1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

TEST NO.
57

SSC TIER-II : QUANTITATIVE ABILITIES
 (Answer with Explanations)

					we				
1.	(B)	21.	(C)	41.	(B)	61.	(D)	81.	(B)
2.	(A)	22.	(A)	42.	(A)	62.	(A)	82.	(A)
3.	(D)	23.	(B)	43.	(B)	63.	(D)	83.	(A)
4.	(B)	24.	(C)	44.	(B)	64.	(C)	84.	(A)
5.	(B)	25.	(C)	45.	(D)	65.	(A)	85.	(B)
6.	(C)	26.	(D)	46.	(C)	66.	(A)	86.	(A)
7.	(B)	27.	(D)	47.	(C)	67.	(B)	87.	(B)
8.	(D)	28.	(C)	48.	(A)	68.	(A)	88.	(D)
9.	(C)	29.	(A)	49.	(B)	69.	(A)	89.	(C)
10.	(A)	30.	(B)	50.	(A)	70.	(C)	90.	(C)
11.	(B)	31.	(B)	51.	(B)	71.	(A)	91.	(C)
12.	(A)	32.	(B)	52.	(C)	72.	(C)	92.	(D)
13.	(C)	33.	(D)	53.	(B)	73.	(A)	93.	(C)
14.	(C)	34.	(A)	54.	(D)	74.		94.	(D)
15.	(C)	35.	(C)	55.	(A)	75.	(D)	95.	(B)
16.	(A)	36.	(D)	56.	(A)		(B)	96.	(D)
17.	(D)	37.	(B)	57.	(C)	77.	(A)	97.	(D)
18.	(C)	38.	(D)	58.	(A)		(D)	98.	(C)
19.	(D)	39.	(D)	59.	(B)	79.	(B)	99.	(C)
20.	(B)	40.	(A)	60.	(C)		(C)	100.	(D)

Answer key with explanations

1. (B) Given that $\cos \theta=\sqrt{3} \sin \theta$
$\Rightarrow \tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=30^{\circ}$
Now, $2 \operatorname{cosec}^{2} \theta+\cos ^{2} \theta+\sin \theta \cdot \cos \theta+$ $\tan ^{2} \theta$
$\Rightarrow 2 \operatorname{cosec}^{2} 30^{\circ}+\cos ^{2} 30+\sin 30^{\circ} \cdot \cos 30^{\circ}$
$+\tan ^{2} 30^{\circ}$
$\Rightarrow 2 \times(2)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}+\frac{1}{2} \times \frac{\sqrt{3}}{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}$
$\Rightarrow 8+\frac{3}{4}+\frac{\sqrt{3}}{4}+\frac{1}{3}$
$\Rightarrow \frac{96+9+3 \sqrt{3}+4}{12}=\frac{109+3 \sqrt{3}}{12}$
2. (A) $\sqrt{81-56 \sqrt{2}}=a-b \sqrt{2}$

$$
\begin{aligned}
& \Rightarrow \sqrt{(7-4 \sqrt{2})^{2}}=a-b \sqrt{2} \\
& \Rightarrow 7-4 \sqrt{2}=a-b \sqrt{2}
\end{aligned}
$$

On comparing
$a=7, b=4$

Now, $\sqrt{a^{2}-b^{2}} \Rightarrow \sqrt{7^{2}-4^{2}}$

$$
\Rightarrow \sqrt{49-16} \Rightarrow \sqrt{33}=5.7
$$

3. (D) Given that
$a^{2}+b^{2}+c^{2}+56=4(a-2 b+3 c)$
$\Rightarrow\left(a^{2}-4 a+4\right)+\left(b^{2}+8 b+16\right)+\left(c^{2}-12 c+\right.$ 36) $=0$
$\Rightarrow(a-2)^{2}+(b+4)^{2}+(c-6)^{2}=0$
here $a-2=0 \Rightarrow a=2, b+4=0 \Rightarrow b-4$ and $c-6=0 \Rightarrow c=6$

Now, $\sqrt{a^{3}+b^{3}+c^{3}-3 a b c}$
$\Rightarrow \sqrt{2^{3}+(-4)^{3}+6^{3}-3 \times 2 \times(-4) \times 6}$
$\Rightarrow \sqrt{8+(-64)+216+144}$
$\Rightarrow \sqrt{304}=4 \sqrt{19}$
4. (B) 21.6666666
$+14.3676767$
$\overline{36.0343433}=36.0 \overline{34}$
and 36.0343434

$$
-35.4999999
$$

$$
\overline{0.5343435}=0.5 \overline{34}
$$

Hence $21 . \overline{6}+14.3 \overline{67}-35.4 \overline{9}=0.5 \overline{34}$
5. (B) $\operatorname{cosec}(53+\theta)-\sec (37-\theta)+\cos 25 \cdot \cos 55$. cosec65.cos30.cosec35
$\Rightarrow \operatorname{cosec}(53+\theta)-\operatorname{cosec}[90-(37-\theta)]+$ $\cos 25 \cdot \cos 55 \cdot \sec (90-65) \cdot \frac{\sqrt{3}}{2} \cdot \sec (90-35)$
$\Rightarrow \operatorname{cosec}(53+\theta)-\operatorname{cosec}(53+\theta)$
$+\cos 25 \cdot \cos 55 \cdot \sec 25 \cdot \frac{\sqrt{3}}{2} \cdot \sec 55$
$\Rightarrow 0+\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$
6. (C) $a b(a-b)+b c(b-c)+c a(c-a)$
$\Rightarrow a b(a-b)+b^{2} c-b c^{2}+c^{2} a-c a^{2}$
$\Rightarrow a b(a-b)+b^{2} c-c a^{2}-b c^{2}+c^{2} a$
$\Rightarrow a b(a-b)-c\left(a^{2}-b^{2}\right)+c^{2}(a-b)$
$\Rightarrow a b(a-b)-c(a-b)(a+b)+c^{2}(a-b)$
$\Rightarrow(a-b)\left[a b-c(a+b)+c^{2}\right]$
$\Rightarrow(a-b)\left[a b-c a-b c+c^{2}\right]$
$\Rightarrow(a-b)[a(b-c)-c(b-c)]$
$\Rightarrow(a-b)(b-c)(a-c)=-(a-b)(b-c)(c-a)$
7. (B) $(4 x-3)^{3}+4(x+4)^{3}+(2-5 x)^{3}=6(3-4 x)$ $(x+4)(5 x-2)$
$\Rightarrow(4 x-3)^{3}+\{2(x+4)\}^{2}+(2-5 x)^{3}=$
$6 \times(4 x-3)(x+4)(2-5 x)$
$\Rightarrow(4 x-3)^{3}+\{2(x+4)\}^{2}+(2-5 x)^{3}-3 \times(4 x-3)$
$\{2(x+4)\}(2-5 x)=0$
We know that, $a^{3}+b^{3}+c^{3}-3 a b c=0$, then $a+b+c=0$
$\Rightarrow 4 x-3+2(x+4)+(2-5 x)=0$
$\Rightarrow x+7=0 \Rightarrow x=-7$
Now, $3 x-5 \Rightarrow 3 \times(-7)-5=-21-5=-26$
8. (D) $12 \times 2 \div 6+12 \div 3 \times 2$ of $(16 \div 4 \times 2)+(44$
$\div 11+6$ of 5)
$\Rightarrow 4+12 \div 3 \times 2$ of $8+(4+30)$
$\Rightarrow 4+12 \div 3 \times 16+34$
$\Rightarrow 4+64+34=102$
9. (C) $24 \sqrt{3} x^{3}+54 \sqrt{2} y^{3}=(\mathrm{A} x+3 \sqrt{2} y)\left(\mathrm{B} x^{2}+\right.$ $\left.\mathrm{C} y^{2}-\mathrm{D} x y\right)$
$\Rightarrow(2 \sqrt{3} x)^{3}+(3 \sqrt{2} y)^{3}=(\mathrm{A} x+3 \sqrt{2} y)$ ($\mathrm{B} x^{2}+\mathrm{C} y^{2}-\mathrm{D} x y$)
We know that
$a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)$
$\Rightarrow(2 \sqrt{3} x+3 \sqrt{2} y)\left(12 x^{2}+18 y^{2}-6 \sqrt{6} x y\right)$
$=(\mathrm{A} x+3 \sqrt{2} y)\left(\mathrm{B} x^{2}+\mathrm{C} y^{2}-\mathrm{D} x y\right)$
On comparing
$\mathrm{A}=2 \sqrt{3}, \mathrm{~B}=12, \mathrm{C}=18, \mathrm{D}=6 \sqrt{6}$
Now, $\mathrm{A}^{2}+\mathrm{B}^{2}-\mathrm{C}^{2}-\mathrm{D}^{2}$
$\Rightarrow(2 \sqrt{3})^{2}+(12)^{2}-(18)^{2}-(6 \sqrt{6})^{2}$
$\Rightarrow 12+144-324-216$
$\Rightarrow 156-540=-384$
10. (A) $\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1} \times \frac{\sec \theta-\tan \theta}{\tan ^{2} \theta\left(\operatorname{cosec}^{2} \theta-1\right)}$

$$
\begin{aligned}
\Rightarrow & \frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1} \times \frac{\sin \theta+\cos \theta+1}{\sin \theta+\cos \theta+1} \\
\times & \frac{\sec \theta-\tan \theta}{\tan ^{2} \theta \cdot \cot ^{2} \theta} \\
\Rightarrow & \frac{(\sin \theta+1)^{2}-\cos ^{2} \theta}{(\sin \theta+\cos \theta)^{2}-1} \times \frac{\sec \theta-\tan \theta}{1} \\
\Rightarrow & \frac{\sin \theta^{2}+1+2 \sin \theta-\cos ^{2} \theta}{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cdot \cos \theta-1} \\
& \times\left(\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}\right)
\end{aligned}
$$

$$
\Rightarrow \frac{\sin ^{2} \theta+\sin ^{2} \theta+2 \sin \theta}{1+2 \sin \theta \cdot \cos \theta-1} \times \frac{1-\sin \theta}{\cos \theta}
$$

$$
\Rightarrow \frac{2 \sin ^{2} \theta+2 \sin \theta}{2 \sin \theta \cdot \cos \theta} \times \frac{1-\sin \theta}{\cos \theta}
$$

$$
\Rightarrow \frac{2 \sin \theta(\sin \theta+1)}{2 \sin \theta} \times \frac{1-\sin \theta}{}
$$

$$
\Rightarrow \frac{(1+\sin \theta)(1-\sin \theta)}{\cos ^{2} \theta} \Rightarrow \frac{1-\sin ^{2} \theta}{\cos ^{2} \theta}
$$

$$
\Rightarrow \frac{\cos ^{2} \theta}{\cos ^{2} \theta}=1
$$

(B) A.T.Q.,
$5762 \times 13 y 2$ is divisible by 88 means it's divisible by 11 and 8
Applying both divisibility Rule
$y=1,5,9$ (Because number divisible by 8) and $7+2+1+y=10+y(11,15,29)$ $5+6+x+3+2=16+x$
taking $x=6$ and $y=1$ is satisfy all,
then $\sqrt{3 x+7 y}=\sqrt{3 \times 6+7 \times 1}=\sqrt{18+7}$
$=\sqrt{25}=5$
12. (A) $x+\frac{1}{9 x}=2$
multiplying by 3
$\Rightarrow 3 x+\frac{1}{3 x}=6$
On cubing both sides
$\Rightarrow 27 x^{3}+\frac{1}{27 x^{3}}+3 \times 3 x \times \frac{1}{3 x}\left(3 x+\frac{1}{3 x}\right)$
$=216$
$\Rightarrow 27 x^{3}+\frac{1}{27 x^{3}}+3 \times 6=216$
$\Rightarrow 27 x^{3}+\frac{1}{27 x^{3}}=198$
divided by 3
$\Rightarrow 9 x^{3}+\frac{1}{81 x^{3}}=66$
13. (C) Let 21 st number $=x$

ATQ,
$21 \times 81+21 \times 89-x=41 \times 84$
$\Rightarrow 1701+1869-x=3444$
$\Rightarrow 3570-x=3444 \Rightarrow x=126$
Average of remaining numbers
$=\frac{3444-126}{40}=\frac{3318}{40}=82.95$
14. (C) $\frac{\sin (83+\theta)-\cos (7-\theta)+\left(\cot ^{2} 40-\sec ^{2} 50\right)}{\sin 15 \cdot \cos 75+\cos 15 \cdot \sin 75}$
$\Rightarrow \frac{\sin (83+\theta)-\sin [90-(7-\theta)]+\left[\left(\cot ^{2} 40-\operatorname{cosec}^{2}(90-50)\right.\right.}{\sin (15+75)}$
$\Rightarrow \frac{\sin (83+\theta)-\sin (83+\theta)+\left(\cot ^{2} 40-\operatorname{cosec}^{2} 40\right)}{\sin 90}$
$\Rightarrow \frac{0-1}{1}=-1$
15. (C) Ratio of capitals $=3: 4: 5$

Ratio of months $=4: 5: 3$
Ratio of profits $=3 \times 4: 4 \times 5: 5 \times 3$

$$
=12: 20: 15
$$

$20-15=5 \rightarrow 15300$
P's share $=\frac{15300}{5} \times 12=₹ 36720$
16. (A) ATQ,
$2 \pi r h=\frac{1}{4} \times 2 \pi r(h+r)$
$\Rightarrow 4 h=h+r$
$\Rightarrow 3 h=r \Rightarrow \frac{r}{h}=\frac{3}{1}$
Hence the required ratio $=3: 1$
17. (D) $3124.75=\mathrm{P}+\frac{\mathrm{P} \times 7.35 \times 3.4}{100}$
$\Rightarrow 3124.75=\mathrm{P} \times \frac{124.99}{100}$
$\Rightarrow \mathrm{P}=2500$
Now,
New amount $\mathrm{A}=2500+\frac{2500 \times 9.6 \times 5}{100}$
$\Rightarrow A=2500+1200=₹ 3700$
18. (C) Equation
$x-3 y=-6$
$2 x-5 y=7$
On solving
$x=-9$ and $y=-5$
Hence $\mathrm{A}\left(x_{1}, y_{1}\right)=(-9,-5)$
and equation $3 x+2 y=6$ intersect the y -axis i.e. $x=0$
$0+x y=6 \Rightarrow y=3$

Hence $\mathrm{B}\left(x_{2}, y_{2}\right)=(0,3)$
Now, $\left.x_{1}-x_{2}+y_{1}-y_{2}\right)$
$\Rightarrow-9-0-5-3=-17$
19. (D) Speed of the boat in still water : speed of the stream $=5: 3$
speed of the stream $=6 \mathrm{~km} / \mathrm{hr}$
So the speed of the boat in still water
$=\frac{6}{3} \times 5=10 \mathrm{~km} / \mathrm{hr}$
Let the distance travelled by the boat each way $=x \mathrm{~km}$
ATQ,
$\frac{x}{10-6}+\frac{x}{10+6}=\frac{50}{60}$
$\Rightarrow \frac{x}{4}+\frac{x}{16}=\frac{5}{6}$
$\Rightarrow \frac{4 x+x}{16}=\frac{5}{6}$
$\Rightarrow \frac{5 x}{16}=\frac{5}{6}$
$\Rightarrow x=\frac{8}{3} \mathrm{~km}$
Therefore the distance travelled by the boat in the whole trip $=\frac{8}{3}+\frac{8}{3}=\frac{16}{3} \mathrm{~km}$
20. (B) Let the rate of interest $=$ r\% p.a.

ATQ,
$\left(1+\frac{r}{100}\right)^{2}=\frac{8780.8}{7000}$
$\Rightarrow\left(1+\frac{r}{100}\right)^{2}=\left(\frac{28}{25}\right)^{2}$
$\Rightarrow \frac{r}{100}=\frac{3}{25}$
Simple interest $=12240-9000=3240$
$9000 \times 12 \% \times t=3240$
$\Rightarrow t=3$
21. (C) C.P. $=₹ 8400$

Ist S.P. $=\frac{8400 \times 94}{100}=₹ 7896$
2nd S.P. $=\frac{7896 \times 105}{100}=8290.8$
The required loss $=8400-8290.8$
= ₹ 109.2

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
22. (A) $\sin \theta+\operatorname{cosec} \theta+\sin ^{2} \theta+\operatorname{cosec}^{2} \theta=0$
$\Rightarrow(\sin \theta+\operatorname{cosec} \theta)+(\sin \theta+\operatorname{cosec} \theta)^{2}$
$-2 \sin \theta \cdot \operatorname{cosec} \theta=0$
$\Rightarrow(\sin \theta+\operatorname{cosec} \theta)+(\sin \theta+\operatorname{cosec} \theta)^{2}$
$-2=0$
Let $\sin \theta+\operatorname{cosec} \theta=x$
$\Rightarrow x+x^{2}-2=0 \Rightarrow(x+2)(x-1)=0$
$\Rightarrow x=-2$ or $x=-1$
$\Rightarrow \sin \theta+\operatorname{cosec} \theta=-2$ or $\sin \theta+\operatorname{cosec} \theta=1$
taking $\sin \theta+\operatorname{cosec} \theta=-2$
$\Rightarrow \sin \theta+\frac{1}{\sin \theta}=-2$
$\Rightarrow \sin ^{2} \theta+1=-2 \sin \theta \Rightarrow(\sin \theta+1)^{2}=0$
$\Rightarrow \sin \theta=-1 \Rightarrow \theta=\frac{3 \pi}{2}$
Now, $\sin \theta+\cos \theta$
$\Rightarrow \sin \frac{3 \pi}{2}+\cos \frac{3 \pi}{2} \Rightarrow-1+0=-1$
23. (B) Equation $a x^{2}+x+b=0$ has equal roots, then $D=0$
$\Rightarrow \mathrm{B}^{2}-4 \mathrm{AC}=0$
$\Rightarrow 1^{2}-4 \times a \times b=0$
$\Rightarrow 4 a b=1 \Rightarrow 6 a b=\frac{1}{4} \times 6=\frac{3}{2}$
24. (C) Let speed of train $=x \mathrm{kmph}$
and speed of bus $=y \mathrm{kmph}$
ATQ,
$\frac{360}{x}+\frac{140}{y}=9 \frac{1}{2}$
$\Rightarrow \frac{360}{x}+\frac{140}{y}=\frac{19}{2}$
and $\frac{420}{x}+\frac{80}{y}=9$
On solving
$x=60, y=40$
Hence speed of bus $=40 \mathrm{kmph}$
25. (C) Let $2^{x}=3^{y}=6^{-z}=k$
$2^{x}=k \Rightarrow 2=k^{1 / x}$
$3^{y}=k \Rightarrow 3=k^{1 / y}$
and $6^{-z}=k \Rightarrow 6=k^{-1 / z}$
Now, $2 \times 3=6 \Rightarrow k^{\frac{1}{x}} \times k^{\frac{1}{y}}=k^{\frac{-1}{z}}$
$\Rightarrow k^{\frac{1}{x}+\frac{1}{y}}=k^{\frac{-1}{z}} \Rightarrow \frac{1}{x}+\frac{1}{y}=\frac{-1}{z}$
$\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$
26. (D) Percentage growth from 2005-06 to $2006-07=\frac{100-50}{50} \times 100 \%=100 \%$
Percentage growth from 2006-07 to $2007-08=\frac{200-100}{100} \times 100 \%=100 \%$
Percentage growth from 2007-08 to
$2008-09=\frac{250-200}{200} \times 100 \%=25 \%$
Percentage growth from 2008-09 to $2009-10=\frac{400-250}{250} \times 100 \%=60 \%$
27. (D) In 2005-06, $K=\frac{100-50}{100}=\frac{1}{2}$

In 2006-07, $K=\frac{150-100}{150}=\frac{1}{3}$
In 2007-08, $K=\frac{400-200}{400}=\frac{1}{2}$
In 2008-09, $\mathrm{K}=\frac{550-250}{550}=\frac{6}{11}$
In 2009-010, $\mathrm{K}=\frac{700-400}{700}=\frac{3}{7}$
28. (C) Percentage increase in the number of girls $=\frac{400-50}{50} \times 100 \%=700 \%$
Percentage increase in the number of boys $=\frac{300-50}{50} \times 100 \%=500 \%$
Difference in percentage point $=700 \%$ $-500 \%=200 \%$
29. (A) Quantity of wine $=40 \times \frac{5}{8}=25$ litre

Quantity of water $=40 \times \frac{3}{8}=15$ litre
Let x litre water to be added in the mixture.
ATQ,
$\frac{25}{15+x}=\frac{3}{5}$
$\Rightarrow 125=45+3 x$
$\Rightarrow 3 x=80$
$\Rightarrow x=\frac{80}{3}$ litre
Hence $\frac{80}{3}$ litre water to be added in the mixture.
30. (B) 1 man $=2$ women $=4$ boys
(1 man +1 women +1 boy)
$=(4+2+1)=7$ boys
4 boys can do it in 20 days
7 boys can do it in
$\left(20 \times 4 \times \frac{1}{7}\right)=\frac{80}{7} \Rightarrow 11 \frac{3}{7}$ days
31. (B) Let $\mathrm{B}=100$

$$
A=132, C=132 \times \frac{75}{100}=99
$$

The required $\%=\frac{100-99}{100} \times 100=1 \%$
32. (B)

Pipe A fills in 1 hr (6 am to 7 am)
$=4 \times 1=4$ units
Pipe A and Pipe B fill in 2 hrs
$(7 \mathrm{am}$ to 9 am$)=(4+3) \times 2=14$ units
Remaining work $=60-4-14$
$=42$ units
Remaining work done by A, B and C in
$=\frac{42}{4+3+2}$ hours $=\frac{42}{9} \times 60$ minutes
= 4 hours 40 min
Hence tank will be fill at $1: 40 \mathrm{pm}$.
33. (D) Ritesh scored 182 marks which is 58 marks less than passing marks.
So passing marks are $182+58=240$ marks
Now, Sanaya scored 60% which is 120 marks more than passing marks
Therefore $60 \%=240+120=360$
Therefore, 40% is the passing percentage in the class test.
34. (A) Let the number be N .

The quotient when N is divided by 162 is denoted by Q_{1}
$\mathrm{N}=162 \mathrm{Q}_{1}=29$
When N is divided by 27 , the quotient is $6 \mathrm{Q}_{1}+1$ and the remainder is 2 .
35. (C) Let Black and White $\mathrm{TV}=x$, colour $\mathrm{TV}=$ 315 - x
ATQ,
$x \times\left(\frac{100-6}{100}\right)+(315-x)\left(\frac{100+15}{100}\right)$
$=315 \times \frac{109}{100}$
$\Rightarrow 94 x+315 \times 115-115 x=315 \times 109$
$\Rightarrow 21 x=1890 \Rightarrow x=90$
Hence no. of black and white TVs $=90$
36. (D) Area of the trapezium
$=\frac{1}{2} \times($ Sum of the lengths of the parallel sides $) \times($ Distance between them $)$
$=\frac{1}{2}\left(x^{2}-y^{2}\right)=\frac{1}{2}(x+y)(x-y)$
x and y are the lengths of the parallel sides, the sum of these sides $=(x+y)$.
So, the distance between these sides
$=(x-y)$
37. (B)
$4 \cos (90-A) \cdot \sin ^{3}(90+A)-4 \sin (90+A) \cdot \cos ^{3}(90-A)$

$$
\begin{aligned}
& \Rightarrow \frac{4 \sin A \cdot \cos ^{3} A-4 \cos A \cdot \sin ^{3} A}{-\sin 4 A} \\
& \Rightarrow \frac{4 \sin A \cdot \cos ^{3} A-4 \cos A \cdot \sin ^{3} A}{-2 \sin 2 A \cdot \cos 2 A} \\
& \Rightarrow \frac{4 \sin A \cdot \cos ^{3} A-4 \cos A \cdot \sin ^{3} A}{-4 \sin A \cdot \cos A \cdot \cos 2 A} \\
& \Rightarrow \frac{\cos ^{2} A-\sin ^{2} A}{-\cos 2 A}
\end{aligned}
$$

Since, $\cos 2 \mathrm{~A}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$
$\Rightarrow \frac{\cos 2 \mathrm{~A}}{-\cos 2 \mathrm{~A}}$
$\Rightarrow-1$
38. (D) A

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

In $\Delta \mathrm{ABP}$,
$\tan \theta=\frac{\mathrm{AB}}{x}$
In $\triangle \mathrm{ABQ}$,
$\tan \left(90^{\circ}-\theta\right)=\frac{\mathrm{AB}}{y}$
$\Rightarrow \cot \theta=\frac{\mathrm{AB}}{y}$
From eq(i) and (ii)
$\Rightarrow \frac{\mathrm{AB}}{x}=\frac{y}{\mathrm{AB}} \Rightarrow \mathrm{AB}^{2}=x y$
$\Rightarrow \mathrm{AB}=\sqrt{x y}$
Hence height of the building $=\sqrt{x y}$
39. (D) Fraction of work done by A and B together in 6 hour $=\frac{6}{18}=\frac{1}{3}$
After 6 hour, A left
Remaining work $=1-\frac{1}{3}=\frac{2}{3}$
Since B takes 36 hours to do remaining $\frac{2}{3}$ work,
\therefore Time taken by B to complete the work alone $=36 \times \frac{3}{2}=54$
\therefore Time taken by A to complete the work if done alone $=\frac{1}{\left(\frac{1}{18}-\frac{1}{54}\right)}=\frac{54}{2}$
$=27$ hours
40. (A) A

The required ratio of the quantities of three types of rice
$=(12+36): 21: 21=16: 7: 7$
41. (B) Given $\frac{1}{\sqrt{x}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x+2}}+$

$$
\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+\ldots+\frac{1}{\sqrt{x+98}+\sqrt{x+99}}=9
$$

$\Rightarrow(\sqrt{x+1}-\sqrt{x})+(\sqrt{x+2}-\sqrt{x+1})+$
$(\sqrt{x+3}-\sqrt{x+2})+\ldots(\sqrt{x+99}-\sqrt{x+98})$
$=9$
$\Rightarrow \sqrt{x+99}-\sqrt{x}=9$
$\Rightarrow(\sqrt{x+99})^{2}=(9+\sqrt{x})^{2}$
squaring both sides of the equation
$\Rightarrow x+99=81+x+18 \sqrt{x}$
$\Rightarrow 18=18 \sqrt{x} \Rightarrow x=1$
42. (A) C.P. of $1000 \mathrm{gms}=1$
S.P. of $x \mathrm{gms}=1$
S.P. of $1000 \mathrm{gms}=\frac{1000 \times 1}{x}=\frac{1000}{x}$

Profit $\%=\frac{\text { S.P. }- \text { C.P }}{\text { C.P. }} \times 100$
$\Rightarrow 25=\frac{\frac{1000}{x}-1}{1} \times 100$
$\Rightarrow 25=\frac{1000-x}{x} \times 100$
$\Rightarrow \frac{25 x}{100}=1000-x$
$\Rightarrow \frac{x}{4}=1000-x$
$\Rightarrow \frac{5 x}{4}=1000 \Rightarrow x=800$
43. (B) Length of the paper $=\frac{520}{2}=260 \mathrm{~m}$ Area of the paper $=$ width of the paper \times length of the paper $=\frac{75}{100} \times 260$
$=195$ sq. m
Given that,
$\Rightarrow \mathrm{h}:(\mathrm{l}+\mathrm{b})=4: 7$
i.e., $\mathrm{h}=4 x$ and $\mathrm{l}+\mathrm{b}=7 x$

We know that area of the four walls
$=2 h(1+b)$
Area of the four walls $=195+29$
$=224 \mathrm{sq} . \mathrm{m}$
So that,
$\Rightarrow 2 \mathrm{~h}(1+\mathrm{b})=224$
$\Rightarrow 2 \times 4 x \times 7 x=224$
$\Rightarrow x=2$
Hence height of the room $=4 \times 2=8 \mathrm{~m}$
44. (B) Let total marks be 100

So, the minimum marks required to pass $=40 \%$ of $100=40$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

ATQ,
marks obtained by A $=40-40 \times \frac{10}{100}$
$=35$ marks
And, marks obtained by B $=36-36 \times \frac{100}{900}$
= 36-4 = 32 marks
So, marks obtained by C
$=(36+32)-(36+32) \times \frac{700}{1700}$
$=68-28=40$ marks
The requires percentage $=\frac{40}{100} \times 100$
= 40\%
45. (D) Since A finishes $\frac{6}{7}$ th of the work in $2 z$ hours.

B would finish $\frac{12}{7}$ th of the work in $2 z$ hours.
Thus, B would finish remaining work ($\frac{1}{7}$ th of the work) in= $=\frac{2 z}{12}=\frac{z}{6}$ hours
46. (C) Let the length of the pendulum $=l$ ATQ,
length of the $\operatorname{arc}=2 \pi l \times \frac{\theta}{360^{\circ}}$
$\Rightarrow 44=2 \times \frac{22}{7} \times l \times \frac{60}{360} \Rightarrow l=42$
Hence the length of pendulum $=42 \mathrm{~cm}$
47. (C) $(\sqrt{77}+\sqrt{35}-\sqrt{22}-\sqrt{10})(\sqrt{77}-\sqrt{35}+\sqrt{22}-\sqrt{10})$

$$
\begin{aligned}
\Rightarrow & \{(\sqrt{77}-\sqrt{10})+(\sqrt{35}-\sqrt{22})\} \\
& \{(\sqrt{77}-\sqrt{10})-(\sqrt{35}-\sqrt{22})\}
\end{aligned}
$$

Using, $(a+b)(a-b)=a^{2}-b^{2}$
$\Rightarrow(\sqrt{77}-\sqrt{10})^{2}-(\sqrt{35}-\sqrt{22})^{2}$
$\Rightarrow(77+10-2 \sqrt{770})-(35+22-2 \sqrt{770})$
$\Rightarrow 87-2 \sqrt{770}-57+2 \sqrt{770} \Rightarrow 30$
48. (A) Numbers which are divisible by 6 and 11 is the LCM of 6 and 11 .
LCM of 6 and $11=66$
Multiple of 66 between 1120 and $1840=$ 1122, 1188, 1782

Total numbers $=\left[\frac{(1782-1122)}{66}\right]+1$
$=10+1=11$
Numbers which are divisible by 6,11 and 9 is the LCM of 6,11 and 9 .
LCM of 6, 11 and $9=198$
Multiple of 198 between 1120 and 1840
= $1188,1386, \ldots .1782$
Total numbers $=\left[\frac{(1782-1188)}{198}\right]+1$
$=3+1=4$
Hence, total numbers which are divisible by 6 and 11 but not by $9=11-4$ $=7$
49. (B) 12% of $350+66.66 \%$ of $123-37.5 \%$ of ? $=31$
$\Rightarrow 42+82-37.5 \%$ of $?=31$
$\Rightarrow 124-\frac{3}{8} \times ?=31 \Rightarrow \frac{3}{8} \times ?=124-31$
$\Rightarrow \frac{3}{8} \times ?=93 \Rightarrow ?=93 \times \frac{8}{3}=248$
50. (A) Distance $=\frac{30 \times 40}{40-30} \times \frac{8+4}{60}=\frac{1200}{10} \times \frac{12}{60}$
$=120 \times \frac{1}{5}=24$
Hence distance between home and his farm $=24 \mathrm{~km}$
51. (B) ATQ,
$\sqrt{8 x^{2}-13 x+4}+\sqrt{8 x^{2}-13 x+15}=12$
...(i)
$\sqrt{8 x^{2}-13 x+4}-\sqrt{8 x^{2}-13 x+15}=\mathrm{t}$ (let)
...(ii)
Multiply both eqn (i) and (ii)
$\Rightarrow 8 x^{2}-13 x+4-8 x^{2}+13 x-15=12 \mathrm{t}$
$\Rightarrow 12 \mathrm{t}=-11$
$\mathrm{t}=\frac{-11}{12}$
52. (C) $(x+y)^{2}-z^{2}=21$
$\Rightarrow(x+y+z)(x+y-z)=21$
$(y+z)^{2}-x^{2}=32$
$\Rightarrow(y+z+x)(y+z-x)=32$
$(z+x)^{2}-y^{2}=28$
$\Rightarrow(z+x+y)(z+x-y)=28$
Adding all three equations
$(x+y+z)[(x+y-z)+(y+z-x)+(z+x-y)]$
$\Rightarrow(x+y+z)^{2}=81$
$(x+y+z)= \pm 9$
53. (B) ATQ,
$\frac{\sin A}{\sin B}=\frac{\sqrt{3}}{2} \Rightarrow 2 \sin A=\sqrt{3} \sin B$
$\frac{\cos A}{\cos B}=\frac{\sqrt{5}}{2} \Rightarrow 2 \cos A=\sqrt{5} \cos B$
After squaring and adding (i) and (ii)
$4\left(\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}\right)=3 \sin ^{2} \mathrm{~B}+5 \cos ^{2} \mathrm{~B}$
$\Rightarrow 4=3 \sin ^{2} \mathrm{~B}+5-5 \sin ^{2} \mathrm{~B}$
$\Rightarrow 2 \sin ^{2} \mathrm{~B}=1$
$\Rightarrow \sin \mathrm{B}=\frac{1}{\sqrt{2}}=\sin 45^{\circ}$
$\Rightarrow B=45^{\circ}$
Divinding eq ${ }^{\text {n }}$ (i) by (ii)
$\frac{\tan \mathrm{A}}{\tan \mathrm{B}}=\frac{\sqrt{3}}{\sqrt{5}} \Rightarrow \tan \mathrm{~A}=\frac{\sqrt{3}}{\sqrt{5}}$
$\therefore 5 \tan ^{2} \mathrm{~A}+\tan ^{2} \mathrm{~B}=5\left(\frac{\sqrt{3}}{\sqrt{5}}\right)^{2}+1=3+1=4$
54. (D) Let $\alpha=90^{\circ}+\theta_{1}$ and $\beta=90+\theta_{2}$
$\because \alpha>\beta$
$\therefore 90+\theta_{1}>90+\theta_{2}$
$\Rightarrow \theta_{1}>\theta_{2}$
Taking \cos both sides
$\Rightarrow \cos \theta_{1}<\cos \theta_{2}$
$\cos (\alpha-90)<\cos (\beta-90)$
$\cos (90-\alpha)<\cos (90-\beta)$
$\sin \alpha<\sin \beta$
Now,
$\theta_{1}>\theta_{2} \Rightarrow \sin \theta_{1}>\sin \theta_{2}$
$\sin (\alpha-90)>\sin \left(\beta-90^{\circ}\right)$
$-\cos \alpha>-\cos \beta$
$\cos \alpha<\cos \beta$
Hence option (D) is correct
55. (A) Let total population of wuhan is 1000

$\therefore \frac{110}{300} \times 100=36.66 \%$
56. (A) $\tan \theta=2$

$\sin \theta=\frac{2}{\sqrt{5}}, \cos \theta=\frac{1}{\sqrt{5}}$

$$
\frac{8 \sin \theta+5 \cos \theta}{\sin ^{3} \theta+2 \cos ^{3} \theta+3 \cos \theta}
$$

$$
=\frac{8 \times \frac{2}{\sqrt{5}}+5 \times \frac{1}{\sqrt{5}}}{\frac{8}{5 \sqrt{5}}+\frac{2}{5 \sqrt{5}}+\frac{3}{\sqrt{5}}}=\frac{21}{\frac{25}{5}}=\frac{21}{5}
$$

57. (C) We know that
$a^{2}+b^{2}+c^{2}=-a b-b c-c a$
then $a=b=c=0$
$3 a-2 b+5 c=3 \times 0-2 \times 0+5 \times 0$ $=0$
58. (A) ATQ,

In $\triangle B A O$
$\mathrm{BO}_{1}{ }^{2}=\mathrm{AO}_{1}{ }^{2}+\mathrm{AB}^{2}$
$\Rightarrow 6^{2}=2^{2}+\mathrm{AB}^{2}$
$\Rightarrow \mathrm{AB}=32 \Rightarrow \mathrm{AB}=4 \sqrt{2}$
Hence, length of longest chord $\mathrm{BE}=2 \mathrm{AB}$
$=8 \sqrt{2} \mathrm{~cm}$
59. (B) ATQ,

Using Co-sine formula
$\cos 30^{\circ}=\frac{10^{2}+10^{2}-\mathrm{BC}^{2}}{2 \times 10 \times 10}$
$\frac{\sqrt{3}}{2}=\frac{200-\mathrm{BC}^{2}}{2 \times 10 \times 10}$
$\mathrm{BC}^{2}=200-100 \sqrt{3}$
$B C^{2}=100(2-\sqrt{3})$
$=\frac{100(4-2 \sqrt{3})}{2}$
$\mathrm{BC}^{2}=\frac{100(\sqrt{3}-1)^{2}}{2}$
$\mathrm{BC}=\frac{10(\sqrt{3}-1)}{\sqrt{2}} \mathrm{~cm}$

Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times a \times b \sin \theta$
$=\frac{1}{2} \times 10 \times 10 \times \sin 30^{\circ}$
$=25 \mathrm{~cm}^{2}$
60. (C) ATQ,

$\mathrm{r}_{2}=\mathrm{AB}=14 \mathrm{~cm}$
$\mathrm{r}_{1}=\mathrm{OA}=10 \mathrm{~cm}$
Total surface area
$=2 \pi r_{1}{ }^{2}+2 \pi r_{2}{ }^{2}+\left(\pi r_{2}{ }^{2}-\pi r_{1}\right)^{2}$
$=2 \pi \times 10^{2}+2 \pi \times 14^{2}+\pi\left(14^{2}-10^{2}\right)$
$=592 \pi+96 \pi$
$=688 \pi \mathrm{~cm}^{2}$
61. (D) Case I

$=\frac{1}{3} \pi(\mathrm{BC})^{2} \times \mathrm{AB}$
$=\frac{1}{3} \pi \times 12^{2} \times 5$

Case II

$=\frac{1}{3} \pi(\mathrm{AB})^{2} \times \mathrm{BC}$
$=\frac{1}{3} \pi \times 5^{2} \times 12$
Required percentage
$\frac{1}{3} \pi \times 12^{2} \times 5-\frac{1}{3} \pi \times 5^{2} \times 12$
$\frac{1}{3} \pi \times 5^{2} \times 12$
$=\frac{144 \times 5-25 \times 12}{25 \times 12} \times 100$
$=\frac{720-300}{300} \times 100$
$=140 \%$
62. (A) $15 \sin ^{3} \alpha+20 \cos ^{3} \alpha=12$
$\Rightarrow \frac{15}{12} \sin ^{3} \alpha+\frac{20}{12} \cos ^{3} \alpha=1$
$\left(\frac{5}{4} \sin \alpha\right) \sin ^{2} \alpha+\left(\frac{5}{3} \cos \alpha\right) \cos ^{2} \alpha=1$
Put $\frac{5}{4} \sin \alpha=1 \Rightarrow \sin \alpha=\frac{4}{5}$
$\frac{5}{3} \cos \alpha=1 \Rightarrow \cos \alpha=\frac{3}{5}$
then we get indentity $\sin ^{2} \alpha+\cos ^{2} \alpha=1$ Hence, $10 \sin \alpha+15 \cos \alpha$
$=10 \times \frac{4}{5}+15 \times \frac{3}{5}$
$=8+9=17$
63. (D) $x+\frac{1}{14 x}=7$

Multiplying by 2 both sides
$2 x+\frac{1}{7 x}=14$
Taking cube both sides
$\left(2 x+\frac{1}{7 x}\right)^{3}=8 x^{3}+\frac{1}{343 x^{3}}+3 \times 2 x \times \frac{1}{7 x}$
$\left(2 x+\frac{1}{7 x}\right)$
$14^{3}=8 x^{3}+\frac{1}{343 x^{3}}+\frac{6}{7} \times 7$
$8 x^{3}+\frac{1}{343 x^{3}}=14^{3}-6$
$=2744-6$
$=2738$
64. (C) $\cot 70^{\circ}+4 \cos 70^{\circ}$
$=\tan 20^{\circ}+4 \sin 20^{\circ}$
$=\frac{\sin 20^{\circ}}{\cos 20^{\circ}}+4 \sin 20^{\circ}$
$=\frac{\sin 20^{\circ}+4 \sin 20^{\circ} \cos 20^{\circ}}{\cos 20^{\circ}}$
$=\frac{\sin 20^{\circ}+2 \sin 40^{\circ}}{\cos 20^{\circ}}$
$=\frac{\sin 20^{\circ}+\sin 40^{\circ}+\sin 20^{\circ}}{\cos 20^{\circ}}$
$=\frac{2 \sin 30^{\circ} \cos 10^{\circ}+\cos 20^{\circ}}{\cos 20^{\circ}}$
$=\frac{2 \cos 30^{\circ} \cos 20^{\circ}}{\cos 20^{\circ}}$
$=\sqrt{3}$
65. (A)
$\frac{2 \sin 68^{\circ}}{\cos 22^{\circ}}-\frac{2 \cot 15^{\circ}}{5 \tan 75^{\circ}}-$
$\underline{3 \tan 45^{\circ} \tan 20^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 70^{\circ}}$
$=\frac{2 \cos 22^{\circ}}{\cos 22^{\circ}}-\frac{2 \tan 75^{\circ}}{5 \tan 75^{\circ}}-\frac{3}{5}$
$=2-\frac{2}{5}-\frac{3}{5}$
$=1$
66. (A) $5^{a}+2^{b+1}=189 \Rightarrow 5^{a}+2^{b} .2=189$
$\Rightarrow 5^{a+1}+2^{b-2}=633 \Rightarrow 5.5^{a}+\frac{2^{b}}{2^{2}}=633$
Let $5^{a}=x, 2^{b}=y$
Then $x+2 y=189$
$5 x+\frac{y}{4}=633$
Solving eqn (i) and (ii)
$x=125, y=32$
$5^{a}=125 \Rightarrow a=3$
$2^{b}=32=2^{5} \Rightarrow \mathrm{~b}=5$
Hence, $\sqrt{a+b}=\sqrt{3+5}=2 \sqrt{2}$
67. (B) $\frac{x^{3}+1}{x^{2}-1}=x+\sqrt{\frac{6}{x}}$
$\Rightarrow \frac{x^{3}+1}{x^{2}-1}-x=\sqrt{\frac{6}{x}}$
$\Rightarrow \frac{x^{3}+1-x^{3}+x}{x^{2}-1}=\sqrt{\frac{6}{x}}$
$\Rightarrow \frac{1+x}{(x-1)(x+1)}=\sqrt{\frac{6}{x}}$
$\Rightarrow \frac{1}{x-1}=\sqrt{\frac{6}{x}}$
Squaring both sides
$\frac{1}{x^{2}+1-2 x}=\frac{6}{x}$
$\Rightarrow x=6 x^{2}+6-12 x$
$6 x^{2}-13 x+6=0$
Dividing by x both sides
$6 x-13+\frac{6}{x}=0$
$\Rightarrow x+\frac{1}{x}=\frac{13}{6}$
Taking square both sides
$\left(x+\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}}+2$
$\left(\frac{13}{6}\right)^{2}-2=x^{2}+\frac{1}{x^{2}}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=\frac{169}{36}-2$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=\frac{97}{36}$
Hence $\left(x^{2}+\frac{1}{x^{2}}\right)=\frac{97}{36}$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
68. (A) ATQ,

Put $b=c=1$
$\Rightarrow \frac{a}{1}+1+\frac{1}{a}=0$
$a+\frac{1}{a}=-1$
If $a+\frac{1}{a}=-1$ then $a^{3}=1$
Now, $\frac{a c}{b^{2}}+\frac{b^{2}}{a c}-\frac{c^{3}}{a^{3}}=a+\frac{1}{a}-\frac{1}{a^{3}}$
$=-1-1$
$=-2$
69. (A) $x^{2}+2 x+4=0$

Multiplying above by $(x-2)$ both sides
$(x-2)\left(x^{2}+2 x+4\right)=0$
$\Rightarrow x^{3}-8=0$
$\Rightarrow x^{3}=8$
Now, by putting $x^{3}=8$
$\frac{x^{4}}{4}+\frac{8}{x}-3=\frac{8 x}{4}+\frac{x^{3}}{x}=3$
$=2 x+x^{2}-3$
Now, from (i) $=-4-3=-7$
70. (C) $9 x^{4}+20 x^{2} y^{2}+16 y^{4}=91$
$3 x^{2}+2 x y+4 y^{2}=13 \ldots$ (ii)
From (i)
$\left(3 x^{2}+4 y^{2}\right)^{2}-(2 x y)^{2}=91$
$\Rightarrow\left(3 x^{2}+4 y^{2}-2 x y\right)\left(3 x^{2}+4 y^{2}+2 x y\right)=\frac{91}{13}$
$\Rightarrow\left(3 x^{2}+4 y^{2}-2 x y\right)=\frac{91}{13}$
$\Rightarrow 3 x^{2}+4 y^{2}-2 x y=7$
Adding (ii) and (iii)
$\Rightarrow 2\left(3 x^{2}+4 y^{2}\right)=20$
$\Rightarrow 3 x^{2}+4 y^{2}=10$
Substracting (iii) from (ii)
$4 x y=6$
Multiplying by (iii) both sides
$12 x y=18$
Now, $\frac{x}{4 y}+\frac{y}{3 x}=\frac{3 x^{2}+4 y^{2}}{12 x y}$
$=\frac{10}{18}=\frac{5}{9}$
71. (A) Let roots are α and $\frac{1}{\alpha}$
\Rightarrow Product of roots $=\alpha \times \frac{1}{\alpha}=1=\frac{c}{a}$
$\frac{\mathrm{k}}{7}=1 \Rightarrow \mathrm{k}=7$
72. (C) Total area of figure
$=\pi(8)^{2}+\frac{\pi(4)^{2}}{2}+\frac{\pi(4)^{2}}{2}$
$=96 \pi$
Now, Area of shaded part
$=96 \pi-\frac{1}{2} \times 16 \times 16$
$=96 \times \frac{22}{7}-128$
$=187.42 \mathrm{~cm}^{2}$
73. (A) $1+4+6+5+11+6+\ldots . .+100$ terms
$=[1+6+11+\ldots . .50$ terms $]$
$+[4+5+6+\ldots .+50$ terms $]$
$=\frac{50}{2}[2 \times 1+(50-1) \times 5]+\frac{50}{2}[2 \times 4+(50-1) \times 1]$
$=25(2+49 \times 5)+25(8+49$
$=6175+1425$
$=7600$
74. (A) ATQ,

Area of larger square $=16^{2}=256$
Area of square made by joining mid points of the square $=\frac{256}{2}=128$

Sum of area of square $=256+128+\ldots+\infty$
$\mathrm{S} \infty=\frac{a}{1-r}=\frac{256}{1-\frac{1}{2}}=256 \times 2=512 \mathrm{~cm}^{2}$
75. (D)

Volume of the cone $=\frac{1}{3} \pi r^{2} h$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI-09
$\mathrm{r}=4.2 \mathrm{~cm}, \mathrm{~h}=10.2-\mathrm{r}=10.2-4.2$
$=6 \mathrm{~cm}$
$=\frac{1}{3} \pi \times(4.2)^{2} \times 6$
$=110.88 \mathrm{~cm}^{3}$
Volume of the hemisphere $=\frac{1}{2} \times \frac{4}{3} \pi \times$ $4.2^{3}=155.23$
Hence, Total volume $=110.88+155.23$
$=266.112 \mathrm{~cm}^{3}$
76. (B) ATQ,

$\angle \mathrm{ABC}=35^{\circ}$
$\because \mathrm{AB}$ is the diameter of circle
$\therefore \angle \mathrm{C}=90^{\circ}$
In $\triangle \mathrm{ABC} \angle \mathrm{A}=180^{\circ}-90^{\circ}-35^{\circ}=55^{\circ}$
Now, In $\triangle \mathrm{APC}$,
77. (A) ATQ,

Setting up $=₹ 2800$
Paper and ink $=₹ \frac{80 \times 2000}{100}=₹ 1600$
Printing cost $=₹ \frac{160 \times 2000}{100}=₹ 3200$
Total cost price $=₹ 7600$
selling price $=₹ 5 \times 1500$

$$
=₹ 7500
$$

Let from advertising is ₹ a
Total selling price $=₹(7500+a)$
Now, $(7500+a)-7600=\frac{25}{100} \times 7500$
$a-100=1875$
$a=₹ 1975$
Hence
In total profit ₹ 1975 is obtained from advertising
78. (D) ATQ,

Let total distance is D and time t .

$\frac{3}{4} \mathrm{D}=\mathrm{s} \times \mathrm{t}$
$D=s \times(t+3)$
$D=s t+3 S$
from (i)
$D=\frac{3}{4} D+3 s$
$\frac{\mathrm{D}}{4}=3 \mathrm{~s}$
If $\mathrm{s}=1 \mathrm{~km} / \mathrm{hr}$
$\mathrm{D}=12 \mathrm{~km}$
Putting the value of D in eq^{n} (i)
$\frac{3}{4} \times 12=1 \times t$
t $=9$ hours
Now,
$\mathrm{D}=\mathrm{s}_{1} x+\mathrm{S}_{2} \mathrm{t}_{2}$
$12=1 \times x+(2 \times 1) \times(9-x)$
b $12=x+18-2 x$
$x=6$ hours
Hence, He increases his car speed after 6 hours.
79. (B)

$\mathrm{Ar} \triangle \mathrm{DRF}=3 \mathrm{~cm}^{2}$
$\mathrm{Ar} \triangle \mathrm{PBE}=2 \mathrm{~cm}^{2}$
Ar $\triangle \mathrm{FCE}=3 \mathrm{~cm}^{2}$
$\operatorname{Ar}(\triangle \mathrm{ABP})+\operatorname{Ar}(\triangle \mathrm{DEC})=\operatorname{Ar}(\triangle \mathrm{AED})$
$(a+2)+(3+c+20)=d+b+$ shaded region
$\Rightarrow 25+(\mathrm{a}+\mathrm{c})=\mathrm{b}+\mathrm{d}+$ shaded region
Similarly
$\operatorname{Ar}(\triangle \mathrm{ADE})+\operatorname{Ar}(\triangle \mathrm{BEC})=\operatorname{Ar}(\triangle \mathrm{AFB})$
$(d+3)+(b+2+20)=a+$ shaded region
$+\mathrm{c}$
$(b+d)+25=a+$ shaded region $+c$

From (i) and (ii)
$25+25+(a+c)-$ shaded region $=(a+c)$

+ shaded region
shaded region $=25 \mathrm{~cm}^{2}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
80. (C) LCM of (15, 7, 9 and 21)

LCM of $(5 \times 3,7 \times 1,3 \times 3$ and $7 \times 3)$
LCM $=5 \times 7 \times 3 \times 3=315$
The least number $=315+5=320$
Sum of digit $=3+2+0$
$=5$
81. (B) In right angled triangle APD
$\mathrm{AD}^{2}=\mathrm{AP}^{2}+\mathrm{DP}^{2}$
$\mathrm{DP}^{2}=40^{2}-24^{2}$

$$
=1600-576
$$

$\mathrm{DP}=32 \mathrm{~cm}$
Now, In $\triangle B Q C$
$\mathrm{BC}^{2}=\mathrm{QC}^{2}+\mathrm{BQ}^{2}$
$\mathrm{QC}^{2}=\mathrm{BC}^{2}-\mathrm{BQ}^{2}$
$\mathrm{QC}^{2}=30^{2}-24^{2}$
$\mathrm{QC}=18 \mathrm{~cm}$
Area of trapezium ABCD
$=\frac{1}{2} \times(\mathrm{AB}+\mathrm{DC}) \times 24$
$=\frac{1}{2}(20+70) \times 24$
$=1080 \mathrm{~cm}^{2}$
82. (A) Let the radius of the circle $=\mathrm{OA}=\mathrm{OB}=\mathrm{r}$

$\angle \mathrm{AOB}=90^{\circ}$ and $\mathrm{OA}=\mathrm{OB}$
$\angle \mathrm{OAB}=\angle \mathrm{OBA}=45^{\circ}$
Now, In $\triangle O C A$
$\sin \mathrm{A}=\frac{\mathrm{OC}}{\mathrm{OA}}=\frac{\mathrm{OC}}{\mathrm{r}}$
$O C=\frac{r}{\sqrt{2}}$
Required ratio $=\mathrm{OA}: \mathrm{OC}=\mathrm{r}: \frac{\mathrm{r}}{\sqrt{2}}$
$=\sqrt{2}: 1$
83. (A) $3 x-y=17$
and $x-4 y=13$
for intersection point A
Putting the value of x in eq^{n} (i)
from eq ${ }^{\text {n }}$ (ii)
$3(13+4 y)-y=17$
$\Rightarrow 39-12 y-y=17$
$\Rightarrow y=-2$

Putting the value of y in eq^{n} (i)
$3 x+2=17 \Rightarrow x=5$
Point A is $(5,-2)$
Distance of point A from point B
$=\sqrt{(5-(-3))^{2}+(-2-13)^{2}}$
$=\sqrt{8^{2}+(-15)^{2}}$
$=\sqrt{64+225}$
$=17$ units
84. (A)

Let the side of square ABCD is x
$\mathrm{OC}=\frac{x}{2}, \mathrm{BC}=x, \mathrm{OB}=$ Radius $=10 \mathrm{~cm}$
In $\triangle O C B$
$\mathrm{OB}^{2}=\mathrm{OC}^{2}+\mathrm{BC}^{2}$
$10^{2}=\left(\frac{x}{2}\right)^{2}+x^{2}$
$100=\frac{5 x^{2}}{4}$
$\Rightarrow x^{2}=80$
$\Rightarrow x=4 \sqrt{5}$
Hence perimeter of square (ABCD)
$=4 \times 4 \sqrt{5}=16 \sqrt{5}$
85. (B)

$\angle \mathrm{OAP}=45^{\circ}$ and $\angle \mathrm{AOB}=90^{\circ}$
In $\triangle \mathrm{AOP}$
$\because \mathrm{AO}=\mathrm{AP}$
$\therefore \angle \mathrm{AOP}=\angle \mathrm{OPA}$
Now, $\angle \mathrm{AOP}+\angle \mathrm{OPA}+\angle \mathrm{OAP}=180^{\circ}$
$2 \angle \mathrm{AOP}+45^{\circ}=180^{\circ}$
$\angle \mathrm{AOP}=\frac{135^{\circ}}{2}=67.5^{\circ}$
Now, $\angle \mathrm{AOP}+\angle \mathrm{BOP}=90^{\circ}$
$\angle \mathrm{BOP}=90^{\circ}-67.5^{\circ}=22.5^{\circ}$
86. (A)

Let $C D=2 x$
$\mathrm{AB}=x$
$\triangle \mathrm{AED} \sim \triangle \mathrm{BEC}$
$\frac{\mathrm{AD}}{\mathrm{BC}}=\frac{\mathrm{DE}}{\mathrm{CE}}$
$\frac{\mathrm{AD}}{\frac{15}{2}}=\frac{4}{10} \Rightarrow \mathrm{AD}=3 \mathrm{~cm}$
$\triangle \mathrm{AEB} \sim \triangle \mathrm{CED}$
$\frac{A B}{C D}=\frac{B E}{C E}$
$\frac{\mathrm{AB}}{\mathrm{CD}}=\frac{5}{10} \Rightarrow 2 \mathrm{AB}=\mathrm{CD}$
Now,
$A B \times C D+A D \times B C=B D \times A C$
$\Rightarrow x \times 2 x+3 \times \frac{5}{12}=9 \times 12$
$\Rightarrow 2 x^{2}+\frac{45}{2}=108$
$\Rightarrow 2 x^{2}=108-\frac{45}{2}=\frac{171}{2}$
$\Rightarrow x^{2}=\frac{171}{4}$
$\Rightarrow x=\frac{\sqrt{171}}{2} \mathrm{~cm}$
87. (B) Using mass point theorem

Start with point A
Taking mass at $\mathrm{A}=3 \times 5=15 \mathrm{~kg}$

From figure
$\frac{\mathrm{OD}}{\mathrm{OE}}=\frac{25}{15}=\frac{5}{3}$
And $\frac{\mathrm{OC}}{\mathrm{OF}}=\frac{21}{19}$
88. (D)

$\angle \mathrm{BPC}+\angle \mathrm{BOC}=180^{\circ}$
$\angle \mathrm{BOC}=180-80^{\circ}$
$=100^{\circ}$
$\angle \mathrm{BAC}=\theta=\frac{\angle \mathrm{BOC}}{2}$
$=\frac{100}{2}=50^{\circ}$
89. (C)

$\mathrm{AB}+\mathrm{BP}+\mathrm{PC}+\mathrm{CA}=32 \mathrm{~cm}$
Hence $\mathrm{BP}=\mathrm{BQ}$ and $\mathrm{PC}=\mathrm{CR}$,
AQ = AR
From eqn(i)
$(A B+B Q)+(C R+A C)=32 c m$
$A Q+A R=32 \mathrm{~cm}$
$2 A Q=32$
$A Q=16 \mathrm{~cm}$
90. (C)

I Divide AC in 1:2
then
$\mathrm{CI}=\frac{30}{3} \times 2=20 \mathrm{~cm}$
91. (C)

$$
\begin{aligned}
\angle \mathrm{BPC} & =90-\frac{\angle \mathrm{A}}{2} \\
& =90-\frac{70^{\circ}}{2}=55^{\circ}
\end{aligned}
$$

92. (D) ATQ,

$$
\begin{aligned}
& \sqrt{24-\sqrt{572}+\sqrt{24+\sqrt{572}}}=\sqrt{24-\sqrt{143 \times 4}}+\sqrt{24+\sqrt{143 \times 4}} \\
& =\sqrt{24-2 \sqrt{143}}+\sqrt{24+2 \sqrt{143}} \\
& =\sqrt{24-2 \sqrt{11 \times 13}}+\sqrt{24+2 \sqrt{11 \times 13}} \\
& =\sqrt{(\sqrt{13}-\sqrt{11})^{2}}+\sqrt{(\sqrt{13}+\sqrt{11})^{2}} \\
& =\sqrt{13}-\sqrt{11}+\sqrt{13}+\sqrt{11} \\
& =2 \sqrt{13}
\end{aligned}
$$

93. (C) ATQ,

The number of 5 's will be given by the power of 5 in the product
$=5^{4} \times 10^{8} \times 15^{12} \times 20^{16} \times 10^{18} \times 25^{20}$
$=4+8+12+16+18+40$
$=98$
94. (D) $x=(\sqrt{5}-1)^{-1 / 5}$

$$
\begin{align*}
& \Rightarrow x^{5}=(\sqrt{5}-1)^{-1}=\frac{1}{\sqrt{5}-1} \\
& 8 x^{5}=\frac{8}{\sqrt{5}-1} \tag{i}\\
& \frac{1}{x^{5}}=\sqrt{5}-1 \tag{ii}
\end{align*}
$$

Now,

$$
8 x^{5}-\frac{1}{x^{5}}=\frac{8}{\sqrt{5}-1}-(\sqrt{5}-1)
$$

$$
=\frac{8-(\sqrt{5}-1)^{2}}{(\sqrt{5}-1)}=\frac{8-5-1+2 \sqrt{5}}{\sqrt{5}-1}=\frac{2(\sqrt{5}+1)}{\sqrt{5}-1}
$$

Hence $8 x^{5}-\frac{1}{x^{5}}=\frac{2(\sqrt{5}+1)}{(\sqrt{5}-1)}$
95. (B) Let breadth of the original cuboid is b cm .
to cut this coboid into 8 equal parts, its should be bisected or cut in the middle in each plane.
Then we will get 8 small cuboids with
dimensions $30 \mathrm{~cm} \times \frac{\mathrm{b}}{2} \mathrm{~cm} \times 25 \mathrm{~cm}$
Surface area of each small cuboid
$=\frac{19920}{8}=2490$
$\Rightarrow 2(\mathrm{~L} \times \mathrm{B}+\mathrm{B} \times \mathrm{H}+\mathrm{H} \times \mathrm{L})=2490$
$\Rightarrow\left(30+\frac{\mathrm{b}}{2}+\frac{\mathrm{b}}{2}-25+25 \times 30\right)=1245$
$\Rightarrow \frac{\mathrm{b}}{2} \times(30+25)+750=1245$
$\Rightarrow \frac{\mathrm{b}}{2} \times 55=495$
$\Rightarrow \mathrm{b}=495 \times \frac{2}{55}$
$\Rightarrow \mathrm{b}=18 \mathrm{~cm}$
96. (D) Unit digit of $344^{31}=4^{31}=4^{1}=4$

Unit digit of $723^{27}=3^{27}=3^{3}=7$
Unit digit of $546^{39}=6^{39}=6^{1}=6$
Unit digit of $237^{21}=7^{21}=7^{1}=7$
Required units digit $=4+7-6+7=32$ $=2$
97. (D) Lateral Surface Area (LSA) of a pyramid
$=\frac{1}{2} \times$ Base perimeter \times Slant Height
And, Total Surface Area (TSA) of the pyramid $=$ LSA + Base Area
$\Rightarrow 756 \sqrt{3}=\frac{1}{2} \times 6 \times 12 \times$ Slant Height
$+\left(\frac{3 \sqrt{3}}{2}\right) \times 12^{2}$
$\Rightarrow 756 \sqrt{3}=36 \times$ Slant Height $+216 \sqrt{3}$
\Rightarrow Slant Height $=540 \frac{\sqrt{3}}{36}$
\Rightarrow Slant Height $=15 \sqrt{3} \mathrm{~cm}$
98. (C) LCM of 9,13 and $18=234$
$(9-4)=(13-8)=(18-13)=5$
5 is the common difference between
given divisor and remainders.
So, 5 is to be deducted from the 234 .
So, the number A is $234-5=229$
And, LCM of 12,15 and $22=660$
$(12-9)=(15-12)=(22-19)=3$
3 is the common difference between given divisor and remainders.
So, 3 is to be deducted from the 660
So, the number B is $660-3=657$
So, sum of A and $B=229+657=886$
99. (C)

$$
\begin{aligned}
& \frac{\frac{1}{3}+\left[4 \frac{3}{4}-\left(3 \frac{1}{6}-2 \frac{1}{3}\right)\right]}{\left(\frac{1}{5} \text { of } \frac{1}{5} \div \frac{1}{5}\right) \div\left(\frac{1}{5} \div \frac{1}{5} \times \frac{1}{5}\right)} \\
& =\frac{\frac{1}{3}+\left[\frac{19}{4}-\left(\frac{19}{6}-\frac{7}{3}\right)\right]}{\left(\frac{1}{25} \div \frac{1}{5}\right) \div\left(1 \times \frac{1}{5}\right)}
\end{aligned}
$$

$$
=\frac{\frac{1}{3}+\left[\frac{19}{4}-\left(\frac{19-14}{6}\right)\right]}{\frac{1}{5} \div \frac{1}{5}}
$$

$$
=\frac{1}{3}+\left[\frac{19}{4}-\frac{5}{6}\right]
$$

$$
=\frac{1}{3}+\left[\frac{57-10}{12}\right]
$$

$=\frac{1}{3}+\frac{47}{12}$
$=\frac{4+47}{12}$
$=\left(\frac{51}{12}\right)$
$=4.25$
100. (D)

$$
\mathrm{OA}=\sqrt{6^{2}-3^{2}}
$$

$=3 \sqrt{3}$
Now, $\triangle \mathrm{AGA} \sim \triangle \mathrm{BOD} \quad \triangle \mathrm{DAB} \sim \triangle \mathrm{DAE}$

$$
\frac{\mathrm{GF}}{\mathrm{~GB}}=\frac{\mathrm{AF}}{\mathrm{AB}} \quad \frac{\mathrm{OA}}{\mathrm{AD}}=\frac{\mathrm{OB}}{\mathrm{DE}}
$$

$\mathrm{AF}=2$
$\mathrm{DE}=\sqrt{3}$
$\mathrm{AD}=\mathrm{AF}+1$
= 3
Volume of water required
$=\frac{1}{3} \pi(3)^{2} \times 3-\frac{4}{3} \pi(1)^{3}$
$=\frac{5 \pi}{3}$

Corrections of Mock Test - 56

73. (A) The solution of question number 73 was correct. But the option should be 'D' $70 \sqrt{2} \mathrm{~cm}$ in place of (B)
74. (B) The solution of question number 84 was correct. But the option should be (B) 665 in place of (A)
75. (D) The solution of question number 85 was correct. But the option should be (D) $60 \mathrm{~m}^{2}$ in place of (B)
76. (*) The solution of question number 89 was correct. But all the given options were wrong. The correct answer should be $850 \mathrm{~cm}^{2} / 850$ मी 2
