TEST NO. 55

SSC TIER-II : QUANTITATIVE ABILITIES (Answer with Explanations)

Answer Key

	(C)	21.	(D)	41.	(B)	61.	(B)	81.	(A)
1.	(C)	(B)							
2.	(B)	22.	(B)	42.	(A)	62.	(C)	82.	(C)
3.	(A)	23.	(A)	43.	(C)	63.	(A)	83.	(C)
4.	(D)	24.	(C)	44.	(C)	64.	(C)	84.	(B)
5.	(A)	25.	(C)	45.	(A)	65.	(C)	85.	(A)
6.	(C)	26.	(C)	46.	(C)	66.	(D)	86.	(D)
7.	(B)	27.	(D)	47.	(A)	67.	(A)	87.	(C)
8.	(A)	28.	(A)	48.	(B)	68.	(C)	88.	(A)
9.	(C)	29.	(D)	49.	(C)	69.	(B)	89.	(C)
10.	(B)	30.	(C)	50.	(C)	70.	(B)	90.	(A)
11.	(C)	31.	(D)	51.	(A)	71.	(D)	91.	(C)
12.	(D)	32.	(C)	52.	(C)	72.	(B)	92.	(B)
13.	(B)	33.	(A)	53.	(D)	73.	(C)	93.	(A)
14.	(A)	34.	(B)	54.	(B)	74.	(A)	94.	(B)
15.	(B)	35.	(B)	55.	(D)	75.	(A)	95.	(A)
16.	(A)	36.	(C)	56.	(C)	76.	(D)	96.	(C)
17.	(C)	37.	(A)	57.	(B)	77.	(D)	97.	(D)
18.	(A)	38.	(B)	58.	(A)	78.	(B)	98.	(A)
19.	(B)	39.	(A)	59.	(A)	79.	(B)	99.	(D)
20.	(A)	40.	(A)	60.	(D)	80.	(A)	100.	(A)

Answer key with explanations

1. (C) $\frac{8 \div 5 \times 10+6-2+24 \div 6}{9 \times 2 \div 6-16+12-20 \div 4}$ $\Rightarrow \frac{16+4+4}{3-4-5}=\frac{24}{-6}=-4$
2. (B)

$$
\text { Area of } \triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{CD}
$$

$=\frac{1}{2} \times \frac{3}{2} \times 1=\frac{3}{4}$ sq.units
3. (A) The required numbers

$$
=11,13,17,31,37,71,73,79,97
$$

Total number $=9$
4. (D) $\mathrm{A}=0.142857142857 \ldots=\frac{1}{7}$

Now, $\frac{\mathrm{A}-\mathrm{B}}{\mathrm{A}+\mathrm{B}} \Rightarrow \frac{\frac{1}{7}-\frac{1}{13}}{\frac{1}{7}+\frac{1}{13}}$

$$
\Rightarrow \frac{\frac{13-7}{91}}{\frac{13+7}{91}}=\frac{6}{20}=\frac{3}{10}
$$

5. (A) Statement I:

$$
\begin{aligned}
& 1 \frac{1}{2}+3 \frac{3}{4}+5 \frac{5}{6} \\
\Rightarrow & 1+3+5+\frac{1}{2}+\frac{3}{4}+\frac{5}{6} \\
\Rightarrow & 9+\frac{25}{12} \Rightarrow 11 \frac{1}{12}>11
\end{aligned}
$$

Statement I is correct.

Statement II:
$6 \frac{2}{3}+3 \frac{1}{2}-4 \frac{3}{4}$
$\Rightarrow 6+3-4+\frac{2}{3}+\frac{1}{2}-\frac{3}{4}$
$\Rightarrow 5+\frac{5}{12}=5 \frac{5}{12}<6$
Statement II is incorrect.
6. (C) $2^{40}-1$
$\Rightarrow \quad\left(2^{20}-1\right)\left(2^{20}+1\right)$
$\Rightarrow\left(2^{10}-1\right)\left(2^{10}+1\right)\left(2^{20}+1\right)$
$\Rightarrow\left(2^{5}-1\right)\left(2^{5}+1\right)\left(2^{20}+1\right)$
The required difference
$=\left(2^{5}+1\right)^{2}-\left(2^{5}-1\right)^{2}=33^{2}-31^{2}$
$=(33+31)(33-31)$
$=64 \times 2=128$
7. (B) $f(x)=(x+1)\left(x^{2}+\mathrm{m} x-1\right)$
$(x+2)$ is a factor of $f(x)$,
then $(-2)^{2}+m \times(-2)-1=0$
$\Rightarrow 4-2 \mathrm{~m}-1=0$
$\Rightarrow 3=2 \mathrm{~m} \Rightarrow \mathrm{~m}=\frac{3}{2}$
8. (A) A : B : C $=3 \times 12: 7 \times 8: 7 \times \frac{5}{6} \times 4$
$=54: 84: 35$
B's share $=84 \rightarrow 10584$
$A+B+C=54+84+35=173$
Total profit $=\frac{10584}{84} \times 173$
$=₹ 21798$
9. (C) $\cos x=\frac{1}{3} \Rightarrow \sin x=\frac{2 \sqrt{2}}{3}$
and $\cos y=\frac{3}{4} \Rightarrow \sin y=\frac{\sqrt{7}}{4}$
Now, $\frac{5 \cos ^{2} x-3 \sin ^{2} y}{7 \cos ^{2} x+4 \sin ^{2} y}$

$$
\Rightarrow \quad 5 \times\left(\frac{1}{3}\right)^{2}-3\left(\frac{\sqrt{7}}{4}\right)^{2}
$$

$$
\Rightarrow \frac{\frac{5}{9}-\frac{21}{16}}{\frac{7}{9}+\frac{7}{4}} \Rightarrow \frac{-\frac{109}{144}}{\frac{91}{36}} \Rightarrow \frac{-109}{364}
$$

10. (B)
$P+Q+R \rightarrow 28 \rightarrow 5$

$$
\mathrm{Q} \rightarrow 35
$$

140

$P+R \rightarrow 5-4=1$
Given $\mathrm{R}=4 \mathrm{P}$
$\mathrm{P}+4 \mathrm{P} \rightarrow 1$
$5 \mathrm{P} \rightarrow 1 \Rightarrow \mathrm{P} \rightarrow \frac{1}{5}$
and $R \rightarrow \frac{4}{5}$
$\mathrm{P}+\mathrm{Q} \rightarrow \frac{1}{5}+4=\frac{21}{5}$
$(P+Q)$ take $=\frac{140 \times 5}{21}=33 \frac{1}{3}$ days
11. (C) M.P. $=₹ 1500$
S.P. $=1500 \times \frac{84}{100}=1260$

Cash discount $=\frac{1260-1071}{1260} \times 100$
$=\frac{189}{1260} \times 100=15 \%$
12. (D) Ram, Shyam and Mohan $=6: 7: 9$

Let bank balance of Ram, Shyam and
Mohan $=6 x, 3 x, 9 x$
ATQ.,
$\frac{6 x+25000}{5}=\frac{9 x-25000}{7}$
$\Rightarrow 42 x+175000=45 x-125000$
$\Rightarrow 3 x=300000 \Rightarrow x=100000$
$\therefore \quad$ Shyam's bank balance $=7 \times 100000$
= ₹ 700000
13. (B) $\frac{2}{3}=0.67, \frac{3}{5}=0.6, \frac{4}{7}=0.57$

Hence $\frac{4}{7}<\frac{3}{5}<\frac{2}{3}$
14. (A) $\sqrt[3]{-50653}=-37$
15. (B) $a+b+c=16$
$a+b=3 c$
from eq. (i)
$3 c+c=16 \Rightarrow 4 c=16 \Rightarrow c=4$
From eq. (ii)
$a b \times 4=144 \Rightarrow a b=36$
Now, $a^{2}+b^{2}+c^{2}$
$\Rightarrow(a+b)^{2}-2 a b+c^{2}$
$\Rightarrow(3 \times 4)^{2}-2 \times 36+4^{2}$
$\Rightarrow 144-72+16 \Rightarrow 88$

Campus

K D Campus Pvt. Ltd

16. (A) Rohit $\left(\frac{1}{3}\right.$ piece of work $)$ in $=10 \mathrm{hrs}$.

Rohit complete work in $=30 \mathrm{hrs}$.
Remaining work $=\frac{2}{3}$ part
Ashok $\left(\frac{1}{5} \times \frac{2}{3}\right.$ part $)$ in $=6 \mathrm{hrs}$.
Ashok complete work in $=45 \mathrm{hrs}$.
Remaining work $=1-\frac{1}{3}-\frac{2}{15}$
$=\frac{8}{15}$
Sonu $\left(\frac{8}{15}\right.$ part $)$ in $=8 \mathrm{hrs}$.
Sonu complete work in = 15 hrs .
Rohit $\rightarrow 30$
Ashok $\rightarrow 45 \xrightarrow{2} \rightarrow 20$
Sonu $\rightarrow 15$
The required time $=\frac{90}{3+2+6}$
$=\frac{90}{11}=8 \frac{2}{11} \mathrm{hrs}$.
17. (C) ATQ.,
$\frac{\frac{x}{x+7} \times 8}{\frac{7}{x+7} \times 8+2}=\frac{1}{2}$

$$
\begin{aligned}
& \Rightarrow \frac{8 x}{56+2 x+14}=\frac{1}{2} \\
& \Rightarrow 16 x=70+2 x \\
& \Rightarrow 14 x=70 \Rightarrow x=5
\end{aligned}
$$

18. (A) Single discount $=15+15-\frac{15 \times 15}{100}$

$$
=30-\frac{225}{100}=27.75 \%
$$

19. (B) 10 years ago,

Let Simi's age $=3 x$
Kajal's age $=5 x$
ATQ.,
$\frac{3 x+15}{5 x+15}=\frac{2}{3}$
$\Rightarrow 9 x+45=10 x+30 \Rightarrow x=15$
Kajal's present age $=5 \times 15+10$
$=75+10=85$ years
20. (A) Let third proportional $=x$

ATQ.,
12: $48:: 48: x$
$\Rightarrow \quad 12 x=48 \times 48$
$\Rightarrow x=48 \times 4=192$
21. (D) $\mathrm{S}: \mathrm{D}=\frac{6}{5}: \frac{5}{4}=24: 25$

Daughter's share $=\frac{25}{(24+25)} \times 84084$
$=\frac{25}{49} \times 84084$
$=₹ 42900$
22. (B) Let Team's B score now $=x$

ATQ.,
$50 \times 4.6=x+15 \times 5.2$
$\Rightarrow 230=x+78$
$\Rightarrow x=152$
23. (A) $(117)^{213} \times(219)^{177} \times(413)^{119} \times(216)^{765}$
$\Rightarrow(117)^{4 \times 53+1} \times(219)^{4 \times 44+1} \times(413)^{4 \times 29+3} \times$ $(216)^{7}$
Unit digit $=7^{1} \times 9^{1} \times 3^{3} \times 6$
Unit digit $=7 \times 9 \times 27 \times 6$
Unit digit $=6$
24.

$$
\begin{aligned}
& \text { (C) } \frac{1}{1 \times 2 \times 3}+\frac{1}{2 \times 3 \times 4}+\ldots .+\frac{1}{15 \times 16 \times 17} \\
& \Rightarrow\left[\left(\frac{1}{1 \times 2}-\frac{1}{2 \times 3}\right)+\left(\frac{1}{2 \times 3}-\frac{1}{3 \times 4}\right)+\ldots .\left(\frac{1}{15 \times 16}-\frac{1}{16 \times 17}\right)\right] \\
& \Rightarrow \frac{1}{2}\left[\frac{1}{1 \times 2}-\frac{1}{16 \times 17}\right] \Rightarrow \frac{1}{2} \times\left[\frac{8 \times 17-1}{16 \times 17}\right] \\
& \Rightarrow \frac{1}{2} \times \frac{135}{16 \times 17}=\frac{135}{544}
\end{aligned}
$$

25. (C) L.C.M. of $12,15,28=420$

Largest number $=420 \times 2-9=831$
$[\because$ remainder $=3,6,19$)
The required remainder $=\frac{831}{17}=15$
26. (C) $\begin{aligned} \mathrm{S} & =22^{2}+24^{2}+\ldots \ldots+32^{2} \\ \mathrm{~S} & =4\left(11^{2}+12^{2} \ldots . .\right.\end{aligned}$
$S=4\left(11^{2}+12^{2} \ldots \ldots \ldots \ldots+16^{2}\right)$
$S=4\left[\left(1^{2}+2^{2} \ldots .+10^{2}+11^{2}+\ldots . .16^{2}\right)-\right.$ $\left.\left(1^{2}+2^{2}+\ldots .+10^{2}\right)\right]$
$S=4\left[\frac{16}{6}(16+1)(2 \times 16+1)-\frac{10}{6}(10+1)(2 \times 10+1)\right]$
$S=4\left[\frac{8}{3} \times 17 \times 33-\frac{5}{3} \times 11 \times 21\right]$
$S=4[1496-385]$
$\mathrm{S}=4 \times 1111=4444$
27. (D) $\sqrt{2172+\sqrt{1342+\sqrt{712+\sqrt{282+\sqrt{49}}}}}$

$$
\begin{aligned}
& \Rightarrow \sqrt{2172+\sqrt{1342+\sqrt{712+\sqrt{282+7}}}} \\
& \Rightarrow \sqrt{2172+\sqrt{1342+\sqrt{712+17}}} \\
& \Rightarrow \sqrt{2172+\sqrt{1342+27}} \\
& \Rightarrow \sqrt{2172+37}=\sqrt{2209}=47
\end{aligned}
$$

28. (A) 6 Pens +7 Pencils +5 Erasers $=₹ 417$

2 Pens +3 Pencils +2 Erasers $=₹ 253$

Eq(i) $\times 2-\mathrm{eq}(\mathrm{ii}) \times 3$
6 Pens +5 Pencils +4 Erasers
$=2 \times 417-3 \times 253$
$=834-759=₹ 75$
29. (D)

The required ratio $=5: 9$
30. (C) The required cost price
$=16.5 \times \frac{100}{88} \times \frac{128}{100}=₹ 24$
31. (D) A : B : C
$=24000 \times 8+21000 \times 8+18000 \times 2$
$: 36000 \times 8+33000 \times 2: 48000 \times 2$
A : B : C = $(32+28+6):(48+11): 16$
= $66: 59: 16$
A's share $=\frac{66}{66+59+16} \times 355320$
$=\frac{66}{141} \times 355320=₹ 166320$
32. (C) Let the amount added by Amar $=k$

After 3 years amount received by Amar $=145 \% \times(14500+k)=21025+1.45 k$
After 3 years amount paid by Amar $=136 \% \times 14500=19720$
Gain of Amar through interest
$\Rightarrow 21025+1.45 k-19720-k=4905$
$\Rightarrow 0.45 k=3600 \Rightarrow k=8000$
33. (A) let the cost price of each table $=100 k$

And number of tables $=100$

Total cost $=100 \times 100 k=10000 k$
Marked price of each table $=135 k$
Total sell $=0.8 \times 135 k \times 15+73 \times 135 k$
$=1620 k+9855 k=11475 k$
Profit $\%=\left(\frac{1475 k}{10000 k}\right) \times 100 \%=14.75 \%$
34. (B) Let length of the race $=x$

When A runs for $x \mathrm{~m}, \mathrm{~B}$ runs for $(x-24)$
m and C runs $(x-36) \mathrm{m}$
When B runs for $x \mathrm{~m}, \mathrm{C}$ runs for $(x-16) \mathrm{m}$ ATQ.,
$\frac{x-24}{x-36}=\frac{x}{x-16}$
$\Rightarrow x^{2}-36 x=x^{2}-40 x+384$
$\Rightarrow 4 x=384 \Rightarrow x=96$
35. (B) Suppose the total capacity of the tank $=x$ litres.
In 24 hours, the leak empties all the x litres.

In 1 hour the leak empties $\frac{x}{24}$ litres. According to the problem,
$\Rightarrow x=50 \times 12-\frac{12 x}{24}$
$\Rightarrow x+\frac{x}{2}=600 \Rightarrow x=400$
\therefore The capacity of the tank $=400$ litres.
36. (C) Required average

$$
=\frac{900+840+1050+450}{4}=810
$$

37. (A) Average runs per match scored by Virat $=\left(\frac{900}{16}\right)=\left(\frac{225}{4}\right)$

Average runs per match scored by
Suresh $=\left(\frac{450}{12}\right)=\left(\frac{150}{4}\right)$
Required difference $=\left(\frac{225}{4}\right)-\left(\frac{150}{4}\right)$
$=\left(\frac{75}{4}\right)=18.75$
38. (B) Total number of runs scored by 50 s by 4 batsmen $=(4+5+6+4) \times 50=950$
Total number of runs scored by 100 s by 4 batsmen $=(3+1+2) \times 100=600$ Required total $=950+600=1550$
39. (A) $\left(a^{n}+b^{n}\right)$ is always divisible by $(a+b)$, when n is on odd power.
$(47+35)=82$
Factors of 82 (1, 2, 41 and 82)
So, $\left(47^{3}+35^{3}\right)$ is completely divided by 41 . Hence, remainder $=0$
40. (A) Let the sum be ' x '

ATQ,
$\frac{x \times 4 \times 4}{100}-\left[x\left(1+\frac{5}{100}\right)^{3}-x\right]=57$
$\Rightarrow \frac{16 x}{100}-\left(\frac{21}{20}\right)^{3} x+x=57$
$\Rightarrow \frac{116 x}{100}-\frac{9261 x}{8000}=57$
$\Rightarrow \frac{19 x}{8000}=57 \Rightarrow x=24,000$
\therefore The required sum is ₹ 24,000
41. (B) Let the one root be α and other root is β, then $\beta=3 \alpha$

Sum of roots $\alpha+\beta=-\frac{b}{a}$
$\Rightarrow \alpha+3 \alpha=-\frac{b}{a} \Rightarrow 4 \alpha=-\frac{b}{a} \Rightarrow \alpha=-\frac{b}{4 a}$
and Product of roots $\alpha \beta=\frac{c}{a}$
$\Rightarrow 3 \alpha^{2}=\frac{c}{a} \Rightarrow 3\left(-\frac{b}{4 a}\right)^{2}=\frac{c}{a}$
$\Rightarrow \frac{3 b^{2}}{16 a^{2}}=\frac{c}{a} \Rightarrow 16 a c=3 b^{2}$
42. (A) $7500 \div 3=2500$

For first year
$2500+4 \%$ of 7500
$=2500+300=2800$
For second year
$=2500+4 \%$ of 5000
$=2500+200=2700$
For third year
$2500+4 \%$ of 2500
$2500+100=2600$
43. (C) $x^{x \sqrt{x}}=(x \sqrt{x})^{x} \Rightarrow x^{x \sqrt{x}}=\left(x^{3 / 2}\right)^{x}$

$$
\Rightarrow x^{x \sqrt{x}}=x^{\frac{3 x}{2}}
$$

On comparing

$$
\begin{aligned}
& \Rightarrow x \sqrt{x}=\frac{3}{2} x \Rightarrow \sqrt{x}=\frac{3}{2} \\
& \Rightarrow x=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}
\end{aligned}
$$

44. (C) $x^{3}-6 x^{2}+11 x-6=(x-1)\left(x^{2}-5 x+6\right)$
$=(x-1)(x-3)(x-2)$
$x^{3}+x^{2}-9 x-9=(x+1)\left(x^{2}-9\right)$
$=(x+1)(x+3)(x-3)$
and $x^{3}-6 x^{2}+5 x+12$
$=(x+1)\left(x^{2}-7 x+12\right)=(x+1)(x-4)(x-3)$
Hence H.C.F $=x-3$
45. (A) $\frac{5 \sqrt{5} x^{3}-81 \sqrt{3} y^{3}}{\sqrt{5} x-3 \sqrt{3} y}=\frac{(\sqrt{5} x)^{3}-(3 \sqrt{3} y)^{3}}{\sqrt{5} x-3 \sqrt{3} y}$

$$
\because\left(a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right)\right.
$$

$\Rightarrow 5 x^{2}+27 y^{2}+3 \sqrt{15} x y=\mathrm{A} x^{2}+\mathrm{B} y^{2}+\mathrm{C} x y$
On comparing
$A=5, B=27, C=3 \sqrt{15}$
Now, $6 \mathrm{~A}+\mathrm{B}-\sqrt{15} \mathrm{C}$
$=6 \times 5+27-\sqrt{15} \times 3 \sqrt{15}$
$=30+27-45=12$
46. (C) The number of girls in school A
$=400 \times \frac{3}{8}=150$
The number of girls in school B
$=360 \times \frac{4}{9}=160$
The number of girls in school C
$=280 \times \frac{1}{4}=70$
The number of girls in school D
$=300 \times \frac{2}{5}=120$
The number of girls in school E
$=340 \times \frac{9}{17}=180$
Required average
$=\frac{(150+160+70+120+180)}{5}=136$
47. (A) The no. of boys in school A
$=400 \times \frac{5}{8}=250$
The no. of students in school A, who participated in function
$=400 \times \frac{70}{100}=280$
Required percentage $=\left(\frac{280}{250}\right) \times 100$
= 112%
48. (B) The number of boys in school D
$=300 \times \frac{3}{5}=180$
The number of girls in school D
$=300-180=120$
The number of students in school D, who participated in function
$=300 \times \frac{80}{100}=240$
So, the number of girls in school D , who participated in function $=240-180=60$
Required percentage $=\left(\frac{60}{120}\right) \times 100$
$=50 \%$
49. (C) The no. of students in school B, who participated in function
$=360 \times \frac{75}{100}=270$
The no of girls in school B
$=360 \times \frac{4}{9}=160$
The no. of boys in school B, who participated in function
= 270-160 = 110
The no. of students in school C, who participated in function
$=280 \times \frac{65}{100}=182$
The no. of girls in school $\mathrm{C}=280 \times \frac{1}{4}=70$
The no. of boys in school C, who participated in function
$=182-70=112$
Required ratio $=110: 112=55: 56$
50. (C)

$2(A+B+C)$'s efficiency $\rightarrow(15+14+9)=38$
(A $+\mathrm{B}+\mathrm{C}$)'s efficiency $\rightarrow 19$
A's efficiency $\rightarrow 5$
B's efficiency $\rightarrow 10$
C's efficiency $\rightarrow 4$
$B-C=6 \rightarrow 900$
$(A+B+C)$'s salary $=\frac{900}{6} \times 19$
$=2850$
51. (A) Ratio of amount shared by A, B and C initially
= $3: 6: 8$
= $6: 12: 16$
Now, B is 25% less amount than previous amount.
Hence, Amount divided by mistake in the ratio
A : B : C
$\begin{array}{lll}8 & 9 & 17\end{array}$
8 units -6 units $=2$ units $\rightarrow ₹ 200$
$=1$ unit \rightarrow ₹ 100
Share of 16 units $\rightarrow ₹ 16 \times 100$
Hence, Actual share of C was ₹ 1600
52. (C) $1^{\text {st }} \mathrm{box}=400 \mathrm{~kg}$

$$
\begin{aligned}
& 3^{\text {rd }} \text { box }=400 \times \frac{5}{4}=500 \mathrm{~kg} \\
& 2^{\text {nd }} \text { box }=500 \times \frac{6}{5}=600 \mathrm{~kg} \\
& 4^{\text {th }} \text { box }=700 \mathrm{~kg} \\
& 5^{\text {th }} \text { box }=700 \times \frac{100}{70}=1000 \mathrm{~kg}
\end{aligned}
$$

Required difference $=\frac{(1000+700+600+500)}{4}$

$$
\begin{aligned}
& -\frac{(400+500+600+700)}{4} \\
& =700-550 \\
& =150 \mathrm{~kg}
\end{aligned}
$$

53. (D) When the speed of a truck is $60 \mathrm{~km} / \mathrm{hr}$ then truck can travel in one litre 19.5 km
So, total distance covered by truck in 20 litres $=20 \times 19.5$
But, when speed is increased by $80 \mathrm{~km} / \mathrm{hr}$,
So, fuel consumption rate is also increased and it is increased by 30%.
So, total distance covered by
$=\frac{20 \times 19.5}{1.3}$
$=300 \mathrm{~km}$
54. (B)

Article	I	II	III
C.P. -	11	4×2	9
P/L-	-1	$+1 \times 2$	+1
SP -	10	5×2	10

Total profit $=(-1+2+1)$ units
2 units $\rightarrow ₹ 1600$
10 units $\rightarrow ₹ 8,000$
Hence, Selling price of each article is
₹ 8,000
55.
(D) $\frac{2\left(1-\sin ^{2} \theta\right) \operatorname{cosec}^{2} \theta}{\cot ^{2} \theta\left(1+\tan ^{2} \theta\right)}-1$
$=\frac{2 \cos ^{2} \theta \operatorname{cosec}^{2} \theta}{\cot ^{2} \theta \cdot \sec ^{2} \theta}-1$
$=\frac{2 \cos ^{2} \theta \sin ^{2} \theta}{\cos ^{2} \theta \sin ^{2} \theta \sec ^{2} \theta}-1$
$=2 \cos ^{2} \theta-1$
$=\cos 2 \theta$
56. (C) Total surface area $=6 a^{2}$
$=6 \times 16 \times 16$

Cut along with diagonals and divided into 4 parts then
$=4 \times 16 \times 16 \sqrt{2}$
T.S.A. $=6 \times 16 \times 16+4 \times 16 \times 16 \times \sqrt{2}$

Total surface area of each part
$=\frac{6 \times 16 \times 16}{4}+\frac{4 \times 16 \times 16 \sqrt{2}}{4}$
$=(384+256 \sqrt{2}) \mathrm{cm}^{2}$
57. (B)

Area of base $=\frac{1}{2} \times(8+20) \times 8$

$$
=112 \mathrm{~cm}^{2}
$$

Total surface area $=2 \times$ Base area + perimeter of base $\times \mathrm{h}$
$=2 \times 112+48 \times 20$
$=1184 \mathrm{~cm}^{2}$
Volume of prism $=$ Base area \times height
$=112 \times 20$
$=2240 \mathrm{~cm}^{2}$
58. (A) Volume of sphere $=\frac{4}{3} \pi r^{3}$
$\Rightarrow 4851=\frac{4}{3} \times \frac{22}{7} \times r^{3}$

$$
\Rightarrow \quad \mathrm{r}^{3}=\frac{4851 \times 3 \times 7}{4 \times 22}
$$

$\Rightarrow \mathrm{r}=\frac{21}{2}$
Surface area $=4 \pi r^{2}$
$=4 \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2}$
$=1386 \mathrm{~cm}^{2}$
59. (A)

$$
\begin{aligned}
& \quad \text { Volume }=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}+\frac{2}{3} \pi r^{3} \\
& \quad=\frac{1}{3} \pi \times 9 \times 9+\frac{2}{3} \pi \times 27 \\
& =45 \pi \\
& \quad \pi \times 12 \times 12 \times 15=\mathrm{n} \times 45 \pi \\
& \Rightarrow n=48
\end{aligned}
$$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
60. (D) ATQ.,

$$
\frac{2 \pi \theta}{360} \times r=2 \pi \mathrm{R}_{\mathrm{cone}}
$$

$\Rightarrow \frac{2 \pi \times 120}{360} \times 10.5=2 \pi R_{\text {cone }}$
$\Rightarrow R_{\text {cone }}=3.5 \mathrm{~cm}$

$$
\begin{aligned}
& \text { Volume }=\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times \pi \times 3.5 \times 3.5 \times \sqrt{98} \\
& =\frac{343 \sqrt{2}}{12} \pi
\end{aligned}
$$

61. (B) ATQ.,

$$
\cos 2 \alpha=\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}=\frac{1-\frac{1}{49}}{1+\frac{1}{49}}=\frac{48}{50}=\frac{24}{25}
$$

$$
\sin 2 \beta=\frac{2 \tan \beta}{1+\tan ^{2} \beta}=\frac{2 \times \frac{1}{3}}{1+\frac{1}{9}}=\frac{2}{3} \times \frac{9}{10}=\frac{3}{5}
$$

$$
\cos ^{2} 2 \beta=1-\sin ^{2} 2 \beta=1-\frac{9}{25}
$$

$$
\cos 2 \beta=\frac{4}{5}
$$

$$
\sin 4 \beta=2 \sin 2 \beta \cos 2 \beta=2 \times \frac{3}{5} \times \frac{4}{5}
$$

$$
=\frac{24}{25}
$$

62. (C) ATQ.,

$$
\text { Hence } \cos 2 \alpha=\sin 4 \beta
$$

$$
\begin{aligned}
& \frac{\cos 12^{\circ}-\sin 12^{\circ}}{\cos 12^{\circ}+\sin 12^{\circ}}+\frac{\sin 147^{\circ}}{\cos 147^{\circ}} \\
& =\frac{\sin 78^{\circ}-\sin 12^{\circ}}{\sin 78^{\circ}+\sin 12^{\circ}}-\frac{\sin 33^{\circ}}{\cos 33^{\circ}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 \cos 45^{\circ} \sin 33^{\circ}}{2 \sin 45^{\circ} \cos 33^{\circ}}-\frac{\sin 33^{\circ}}{\cos 33^{\circ}} \\
& =0
\end{aligned}
$$

63. (A) $\frac{3-\tan ^{2} A}{1-3 \tan ^{2} A}=K$
$\Rightarrow \tan ^{2}=\frac{K-3}{3 K-1}$
$\operatorname{cosec} A\left(3 \sin A-4 \sin ^{3} A\right)=3-4 \sin ^{2} A$
$\Rightarrow 3-\frac{4}{\operatorname{cosec}^{2} A}=3-\frac{4}{1+\cot ^{2} A}$
$=3-\frac{4}{1+\frac{3 K-1}{K-3}}=3-\frac{4(K-3)}{4 K-4}$
$=\frac{3 K-3-K+3}{K-1}=\frac{2 K}{K-1}$
$\Rightarrow 3-4 \sin ^{2} \mathrm{~A}=\frac{2 K}{K-1}$
$\sin ^{2} \mathrm{~A}=\frac{K-3}{4(K-1)}$
$0 \leq \sin ^{2} \mathrm{~A}<1$
$0 \leq \frac{K-3}{4(K-1)} \leq 1$
case (i) $\mathrm{K}-3 \geq 0$

$$
\Rightarrow \mathrm{K} \geq 3
$$

case (ii) $\frac{K-3}{4(K-1)} \leq 1$
$\Rightarrow \mathrm{K}-3 \leq 4 \mathrm{~K}-4$
$\Rightarrow 3 \mathrm{~K}-1 \geq 0$
$\Rightarrow \mathrm{K} \geq \frac{1}{3}$
64. (C) Put $\mathrm{A}=90^{\circ}, \mathrm{B}=60^{\circ}, \mathrm{C}=30^{\circ}$

$$
\left(\because \mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}\right)
$$

Now, $\cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}$
$=\cos 180-\cos (2 \times 60)+\cos (2 \times 30)$
$=-1-\frac{1}{2}+\frac{1}{2}$
$=-1$
Put these values in all options
From option $(A)=1+4 \cos A \cos B \cos C$ $=1$
From option (B)
$=-1+4 \sin A \sin B \cos C$
$=-1+4 \times 1 \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}$
$=2$
From option $(\mathrm{C})=-1-4 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$ $=-1-0=-1$
From option $(D)=1+4 \sin A \sin B \sin C$
$=1+4 \times \frac{\sqrt{3}}{2} \times \frac{1}{2}=1+\sqrt{3}$
Hence option, (C) is correct.
65. (C)
$32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$
$4 \sin x \times \cos x \times \sin (60-x) \times \cos (60-x) \times \sin (60+x) \cos (60+x)$
adding +4 and -4 , in numerator.
$\Rightarrow 32 \cos ^{6} x-4-48 \cos ^{4} x+18 \cos ^{2} x+3$
$\Rightarrow 32 \cos ^{6} x-4-48 \cos ^{4} x+24 \cos ^{2} x-6 \cos ^{2} x+3$
$\Rightarrow 32 \cos ^{6} x-4-48 \cos ^{4} x+24 \cos ^{2} x-3 \cos 2 x$
$\Rightarrow 4\left(2 \cos ^{2} x-1\right)^{3}-3 \cos 2 x$

$$
\left[\therefore \cos 2 x=2 \cos ^{2} x-1\right]
$$

$\Rightarrow 4 \cos ^{3} 2 x-3 \cos 2 x$
$\Rightarrow \cos 6 x$

$$
\left[\begin{array}{l}
\because \cos 3 x \rightarrow 4 \cos ^{3} x-3 \cos x \text { and } \\
\because \cos 6 x \rightarrow 4 \cos ^{3} 2 x-3 \cos 2 x
\end{array}\right]
$$

Now,
$4 \sin x \cdot \cos x \cdot \sin (60-x) \cdot \cos (60-x)$.
$\sin (60+x) \cdot \cos (60+x)$
$\left[\therefore \sin x \cdot \sin (60-x) \cdot \sin (60+x)=\frac{1}{4} \sin 3 x\right]$
$\left[\therefore \cos x \cdot \cos (60-x) \cdot \cos (60+x)=\frac{1}{4} \cos 3 x\right]$

$$
\begin{aligned}
& =\frac{\cos 6 x}{\frac{1}{4} \sin 3 x \cdot \cos 3 x} \\
& =\frac{2}{2} \times \frac{4 \cos 6 x}{\sin 3 x \cdot \cos 3 x} \\
& =\frac{8 \cos 6 x}{2 \sin 3 x \cdot \cos 3 x} \\
& =\frac{8 \cos 6 x}{\sin 6 x}=8 \cot 6 x
\end{aligned}
$$

66. (D) $\frac{2}{x}+\frac{3}{y}=\frac{9}{x y}$
$2 y+3 x=9$
and $\frac{4}{x}+\frac{9}{y}=\frac{21}{x y}$
$4 y+9 x=21$
Multiplying equation (i) by 2
$4 y+6 x=18$
$\begin{array}{r}4 y+9 x=21 \\ \hline-3 x=-3\end{array}$
$\Rightarrow x=1$
Put the value of x in equation (i)
$2 y+3=9$
$\Rightarrow y=3$
$(x, y)=(1,3)$
67. (A) $12 x-65 \leq 7$
$x \leq 6$
and $13 x-47 \geq 5$
$x \geq 4$

The value of x which satisfies both equations are [4, 6]
68. (C) ATQ,.
$4 x^{2}-18 x-35=0$
$\Rightarrow 4 x^{2}+6 x-24 x-35=0$
$\Rightarrow 2 x(2 x+3)-12(2 x+3)=-1$
$\Rightarrow(2 x+3)(2 x-12)=-1$
$\Rightarrow 2 x-12=\frac{-1}{2 x+3}$
$\Rightarrow(2 x+3)-15=\frac{-1}{(2 x+3)}$
$\Rightarrow(2 x+3)+\frac{1}{2 x+3}=15$
$\Rightarrow\left[(2 x+3)-\frac{1}{(2 x+3)}\right]^{2}=\left[(2 x+3)+\frac{1}{(2 x+3)}\right]^{2}-4$
$=225-4$
$=221$
$\left[(2 x+3)-\frac{1}{(2 x+3)}\right]=\sqrt{221}$
$(2 x+3)^{3}-\frac{1}{(2 x+3)^{3}}$
$=221 \sqrt{221}+3 \sqrt{221}$
$=224 \sqrt{221}$
Hence, $(2 x+3)^{3}-\frac{1}{(2 x+3)^{3}}=224 \sqrt{221}$
69. (B) ATQ.,

$\Delta \mathrm{PSR} \sim \Delta \mathrm{PQS}$
$\frac{P R}{P S}=\frac{S R}{Q S}$
$\Rightarrow \quad \frac{P R}{P S}=\frac{3}{4}$
$\mathrm{PR}=3 x$ and $\mathrm{PS}=4 x$
$\mathrm{PS}^{2}=\mathrm{PR} \times \mathrm{PQ}$
$16 x^{2}=3 x \times(3 x+14)$
$\Rightarrow 7 x^{2}=42 x$
$\Rightarrow \quad x=6$
Hence $\mathrm{PR}=18 \mathrm{~cm}$
70. (B)

Let $\mathrm{EF}=x, \mathrm{DF}=2 x$
$\mathrm{DE}=\sqrt{5} x$
$\operatorname{Ar}(\triangle \mathrm{DEF})=\frac{1}{2} \times 2 x \times x=5$
$\Rightarrow \quad x=\sqrt{5}$
$\therefore \quad \mathrm{DE}=\sqrt{5} \times \sqrt{5}=5$
Now,
In $\triangle \mathrm{AED}$
$\mathrm{AE}^{2}=\mathrm{DE}^{2}-\mathrm{AD}^{2}$
= $25-16$
$\mathrm{AE}=3$ units
$\mathrm{AB}=2 \mathrm{EA}=2 \times 3=6$ units
Hence, Area of Rectangle ABCD
$=6 \times 4$
$=24 \mathrm{~cm}^{2}$
71. (D) ATQ.,

$\angle A C B=30^{\circ}$
$2 x=30^{\circ}$
$x=15^{\circ}$
$\angle B D C=90+\frac{70}{2}$
$=125^{\circ}$
Hence, $x=15^{\circ}$ and $y=125^{\circ}$
72. (B) ATQ,.

Let $A B=h$
In $\triangle A C B$
$\tan 45^{\circ}=\frac{h}{B C}$
$\mathrm{BC}=h \cot 45^{\circ}$
Similarly in, $\triangle \mathrm{ADB}$
$\tan 60^{\circ}=\frac{h}{B D}$
$\mathrm{BD}=h \cot 60^{\circ}$
$\mathrm{d}=h\left(\cot 45^{\circ}-\cot 60^{\circ}\right)$
$d=h\left(\frac{\sqrt{3}-1}{\sqrt{3}}\right)$
When angle of depression changes from
45° to 60° then the speed of vehicle
$S=\frac{d}{10 \times 60}=\frac{(\sqrt{3}-1)}{\sqrt{3}} \times \frac{h}{600} \mathrm{~m} / \mathrm{sec}$.
Required time $=\frac{\frac{h \text { cat } 60^{\circ}}{\sqrt{3}-1}}{\sqrt{3}} \times \frac{h}{600}$
$=\frac{600}{\sqrt{3}-1}$
$=300(\sqrt{3}+1)$ minute.
Hence, time required to reach the bottom of hill is 13 min 40 sec .
73. (C) $x=1+\sqrt{2}+\sqrt{3}$
$\Rightarrow(x-1)=\sqrt{3}+\sqrt{2}$
squaring both sides
$x^{2}+1-2 x=3+2+2 \sqrt{6}$
$x^{2}-2 x=4+2 \sqrt{6}$
Again squaring both sides
$\Rightarrow x^{4}+4 x^{2}-4 x^{3}=16+24+16 \sqrt{6}$
Multiplying above equation by (2) in both sides
$\Rightarrow 2 x^{4}-8 x^{3}+8 x^{2}=80+32 \sqrt{6}$
$\Rightarrow 2 x^{4}-8 x^{3}-5 x^{2}+26 x-28=52+32 \sqrt{6}-$
$5 x^{2}-8 x^{2}+26 x$
$2 x^{4}-8 x^{3}-5 x^{2}+26 x-28$
$=52+32 \sqrt{6}-13\left(x^{2}-2 x\right)$
From eq. putting the value of $x^{2}-2 x$
$2 x^{4}-8 x^{3}-5 x^{2}+26 x-28$
$=52+32 \sqrt{6}-13(4+2 \sqrt{6})$
$=52+32 \sqrt{6}-52-26 \sqrt{6}$
$=6 \sqrt{6}$
74. (A) ATQ.,

Let Breadth $=x$
Length $=3 x$
Area of four walls $=2 \mathrm{~h}(l+\mathrm{b})$
$\Rightarrow 2 \times 22 \times(3 x+x)=5280$
$\Rightarrow x=30$
Area of base $=30 \times 90$
$=2700 \mathrm{~m}^{2}$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
75. (A) ATQ.,
$30 \times 24 \times h=10 \times 6 \times 50 \times 60 \times 32 \times 10^{-4}$
$\Rightarrow \mathrm{h}=\frac{10 \times 6 \times 50 \times 60 \times 32 \times 10^{-4}}{30 \times 24}$
$=0.8 \mathrm{~m}$
Hence, The water level is 80 cm .
76. (D)

Let, $\angle C O D=x$
We know that
$\angle A P B=\frac{x+15^{\circ}}{2}$
$\Rightarrow 30=\frac{x+15^{\circ}}{2}$
$x=45^{\circ}$
$\therefore \tan ^{2} 30+\cot ^{2} 45^{\circ}$
$=\frac{1}{3}+1=\frac{4}{3}$
77. (D)

$\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ are mid points
So, $\mathrm{AB}=2 \mathrm{EF}$
$\mathrm{BC}=2 \mathrm{GF}$
$\mathrm{DC}=2 \mathrm{GH}$
$\mathrm{DA}=2 \mathrm{EH}$
\therefore Perimeter of quadrilateral ABCD
$=2 \times$ Perimeter EFGH.
$\frac{\text { Perimeter of EFGH }}{\text { Perimeter of ABCD }}=\frac{1}{2}$
78. (B) $x^{4}+y^{4}+x^{2} y^{2}=481$
$x^{4}+y^{4}+2 x^{2} y^{2}=481+x^{2} y^{2}$
$\left(x^{2}+y^{2}\right)^{2}=481+144$
$x^{2}+y^{2}=25$
$x^{2}+y^{2}-x y=25-x y$
Putting the value of $x y$ in equation (i)
$x^{2}+y^{2}-x y=25-12$
$=13$
79. (B) Let $x y z=\mathrm{a}$

$$
\begin{aligned}
& \sqrt{a}-\frac{1}{\sqrt{a}}=a^{3 / 2} \\
\Rightarrow & a-1=a^{3 / 2} \cdot a^{1 / 2} \\
\Rightarrow & a-1=a^{2} \\
\Rightarrow & a^{2}+1=a
\end{aligned}
$$

Now, $\frac{1+2 a^{2}+a^{4}}{a^{2}}$

$$
=\frac{\left(a^{2}+1\right)^{2}}{a^{2}}
$$

$$
=\frac{a^{2}}{a^{2}}
$$

$$
=1
$$

80. (A) $\mathrm{h}=34 \mathrm{~cm}$

$$
\begin{aligned}
& \pi r^{2} h=5236 \\
& \Rightarrow \frac{22}{7} \times r^{2} \times 34=5236 \\
& \Rightarrow r=7 \\
& \text { C.S.A. }=2 \pi r h \\
&=2 \pi \times 7 \times 34 \\
&=1496 \mathrm{~cm}^{2}
\end{aligned}
$$

81. (A)

$\cos 60^{\circ}=\frac{19^{2}+21^{2}-x^{2}}{2 \times 19 \times 21}$
$\frac{1}{2} \times 2 \times 19 \times 21=19^{2}+21^{2}-x^{2}$
$x^{2}=802-399$
$x=\sqrt{403}$
82. (C) $4 \pi \mathrm{R}_{\mathrm{b}}{ }^{2}=576 \pi$
$\mathrm{R}_{\mathrm{b}}{ }^{2}==144$
$\mathrm{R}_{\mathrm{b}}=12 \mathrm{~cm}$
$\mathrm{D}_{\mathrm{b}}=24 \mathrm{~cm}$
The total surface area of hemisphere
$=3 \pi \mathrm{R}_{\mathrm{h}}{ }^{2}$
$3 \pi R_{h}{ }^{2}=36.75 \pi$
$\mathrm{R}_{\mathrm{h}}{ }^{2}=3.5$
Diameter of small sphere when formed
$=2 \times 3.5=7 \mathrm{~cm}$
Difference in diameter $=24 \mathrm{~cm}-7 \mathrm{~cm}$
$=17 \mathrm{~cm}$
83. (C)

$\angle B O C=90-\frac{\angle \mathrm{A}}{2}=90^{\circ}-36^{\circ}$
$=54^{\circ}$
84. (B)

Let $\angle \mathrm{PUQ}=\theta$
Then $\angle \mathrm{SUT}=180-\theta$
and Let $\angle \mathrm{RTP}=\alpha$
Then $\angle \mathrm{STU}=180-\alpha$
\therefore Ratio of area of $\frac{\Delta \mathrm{PUQ}}{\Delta \mathrm{SUT}}$

$$
\begin{aligned}
& =\frac{\frac{1}{2} \times 18 \times 24 \times \sin \theta}{\frac{1}{2} \times 12 \times 9 \times \sin (180-\theta)} \\
& =\frac{4 \sin \theta}{\sin \theta}
\end{aligned}
$$

$\frac{\Delta P U Q}{\Delta S U T}=\frac{4}{1}$
Now,
Ratio of area of $\frac{\Delta P T R}{\Delta S U T}$
$=\frac{\frac{1}{2} \times 27 \times 24 \times \sin a}{\frac{1}{2} \times 9 \times 8 \times \sin (180-a)}$

$$
=\frac{\Delta \mathrm{PTR}}{\Delta \mathrm{SUT}}=\frac{9 \sin a}{\sin a}=\frac{9}{1}
$$

$\therefore \quad$ Ratio of Area of $\frac{\Delta \mathrm{PTR}}{\Delta \mathrm{SUT}}=\frac{4}{9}$
85. (A) ATQ,.

Let, $2021=x$
$\frac{x^{4}+x^{2}+1}{x^{3}+1}=\frac{x^{4}+x+x^{2}+1-x}{x^{3}+1}$
$=\frac{x\left(x^{3}+1\right)+x^{2}+1-x}{x^{3}+1}$
$=x+\frac{x^{2}+1-x}{(x+1)\left(x^{2}+1-x\right)}$
$=x+\frac{1}{x+1}$
Now, $x+\frac{1}{x+1}=p+\frac{q}{r}$
comparing both sides
$p=x, q=1$, and $r=x+1$
$p+q+r=x+1+x+1$
$=2 x+2$
Putting the values of

$$
\begin{aligned}
& x=2021 \\
& p+q+r=2 \times 2021+2 \\
& =4042+2 \\
& =4044
\end{aligned}
$$

86. (D) $x+y+x y=3$

Adding 1 in both sides
$x+1+y(x+1)=4$
$(1+x)(1+y)=4$
Similarly,
$(1+y)(1+z)=9$

And, $(1+z)(1+x)=16$
Multiplying eq. (1) $\times(2)$ and (3)
$(1+x)^{2}(1+y)^{2}(1+z)^{2}=4 \times 9 \times 16$
Taking square root both sides
$\Rightarrow(1+x)(1+y)(1+z)=2 \times 3 \times 4$
From eq. (1)

$$
\begin{aligned}
& 1+z=\frac{24}{4}=6 \\
\Rightarrow \quad & z=5
\end{aligned}
$$

Now, putting the value of eq. (2) in eq. (4)

$$
\begin{aligned}
& 1+x=\frac{2 \times 3 \times 4}{9} \\
\Rightarrow & x=\frac{8}{3}-1 \\
\Rightarrow & x=\frac{5}{3}
\end{aligned}
$$

From eq. (3)
$1+y=\frac{24}{16}=\frac{3}{2}$
$\Rightarrow y=\frac{1}{2}$
$6 \times x y z=6 \times \frac{5}{3} \times \frac{1}{2} \times 5$
$=25$
87. (C) Volume of cone $=\frac{1}{3} \times$ Base area \times height $\Rightarrow \quad \frac{1}{3} \times$ base area $\times 24$
$=\frac{1}{3} \times 32 \pi \times 6+\frac{1}{3} \times 288 \pi \times 10+$
$\frac{1}{3} \times 50 \pi \times 24+\frac{1}{3} \times 128 \pi \times 30$
$\Rightarrow \mathrm{R}_{\mathrm{b}}^{2} \times 24=32 \times 6+288 \times 10+50 \times 24+$ 128×30
$=192+2880+1200+3840$
$\Rightarrow R_{b}{ }_{b}=338$
Base area of larges cone $=\pi \mathrm{R}^{2}{ }_{b}$
$=338 \pi \mathrm{~cm}^{2}$
88. (A) ATQ.,

Perimeter of triangular base
$=8+15+17$
$=40 \mathrm{~cm}$
$S=\frac{40}{2}=20 \mathrm{~cm}$
Area of triangular base
$=\sqrt{20(20-8)(20-15)(20-17)}$
$=\sqrt{3600}$
$=60$
Total surface area $=2 \times$ L.S.A +
Perimeter \times Height of Prism
$1440=2 \times 60+40 \times h$
h $=33$
Volume of prism
$=60 \times 33$
$=1980 \mathrm{~cm}^{3}$
89. (C) ATQ.,

(x, y)
$x=\frac{-24+18}{2+3}=\frac{-6}{5}$
$y=\frac{12+16}{2+3}=\frac{28}{5}$
Co-ordinates of point P
$=\left(\frac{-6}{5}, \frac{28}{5}\right)$
90. (A)

In $\triangle \mathrm{RCQ}$
$\tan 30^{\circ}=\frac{R Q}{C Q}$

$$
\Rightarrow \mathrm{QC}=900 \sqrt{3} \text { units }
$$

$$
\mathrm{AP}=900 \sqrt{3}-300 \sqrt{3}
$$

$=600 \sqrt{3}$ units
In \triangle RAP
$\tan 60^{\circ}=\frac{R P}{A P}$
$\Rightarrow \quad \sqrt{3}=\frac{R Q}{600 \sqrt{3}}$

$$
\mathrm{RP}=1800 \text { units }
$$

Height of small building $=\mathrm{BC}=\mathrm{QP}$

$$
\begin{aligned}
& =R P-R Q \\
& =1800-900 \\
& =900 \text { units }
\end{aligned}
$$

91. (C)

$\triangle \mathrm{ABO} \sim \triangle \mathrm{ECO}$
$\because(\angle A B C=\angle E C O, \angle B A E=\angle A E C$ and $\angle A O B=\angle C O E)$

$$
\Rightarrow \frac{\mathrm{AB}}{\mathrm{EC}}=\frac{\mathrm{OA}}{\mathrm{OE}}
$$

$$
\Rightarrow \quad \frac{190}{58}=\frac{300}{\mathrm{OE}}
$$

$\mathrm{OE}=\frac{300 \times 58}{140}$
$=\frac{30 \times 58}{19}$
$=91 \frac{11}{19}$ metres
and $\angle B C E=72^{\circ}$
92. (B) since DEAF is rhombus then we have
side of rhombus $=\frac{A B \times A C}{A B+A C}$
$=\frac{12 \times 10}{(12+10)}$
$=\frac{120}{22} \mathrm{~cm}$
Now area $=$ side \times height
$=\frac{120}{22} \times 11$
$=60 \mathrm{~cm}^{2}$
93. (A)

We know in quadrilateral
$A_{1} \times A_{3}=A_{2} \times A_{4}$
$\therefore \quad 24 \times 54=A_{2} \times 27$
$\mathrm{A}_{2}=48 \mathrm{~m}^{2}$
94. (B) ATQ.,

Let cost price of the mixture be ₹ x per/ litre
$\frac{x \times 175}{100}-\frac{x \times 87.5}{100}=46.875$
$\Rightarrow x=₹\left(\frac{375}{7}\right)$ perliter
Now, from mixture and allegation

Required ratio $=\mathrm{A}: \mathrm{B}=4: 3$
95. (A)

Required area of field = Area of square - grazed area - area of pond

$$
\begin{aligned}
& \left.=(14)^{2}-\left(\frac{90 \times 4}{360}\right) \pi(7)^{2}-20\right] \\
& =196-\frac{22}{7} \times 49-20 \\
& =196-154-20 \\
& =22 \mathrm{~m}^{2}
\end{aligned}
$$

96. (C) ATQ.,
$4 x-5 z=16$
Taking cube both sides
$\Rightarrow(4 x-5 z)^{3}=(16)^{3}$
$\Rightarrow 64 x^{3}-125 z^{3}-3(4 x)(5 z)(4 x-5 z)=4096$
$\Rightarrow 64 x^{3}-125 z^{3}=60 \times 12 \times 16+4096$
$=15,616$

Campus

K D Campus Pvt. Ltd

97. (D) $y=\frac{x^{2}-10 x+64}{x^{2}+10 x+64}$
$\frac{d y}{d x}=\frac{\left(x^{2}+10 x+64\right)(2 x-10)-\left(x^{2}-10 x+64\right)(2 x+10)}{\left(x^{2}+10 x+64\right)^{2}}$
For maxima or mixima
Put $\frac{d y}{d x}=0$
$\frac{\left(x^{2}+10 x+64\right)(2 x-10)-\left(x^{2}-10 x+64\right)(2 x+10)}{\left(x^{2}+10 x+64\right)^{2}}=0$
$\left(x^{2}+10 x+64\right)(x-5)-\left(x^{2}-10 x+64\right)(x+5)=0$
$\Rightarrow x^{3}+10 x^{2}+64 x-5 x^{2}-50 x-320$
$-x^{3}+10 x^{2}-64 x-5 x^{2}+50 x-320=0$
$\Rightarrow 10 x^{2}=640$
$\Rightarrow \quad x=8$
For minimum value put $x=8$ in given eq.

$$
y=\frac{x^{2}-10 x+64}{x^{2}+10 x+64}=\frac{64-80+64}{64+80+64}=\frac{3}{13}
$$

98. (A) Let the side of hexagon is a

Area of hexagon $=6 \times \frac{\sqrt{3}}{4} a^{2}$
$=6 \frac{\sqrt{3}}{4} a^{2}$
Area of $\triangle \mathrm{ACE}=6 \frac{\sqrt{3}}{4} a^{2}-\frac{a \times a}{2} \sin 120^{\circ}$
Area of $\triangle \mathrm{ACE}=\frac{3 \sqrt{3}}{4} a^{2}$
Ar of $\triangle A C E$
Required ratio $=\frac{\text { Area of hexagon } A B C D E F}{}$

99. (D) ATQ.,
$2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)-1$
$=\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)-3 \sin ^{2} \theta \cos ^{2} \theta\right]$ $-3\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right)-1$
$=2-6 \sin ^{2} \theta \cos ^{2} \theta-3+6 \sin ^{2} \theta \cos ^{2} \theta-1$
$=-2$
100. (A)

Solving eq. (1) and (2) for intersection points of O
$x=3, y=4$
Point $\mathrm{O} \rightarrow(3,4)$
Point $\mathrm{A} \rightarrow\left(-\frac{3}{2}, 1\right)$ by solving $y=1$ and $2 x-3 y=-6$

Point $\mathrm{B} \rightarrow\left(\frac{15}{2}, 1\right)$ by solving $y=1$, and $2 x+3 y=18$
$A B=\frac{15}{2}+\frac{3}{2}=9$ units
Height of $\triangle A O B=4-1=3$ units
Area of triangle $\mathrm{ABC}=\frac{1}{2} \times 9 \times 3$
$=13.5$ units 2

