:2:1
Required ratio $=\frac{1}{4}$
68. (B) A.T.Q,
$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
$=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1$
$=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{a}\right)$
Let, $\frac{a}{b}=x, \frac{b}{c}=y, \frac{c}{a}=z$
$=3+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)$
Now, minimum value $=3+2+2+2=9$
69. (A) Putting the value of $x=y=z=2$ and $a=$ $b=c=3$ in all equation
$\Rightarrow \frac{a}{a+3 x}+\frac{b}{b+3 y}+\frac{c}{c+3 z}$
$=\frac{3}{9}+\frac{3}{9}+\frac{3}{9}=\frac{9}{9}=1$
70. (B) A.T.Q,
$a=1, b=-1, c=0$,
$a+b+c=0$
$\Rightarrow \frac{2\left(a^{4}+b^{4}+c^{4}\right)}{\left(a^{2}+b^{2}+c^{2}\right)}=\frac{2(1+1+0)}{(1+1+0)}=2$
71. (C) Let, $\frac{x}{y}=\frac{z}{w}=k$
$x=k y$ and $z=k w$
$\Rightarrow \frac{x^{m}+y^{m}+z^{m}+w^{m}}{x^{-m}+y^{-m}+z^{-m}+w^{-m}}$
$=\frac{k^{m} y^{m}+y^{m}+k^{m} w^{m}+w^{m}}{k^{-m} y^{-m}+y^{-m}+k^{-m} w^{-m}+w^{-m}}$
$=\frac{y^{m}\left(k^{m}+1\right)+w^{m}\left(k^{m}+1\right)}{y^{-m}\left(k^{-m}+1\right)+w^{-m}\left(k^{-m}+1\right)}$
$=\frac{\left(k^{m}+1\right)\left(y^{m}+w^{m}\right)}{\left(k^{-m}+1\right)\left(y^{-m}+w^{-m}\right)}$
$=\frac{\left(k^{m}+1\right)\left(y^{m}+w^{m}\right)}{\left(\frac{1}{k^{m}}+1\right)\left(\frac{1}{y^{m}}+\frac{1}{w^{m}}\right)}$
$=\frac{\left(k^{m}+1\right)\left(y^{m}+w^{m}\right)}{\frac{\left(k^{m}+1\right)}{k^{m}} \cdot \frac{\left(y^{m}+w^{m}\right)}{y^{m} \cdot w^{m}}}$
$=k^{\mathrm{m}} y^{\mathrm{m}} w^{\mathrm{m}}=(k y w)^{\mathrm{m}}=\left(k^{2} y^{2} w^{2}\right)^{\mathrm{m} / 2}$
$=(k y \cdot y \cdot w \cdot k w)^{\mathrm{m} / 2}=(x y z w)^{\mathrm{m} / 2}$
72. (C) $x^{2}(x+y+z)=36$
$y^{2}(x+y+z)=46$
$x^{2}(x+y+z)=63$
$x y(x+y+z)=111$
$\Rightarrow 2 x y(x+y+z)=222$
$y z(x+y+z)=99$
$\Rightarrow 2 y z(x+y+z)=198$
$z x(x+y+z)=82$
$\Rightarrow 2 z x(x+y+z)=164$
Adding all 6 equation,
$\Rightarrow(x+y+z)\left(x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x\right)=729$
$\Rightarrow(x+y+z)(x+y+z)^{2}=729$
$\Rightarrow(x+y+z)^{3}=729$
$\Rightarrow x+y+z=9$
Putting the value of $x+y+z=9$ in equation (i)
$9 x^{2}=36$
$x^{2}=4$
$x=2$
73. (A) A.T.Q,

the distance from the point $(0,0)$ on the line $3 x+4 y+15=0$ is $O D$
$\mathrm{OD}=\left|\frac{0+0-15}{\sqrt{3^{2}+4^{2}}}\right|=3$
$\mathrm{BD}=\sqrt{\mathrm{OB}^{2}-\mathrm{DB}^{2}}=\sqrt{9^{2}-3^{2}}=\sqrt{72}=6 \sqrt{2}$
$\mathrm{AB}=2 \times \mathrm{BD}=12 \sqrt{2}$
(OAB is an isosceles triangle)
The area of triangle $\mathrm{OAB}=\frac{1}{2} \times 12 \sqrt{2} \times 3$

$$
=18 \sqrt{2}
$$

74. (C) $\tan 70^{\circ}=\frac{\tan 80^{\circ}-\tan 10^{\circ}}{1+\tan 80^{\circ} \tan 10^{\circ}}$

$$
\left(\because \tan 80^{\circ} \tan 10^{\circ}=1\right)
$$

$2 \tan 70^{\circ}+\tan 10^{\circ}=\tan 80^{\circ}$
75. (C) $\tan ^{n} 1^{\circ} \tan ^{n} 2^{\circ} \tan ^{n} 3^{\circ}$. $\tan 88^{\circ}$
$\tan 89^{\circ}=1$
$\left(\because \tan ^{\mathrm{n}} 1^{\circ}=\cot ^{\mathrm{n}} 89^{\circ}\right.$ व $\left.\tan ^{\mathrm{n}} 89^{\circ} \cdot \cot ^{\mathrm{n}} 89^{\circ}=1\right)$
76. (C) $\tan ^{5} \theta \cdot \tan ^{5} 5 \theta=1$
$(\tan \theta \cdot \tan 5 \theta)^{5}=1$
$\tan \theta \cdot \tan 5 \theta=1$
$\theta+5 \theta=90^{\circ}$
$6 \theta=90^{\circ}$
$3 \theta=45^{\circ}$
$\tan ^{n} 45^{\circ}=1$
77. (C) $\mathrm{A}+\mathrm{B}=90^{\circ}$
$\tan A=\cot B \quad(\Rightarrow \tan A \cdot \tan B=1)$
$\tan B=\cot A$
$\sin A=\cos B$
$\sin B=\cos A$
$=\sqrt{\frac{\tan A \tan B+\tan A \tan B}{\cos B \cdot \sec B}-\frac{\cos ^{2} A}{\cos ^{2} A}}$
$=\sqrt{\frac{2 \tan \mathrm{~A} \tan \mathrm{~B}}{1}-1}$
$=\sqrt{2-1}=1$
78. (B) $\frac{\mathrm{T}_{3}-\mathrm{T}_{5}}{\mathrm{~T}_{1}}=\frac{\sin ^{3} \theta+\cos ^{3} \theta-\sin ^{5} \theta-\cos ^{5} \theta}{\sin \theta+\cos \theta}$
$=\frac{\sin ^{3} \theta\left(1-\sin ^{2} \theta\right)+\cos ^{3} \theta\left(1-\cos ^{2} \theta\right)}{\sin \theta+\cos \theta}$
$=\frac{\sin ^{2} \theta \cos ^{2} \theta+\cos ^{3} \theta \sin ^{2} \theta}{\sin \theta+\cos \theta}$
$=\frac{\sin ^{2} \theta \cos ^{2} \theta(\sin \theta+\cos \theta)}{\sin \theta+\cos \theta}$
$=\sin ^{2} \theta \cdot \cos ^{2} \theta$
79. (B) $\cos (\theta-\mathrm{A})=\mathrm{a}, \cos (\theta-\mathrm{B})=\mathrm{b}$

Let, $\theta=90^{\circ}$
$\mathrm{a}=\cos \left(90^{\circ}-\mathrm{A}\right)=\sin \mathrm{A}$,
$b=\cos \left(90^{\circ}-B\right)=\sin B$
$\cos \mathrm{A}=\sqrt{1-a^{2}}, \cos \mathrm{~B}=\sqrt{1-b^{2}}$
$\Rightarrow \sin ^{2}(\mathrm{~A}-\mathrm{B})+2 a b \cos (\mathrm{~A}-\mathrm{B})$
$=(\sin A \cos B-\cos A \sin B)^{2}+2 a b(\cos A \cos B$
$+\sin A \sin B)$
$=\left(a \sqrt{1-b^{2}}-b \sqrt{1-a^{2}}\right)+$
$2 a b\left(\sqrt{1-a^{2}} \cdot \sqrt{1-b^{2}}+a b\right)$
$=a^{2}\left(1-b^{2}\right)+b^{2}\left(1-a^{2}\right)-2 a b \sqrt{1-a^{2}} \cdot \sqrt{1-b^{2}}$
$+2 a b \sqrt{1-a^{2}} \cdot \sqrt{1-b^{2}}+2 a^{2} b^{2}$
$=a^{2}-a^{2} b^{2}+b^{2}-a^{2} b^{2}+2 a^{2} b^{2}=a^{2}+b^{2}$
80. (C) $3 \cos \theta=5 \sin \theta$
$\tan \theta=\frac{3}{5} \Rightarrow \sec \theta=\sqrt{1+\tan ^{2} \theta}$
$=\sqrt{1+\frac{9}{25}}=\sqrt{\frac{34}{5}}$
$=\frac{\left(5 \tan \theta-2 \sec ^{4} \theta+2\right)}{\left(5 \tan \theta+2 \sec ^{4} \theta-2\right)}=\frac{5-2 \sec ^{4} \theta}{1+2 \sec ^{4} \theta}$
$=\frac{5-2\left(\frac{1156}{625}\right)}{1+2\left(\frac{1156}{625}\right)}=\frac{271}{979}$
81. (A) $\frac{\sin \mathrm{A}-\sin \mathrm{C}}{\cos \mathrm{C}-\cos \mathrm{A}}=\cot \mathrm{B}$
$=\frac{2 \cos \frac{A+C}{2} \cdot \sin \frac{A-C}{2}}{2 \sin \frac{A+C}{2} \cdot \sin \frac{A-C}{2}}=\cot B$
$=\cot \left(\frac{\mathrm{A}+\mathrm{C}}{2}\right)=\cot \mathrm{B}$
$\frac{\mathrm{A}+\mathrm{C}}{2}=\mathrm{B}=\mathrm{A} . \mathrm{P}$
82. (B) A.T.Q,

Total surface area of the pyramid = curve surface area + perimeter of base \times slant height

$l_{1}=\sqrt{(5)^{2}+(12)^{2}}=13 \mathrm{~cm}$
Similarly, side AD and slant height $C D$ $l_{2}=\sqrt{(16)^{2}+(12)^{2}}=20 \mathrm{~cm}$
Area of triangle sides $A B$ and $C D$,
$=2 \times \frac{1}{2} \times 32 \times 13=416 \mathrm{~cm}^{2}$
Area of triangle sides AD and BC ,
$=2 \times\left(\frac{1}{2} \times 20 \times 10\right)=200 \mathrm{~cm}^{2}$

Curve surface area $=416+200=616 \mathrm{~cm}^{2}$
Base area $=32 \times 10=320 \mathrm{~cm}^{2}$
Total surface area of pyramid $=616+$ $320=936 \mathrm{~cm}^{2}$
83. (C) area of the hexagonal having base a
$=\frac{3 \sqrt{3}}{2} a^{2}$
$\frac{3 \sqrt{3}}{2} a^{2}=96 \sqrt{3} \Rightarrow a=8 \mathrm{~m}$
Let the height of the pyramid is $h \mathrm{~cm}$, then area of the pyramid of one face
$=\frac{1}{2} a \times l$ (where l is slant height)
$\frac{1}{2} a \times l=32 \sqrt{3} \Rightarrow 1=8 \sqrt{3}$
$\frac{3 a^{2}}{4}+h^{2}=l^{2} \Rightarrow \frac{3 \times 64}{4}+h^{2}=64 \times 3$
$h^{2}=64 \times 3\left[1-\frac{1}{4}\right]=196$
$\Rightarrow h=12 \mathrm{~m}$
\therefore Volume of the pyramid $=\frac{1}{3} \times$ base area $\times h$
$=\frac{1}{3} \times 96 \sqrt{3} \times 12=384 \sqrt{3} \mathrm{~m}^{3}$
84. (C)

Volume of cylinder = volume of cone
$\pi r^{2} h=\frac{1}{3} \pi r^{2}{ }_{1} h_{1}$
$\pi \times 18 \times 18 \times 32=\frac{1}{3} \pi \times r^{2} \times 24$
$r=36 \mathrm{~cm}$
85. (A)

$\pi r^{2} \mathrm{~h}_{2}=\frac{1}{3} \pi r^{2} \mathrm{~h}$
$\pi \mathrm{P}^{2} \mathrm{~h}_{1}=\frac{1}{3} \pi a^{2} \mathrm{~h}$
$h_{1}=\frac{a^{2} h}{3 \mathrm{P}^{2}}$
86. (C) Area of the shaded region,
$=\frac{1}{2} \pi(14)^{2}+\frac{1}{2} \pi(7)^{2}+\frac{1}{2}(7)^{2}$
$=\frac{1}{2} \pi(196+49+49)$
$=\frac{1}{2} \times \frac{22}{7} \times 294=462 \mathrm{~cm}^{2}$
87. (A) Area of larger square $=a^{2}$

Diagonal of smaller square $\mathrm{ABCD}=a$
Side of smaller square $=\frac{a}{\sqrt{2}}$
Now,
Side of smaller square $=$ diameter of circle $=\frac{a}{\sqrt{2}}$

Height of equilateral triangle $=\frac{3}{4} \times \frac{a}{\sqrt{2}}$
$=\frac{3 a}{4 \sqrt{2}}$
Hence,
side of equilateral triangle $=\frac{\sqrt{3} a}{2 \sqrt{2}}$
88. (C) A.T.Q,

BPC is an equilateral so all angles are 60°

\therefore In $\triangle \mathrm{ABP}$
$\therefore \mathrm{AB}=\mathrm{BP}=\mathrm{a}$ (side os square)
$\therefore \angle \mathrm{APB}=\angle \mathrm{BAP}=75^{\circ}$
\therefore similarly, $\angle \mathrm{DPC}=75^{\circ}$
$\because 60^{\circ}+75^{\circ}+75^{\circ}+\angle \mathrm{APD}=360^{\circ}$ $\angle \mathrm{APD}=150^{\circ}$
89. (B) ATQ,

Let say ' r ' is the radius of the smaller circle,
$\therefore \mathrm{O}_{1} \mathrm{~A}=\mathrm{AB}=2$
$\therefore \mathrm{O}_{2} \mathrm{~B}=2 \sqrt{2}$
$\therefore \mathrm{O}_{1} \mathrm{C}+\mathrm{CB}=\mathrm{O}_{1} \mathrm{~B}$
$2+\mathrm{CO}_{2}+\mathrm{O}_{2} \mathrm{~B}=2 \sqrt{2}$
$2+r+r \sqrt{2}=2 \sqrt{2}$
$R=\frac{2(\sqrt{2}-1)}{\sqrt{2}+1}=6-4 \sqrt{2}$
90. (A) A.T.Q,
$\mathrm{BC}=2 \mathrm{~cm}$
$\mathrm{BP}=\mathrm{AP}=\mathrm{CD}=\mathrm{QD}=2 \mathrm{~cm}$
$=2 \times 3 \pi r_{\mathrm{s}}+2 \pi r_{1} \times 2+2 \mathrm{p} r_{\mathrm{m}}$
$=2 \times 2 \pi \times 1+2 \times \pi \times 2+2 \pi \times 1$
$=8 \pi+2 \pi=10 \pi \mathrm{~cm}$
91. (C)

Year	Number of students employed	Number of student employed from finance	Number of student employed from marketing
1992	800	$0.22 \times 800=175$	$0.36 \times 800=288$
1993	650	$0.17 \times 650=1105$	$0.48 \times 650=312$
1994	1100	$0.23 \times 1100=253$	$0.43 \times 1100=473$
1995	1200	$0.19 \times 1200=226$	$0.37 \times 1200=444$
1996	1000	$0.32 \times 1000=320$	$0.32 \times 1000=320$
Total		1087.50	1837

Required difference,
= 1837 - 1087.5
$=179.5=750$
92. (D) Average salary of finance in 1992
= ₹5450 thousand
average salary of finance in 1996
= ₹9810 thousand
\therefore Required percentage increase
$=\frac{9810-5450}{5450} \times 100 \%$
$=\frac{4360}{5450} \times 100 \%=80 \%$
93. (C) Salary offered in software
in $=1992=₹ 5290$ thousand
in = 1996 = ₹8640 thousand
\therefore Percentage increase
$=\frac{8640-5290}{5290} \times 100 \%$
$=\frac{3350}{5290} \times 100 \%=63.32 \%$
Thus, required average annual increase rate $=\frac{1}{4} \times 63.32=15.9 \%$
94. (A) Average monthly salary to a marketing student,
in $1992=₹ 5170$ thousand
in $1996=₹ 10220$ thousand
\therefore Required percentage increase
$=\frac{10220-5170}{5170} \times 100 \%$
$=\frac{5050}{5170} \times 100 \%=98 \%$
95. (B) In 1994, students seeking jobs in finance earned,
$=23 \%$ of 1100×7550
= ₹ 1910150
Students seeking jobs in software earned
$=21 \%$ of 1100×7050
= ₹ 1628550
\therefore Difference in the amount earned
$=1910150-1628550=281600$
= ₹2.81 lakh per annum
$=₹ 2.81 \times 12$ lakh per annum
$=₹ 33.8$ lakh per annum

Using this chart for giving answer (96-100)
Total number of students in the
school = 3000
Number of girls $=\frac{7}{15} \times 3000=1400$

Number of boys $=\frac{8}{15} \times 3000=1600$
Number of boys studying only English $=30 \%$ of $1600=480$
Number of girls studying only English and Hindi $=\frac{2}{7}$ th of 1400
Number of boys studying English and Marathi only $=\frac{1}{8}$ th of 1600
Number of girls studying only English
$=85 \%$ of $480=408$
Number of boys studying only Hindi and
Marathi $=\frac{2}{5}$ th of $1600=640$
Number of girls studying only hindi $=$ 40% of $1400=560$ Number of girls studying only Hindi and Marathi
$=1400-(400+408+560)$
$=1400-1368=32$
Number of boys studying only English and Hindi
$=10 \%$ of $400=40$
Number of boys studying only Hindi
$=1600-(480+200+640+40)$
$=1600-1360=240$
The tabular form of above information is as follows.

Subjects	Number of girls	Number of boys
Hindi	560	240
English	408	480
Marathi	-	-
Hindi+English	400	40
English+Marathi	-	200
Hindi+Marathi	32	640
Total	1400	1600

96. (A) Total number of boys studying English $=480+40+200=720$
Total number of girls studying English
$=408+400=808$
\therefore Required ratio $=720: 808:=90: 101$
97. (D) Number of boys studying only Hindi
$=240$ and number of girls studying Hindi
$=560+400+320=992$
\therefore Required percentage,
$=\frac{240}{992} \times 100 \%=24.19 \%$
98. (B) Total number of students studying only English $=408+480=888$
99. (D) Number of girls studying Marathi $=32$
\therefore Number of girls not studying Marathi
$=1400-32=1368$
100. (C) Total number of girls studying Hindi
$=560+400+32=992$

SSC TIER II (MATHS) MOCK TEST - 52 (ANSWER KEY)

1. (D)	11. (A)	21. (B)	31. (B)	41. (A)	51. (B)	61. (B)	71. (C)	81. (A)	91. (C)
2. (B)	12. (C)	22. (B)	32. (C)	42. (C)	52. (B)	62. (B)	72. (C)	82. (B)	92. (D)
3. (A)	13. (B)	23. (A)	33. (D)	43. (B)	53. (B)	63. (A)	73. (A)	83. (C)	93. (C)
4. (A)	14. (B)	24. (C)	34. (A)	44. (B)	54. (C)	64. (C)	74. (C)	84. (C)	94. (A)
5. (A)	15. (A)	25. (A)	35. (C)	45. (C)	55. (A)	65. (D)	75. (C)	85. (A)	95. (B)
6. (B)	16. (A)	26. (A)	36. (A)	46. (D)	56. (D)	66. (A)	76. (C)	86. (C)	96. (A)
7. (A)	17. (C)	27. (A)	37. (A)	47. (B)	57. (B)	67. (B)	77. (C)	87. (A)	97. (D)
8. (B)	18. (A)	28. (B)	38. (A)	48. (D)	58. (C)	68. (B)	78. (B)	88. (C)	98. (B)
9. (C)	19. (B)	29. (A)	39. (C)	49. (D)	59. (B)	69. (A)	79. (B)	89. (B)	99. (D)
10. (A)	20. (B)	30. (A)	40. (C)	50. (D)	60. (D)	70. (B)	80. (C)	90. (A)	100. (C)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

