QUANTITATIVE ABILITY - 68 (SOLUTION)

1. (B) Let the two integers be a and b.
A.T.Q,
$a+b=16$
and, $\frac{1}{a}+\frac{1}{b}=\frac{1}{3}$
$\frac{a+b}{a b}=\frac{1}{3}$
$a b=16 \times 3=48$
We know that
$(a-b)^{2}=(a+b)^{2}-4 a b$
On putting the respective values, we get
$(a-b)^{2}=16^{2}-4 \times 48$
$(a-b)^{2}=256-192$
$(a-b)^{2}=64$
$(a-b)=8$
Hence, the difference of the integers is 8 .
2. (D) For being completely divisible, the numerator must have the factor of denominator Here, $65 \mathrm{k}=5 \times 13 \times \mathrm{k}$
and, $122=2 \times 61$
There is no common factor
So, the minimum value of $\mathrm{k}=122$
3. (A) Here, $\left(5^{70}+7^{70}\right)$ can be written as
$\left(5^{2}\right)^{35}+\left(7^{2}\right)^{35}$ i.e, $\left(25^{35}+49^{35}\right)$
We know that, $x^{n}+y^{n}$ is always completely divisible by $x+y$. When n is an old number So, $25^{35}+49^{35}$ will be divisible by
$25+49=74$
\therefore Required remainder $=0$
4.

(B) $\left(\frac{x^{p}}{x^{q}}\right)^{p^{2}+q^{2}+p q} \cdot\left(\frac{x^{q}}{x^{r}}\right)^{q^{2}+r^{2}+q r} \cdot\left(\frac{x^{r}}{x^{p}}\right)^{r^{2}+p^{2}+r p}=x^{(p-q)\left(p^{2}+q^{2}+p q\right)} \cdot x^{(q-r)\left(q^{2}+r^{2}+q r\right)} \cdot x^{(r-p)\left(r^{2}+p^{2}+r p\right)}$
$=x^{\left(p^{3}-q^{3}\right)} \cdot x^{\left(q^{3}-r^{3}\right)} \cdot x^{\left(r^{3}-p^{3}\right)}=x^{\left(p^{3}-q^{3}+q^{3}-r^{3}+r^{3}-p^{3}\right)}$
$=x^{\circ}=1$
5. (C) We know that,

HCF of $\left(a^{m}-1\right)$ and $\left(a^{n}-1\right)=a^{\mathrm{HCF} \text { of } m \text { and } n}-1$
HCF of $\left(5^{15}-1\right)$ and $\left(5^{35}-1\right)=5^{\text {HCF of } 15 \text { and } 35-1=5}-1$
6. (B) Let the two numbers be $5 x$ and $5 y$.

Then,
Their LCM, $5 x y=1105$
$x y=221$
$x y=13 \times 17$
A.T.Q,
$5 x+5 y=150$
$x+y=30$
Here, we get $x=13$ and $y=17$
Now, the difference of the numbers $=5 y-5 x$
$=5(17-13)=20$
7. (C) $25 \%=\frac{1}{4} \longrightarrow$ Profit

We know that,
$\mathrm{CP}=\mathrm{SP}-$ Profit $=4-1=3$
Now, profit percent $=\frac{\text { Profit }}{\mathrm{CP}} \times 100=\frac{1}{3} \times 100=33 \frac{1}{3}$
8. (B) Total distance travelled $=30+60+90+$ \qquad upto 10 terms
Here, first term $(a)=30$
common difference $(d)=30$
and, number of terms $(n)=10$
Then, sum $=\frac{n}{2}[2 \mathrm{a}+(n-1) d]$
$=\frac{10}{2}[2 \times 30+(10-1) \times 30]=5[60+270]=1650$
\therefore Total distance travelled $=1650$ metres.
9. (D)

Given triangle is right angle triangle with sides $28 \mathrm{~cm}, 45 \mathrm{~cm}$ and 53 cm .
Orthocentre of triangle ABC is B and circumcentre is the mid point of AC .
So,
Distance between orthocentre and circumcentre is equal to the length of BD where BD is the median and circumradius of the triangle.
$\therefore \quad \mathrm{BD}=\frac{53}{2}=26.5 \mathrm{~cm}$
10. (C) Here, radius of the cone $=$ half of the radius of semicircle $=\frac{28}{2}=14 \mathrm{~cm}$
and, slant height of the cone $=$ radius of the circle
$l=28 \mathrm{~cm}$
we know that,
$h=\sqrt{l^{2}-r^{2}}$
$h=\sqrt{28^{2}-14^{2}}$
$h=14 \sqrt{3} \mathrm{~cm}$
\therefore height of the cone $=14 \sqrt{3} \mathrm{~cm}$

$K D$

 Campus

 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
11. (A)

In a quadrilateral ABCD ,
$A B \times D C+B C \times A D=A C \times B D$
On putting the values, we get
$8 \times 12+10 \times 15=20 \times \mathrm{BD}$
$96+150=20 \times B D$
$\mathrm{BD}=\frac{246}{20}$
$\mathrm{BD}=12.3 \mathrm{~cm}$
$\therefore \quad$ Length of other diagonal $=12.3 \mathrm{~cm}$
12. (B) Side of the square tiles $=\mathrm{HCF}$ of 75 and $100=25 \mathrm{~m}$
and, number of tiles $=\frac{\text { Area of rectangular hall }}{\text { Area of one square hall }}$
$=\frac{75 \times 100}{25 \times 25}=12$
$\therefore \quad$ Minimum number of square tiles $=12$
13. (D) Length of are $A B=$ circumference of the base of right circular cone
$l=2 \times \pi \times 3$
$l=6 \pi$
and, radius of the sector $=$ slant height of cone
$r=\sqrt{4^{2}+3^{2}}=5$
We know that,
angle subtended at the centre $=\frac{\text { length of arc }}{\text { radius }}$
$\theta=\frac{6 \pi}{5}$
14. (C)

$$
A+B
$$

A B

Time $\rightarrow x$

$$
x+8 \quad x+\frac{9}{2}
$$

Now, $x=\sqrt{8 \times \frac{9}{2}}$
$x=6$
\therefore Time taken by A and B together to complete the work $=6$ days

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
15. (B)

Extenmd BC and AD to meet at E.
In $\triangle \mathrm{ABE}$,
$\angle \mathrm{A}=\angle \mathrm{B}=60^{\circ}$
So, $\triangle \mathrm{ABE}$ is an equilateral.
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BED} \quad$ (Given)
$\angle \mathrm{ABC}=\angle \mathrm{BED}\left(60^{\circ}\right)$
and, $\mathrm{AB}=\mathrm{BE}$ (side of equilateral triangle)
So, $\quad \triangle \mathrm{ABC} \cong \triangle \mathrm{BED}$
and, $\mathrm{BC}=\mathrm{DE}$
We know that,
$\mathrm{AB}=\mathrm{AE}$ (side of equilateral triangle)
$\mathrm{AB}=\mathrm{AD}+\mathrm{DE}$
$A B=A D+B C$
16. (C) In a triangle product of side and altitude remains same

Let the sides of the triangle be a, b and c.
Then,
$a \times 6=b \times 7=c \times 8$
Here, we get
$a: b: c=28: 24: 21$
Now, $(\mathrm{a}+\mathrm{b}+\mathrm{c})=(28+24+21)$ units
73 units $=365$
1 unit = 5
Then, smallest side $(\mathrm{c})=5 \times 21=105 \mathrm{~cm}$
17. (A) We know that, the largest triangle that can be inscribed in a semicircle is an isosceles right angled triangle.

So, area $=\frac{1}{2} \times\left(\frac{\text { diameter }}{2}\right)^{2}$

$$
=\frac{1}{2} \times\left(\frac{2 r}{2}\right)^{2}=r^{2} \text { sq. units }
$$

18. (C)

A	B	C
1000	950	950
1000	1000	940

$1000 \times 1000: 950 \times 1000: 950 \times 940$
Now, Distance travelled by C when A travels $1000 \mathrm{~m}=\frac{9540 \times 940}{1000}=893 \mathrm{~m}$
Then, Distance by which A can beat C = 1000-893=107 m
19. (B) We know that,

Volume of tetrahedron $=\frac{a^{3}}{6 \sqrt{2}}=\frac{6^{3}}{6 \sqrt{2}}=18 \sqrt{2} \mathrm{~cm}^{3}$
20. (D)

Now, work done by A, B and C in one hour $=3+5-10=-2$ units
and, quantity of water in the half filled cistern $=\frac{20}{2}=10$ units
So, Time taken by all the pipes to empty the cistern $=\frac{10}{2}=5$ hours
21. (C)

In $\Delta \mathrm{CNB}$,
$\mathrm{CN}=\mathrm{CB} \sin 45^{\circ}=8 \times \frac{1}{\sqrt{2}}=4 \sqrt{2} \mathrm{~cm}$
and, $\mathrm{BN}=\mathrm{CB} \cos 45^{\circ}=8 \times \frac{1}{\sqrt{2}}=4 \sqrt{2} \mathrm{~cm}$
Now, In $\triangle \mathrm{AMD}$,
$D M=4 \sqrt{2}$
$(\because \mathrm{DM}=\mathrm{CN})$
Then, $\mathrm{AM}=\mathrm{DM} \cot 30^{\circ}=4 \sqrt{2} \times \sqrt{3}=4 \sqrt{6} \mathrm{~cm}$
We know that,
Area of trapezium $=\frac{1}{2} \times($ sum of parallel sides \times height $)=\frac{1}{2}(D C+A B) \times C N$
$=\frac{1}{2}(6+4 \sqrt{6}+6+4 \sqrt{2}) \times 4 \sqrt{2}=\frac{1}{2} \times(12+4 \sqrt{6}+4 \sqrt{2}) \times 4 \sqrt{2}$
$=8(2+2 \sqrt{3}+3 \sqrt{2})=85.65 \mathrm{~cm}^{2}$
22. (B) Let the radii of the two circles be R and r

Now,
$\pi R^{2}+\pi r^{2}=125 \pi$
$\pi\left(\mathrm{R}^{2}+\mathrm{r}^{2}\right)=125 \pi$
$R^{2}+r^{2}=125$
and, $\mathrm{R}-\mathrm{r}=5$
We know that,
$(a+b)^{2}+(a-b)^{2}=2\left(a^{2}+b^{2}\right)$
So, $(R+r)^{2}+(R-r)^{2}=2\left(R^{2}+r^{2}\right)$
$(\mathrm{R}+\mathrm{r})^{2}=225$
$\mathrm{R}+\mathrm{r}=15 \mathrm{~cm}$
23. (D) $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$

Rationalizing the denominator,
$x=5+2 \sqrt{6}$
and, $\frac{1}{x}=5-2 \sqrt{6}$

Then, $x+\frac{1}{x}=5+2 \sqrt{6}+5-2 \sqrt{6}=10$
$x^{2}-10 x+1=0$ \qquad
Multiply by x both sides, we get
$x^{3}-10 x^{2}+x=0$ \qquad (ii)

Now, adding $4 \times$ equation (i) and equation (ii),
$4 x^{2}-40 x+4+x^{3}-10 x^{2}+x=0$
$x^{3}-6 x^{2}-39 x+4=0$
$x^{3}-3 x(2 x+13)=-4$
24. (C) A.T.Q,
$x^{2}+\frac{1}{x^{2}}=\frac{7}{9}$
$\left(x+\frac{1}{x}\right)^{2}=\frac{7}{9}+2=\frac{25}{9}$
$x+\frac{1}{x}=\frac{5}{3}$
On taking cube both sides, we get

$$
\begin{aligned}
& \left(x+\frac{1}{x}\right)^{3}=\left(\frac{5}{3}\right)^{3} \\
& x^{3}+\frac{1}{x^{3}}+3 \times x \times \frac{1}{x}\left(x+\frac{1}{x}\right)=\frac{125}{27} \\
& x^{3}+\frac{1}{x^{3}}+3 \times \frac{5}{3}=\frac{125}{27} \\
& x^{3}+\frac{1}{x^{3}}=\frac{125}{27}-5=-\frac{10}{27}
\end{aligned}
$$

25. (C) In triangle ABC,

$$
\begin{aligned}
& |\mathrm{AB}-\mathrm{AC}|<|\mathrm{BC}|<|\mathrm{AB}+\mathrm{AC}| \\
& 180<\mathrm{BC}<1330
\end{aligned}
$$

Then, the number of possible number of triangles $=1330-180-1=1149$
26. (B)

Circumradius of $\Delta \mathrm{ABC}=\frac{a b c}{4 \Delta}$
where, $\mathrm{b}=\mathrm{AC}=12 \mathrm{~cm}$
$\mathrm{c}=\mathrm{AB}=18 \mathrm{~cm}$
$a=B C$
and $\mathrm{AD}=6 \mathrm{~cm}$
Now, circumradius $(R)=\frac{B C \times 12 \times 18}{4 \times \frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}}=\frac{\mathrm{BC} \times 12 \times 18}{4 \times \frac{1}{2} \times \mathrm{BC} \times 6}=18 \mathrm{~cm}$
27. (C)

Volume of the double cone formed = volume of cone (ABD) + volume of cone (ACD)
$=\frac{1}{3} \pi(\mathrm{AE})^{2} \times \mathrm{BE}+\frac{1}{3} \pi(\mathrm{AE})^{2} \times \mathrm{CE}$
$=\frac{1}{3} \pi(\mathrm{AE})^{2}(\mathrm{BE}+\mathrm{CE})=\frac{1}{3} \pi\left(\mathrm{AE}^{2}\right)(\mathrm{BC})$
Here, $\mathrm{BC}=\sqrt{A B^{2}+A C^{2}}=\sqrt{6^{2}+8^{2}}=10 \mathrm{~cm}$
and, $\mathrm{AE}=\frac{A B \times A C}{B C}=\frac{8 \times 6}{10}=4.8 \mathrm{~cm}$
Now, required volume $=\frac{1}{3} \times 3.14 \times 4.8 \times 4.8 \times 10$
$=241.152 \mathrm{~cm}^{3}=240 \mathrm{~cm}^{3}$ (approximate)
28. (B) $x=\sqrt{\frac{5+2 \sqrt{6}}{5-2 \sqrt{6}}}$

On rationalisation, we get
$x=\sqrt{\frac{(5+2 \sqrt{6})(5+2 \sqrt{6})}{(5-2 \sqrt{6})(5+2 \sqrt{6})}}$
$x=5+2 \sqrt{6}$
and, $\frac{1}{x}=5-2 \sqrt{6}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

Now, $x+\frac{1}{x}=5+2 \sqrt{6}+5-2 \sqrt{6}$
$x+\frac{1}{x}=10$
$x^{2}=10 x-1$
Then, $x^{2}-7 x-14=10 x-1-7 x-14$
$=3 x-15$
$=3(5+2 \sqrt{6})-15$
$=15+6 \sqrt{6}-15=6 \sqrt{6}$
29. (C) We know that, $\cot ^{2} x=\frac{\cot ^{2} x-1}{2 \cot x}=\frac{1}{2}(\cot x-\tan x)$

Here, $\cot x=\frac{\sin y}{1-\cos y}=\frac{1+\cos y}{\sin y}$
and, $\tan x=\frac{1}{\cot x}=\frac{1-\cos y}{\sin y}$
Then, $\cot ^{2} x=\frac{1}{2}\left[\frac{(1+\cos y)-(1-\cos y)}{\sin y}\right]=\frac{1}{2} \times \frac{2 \cos y}{\sin y}=\cot y$
30. (A) Rate of interest (r) $=\frac{S I \times 100}{p \times t} \%$
$r=\frac{16 \times 100}{100 \times 2}=8 \%$
Now, compound interest on ₹ 16000 in 3 years $=p\left[\left(1+\frac{r}{100}\right)^{3}-1\right]$
$=16000\left[\left(1+\frac{8}{100}\right)^{3}-1\right]=₹ 4155$
31. (A) $\operatorname{asec} \theta=x$
$\cos =\frac{a}{x}$
and, $b \tan \theta=y$
$\cos \theta=\frac{b \sin \theta}{y}$
From equation (i) and (ii), we get
$\frac{a}{x}=\frac{b}{y} \sin \theta$
$\sin \theta=\frac{a y}{b x}$
Using equation (i) and (iii),
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\frac{a^{2} y^{2}}{b^{2} x^{2}}+\frac{a^{2}}{x^{2}}=1$
$\frac{a^{2} y^{2}+a^{2} b^{2}}{b^{2} x^{2}}=1$
$b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
32. (B) $\frac{210}{3 \times 7}+\frac{210}{7 \times 11}+\frac{210}{11 \times 15}+\ldots \ldots \cdot \frac{210}{31 \times 35}$
$=210 \times \frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15} \cdots \cdots \cdots+\frac{1}{31}-\frac{1}{35}\right)=210 \times \frac{1}{4}\left(\frac{1}{3}-\frac{1}{35}\right)$
$=210 \times \frac{1}{4} \times \frac{32}{3 \times 35}=16$
33. (C) Let the side of the triangle be a cm

Then, A.T.Q,
$\frac{\sqrt{3}}{4} a^{2}-\frac{\sqrt{3}}{4}(a-2)^{2}=5 \sqrt{3}$
$\frac{\sqrt{3}}{4}\left[a^{2}-(a-2)^{2}\right]=5 \sqrt{3}$
$[4 a-4]=20$
$a=6 \mathrm{~cm}$
\therefore Each side of equilateral triangle $=6 \mathrm{~cm}$
34. (B) We know that,

Distance $=\frac{\text { Product of speeds }}{\text { Difference of speeds }} \times$ time
D $=\frac{15 \times 20}{20-15} \times \frac{42}{60}$
$\mathrm{D}=42 \mathrm{~km}$
\therefore Distance between his house and office $=42 \mathrm{~km}$
35. (B) Total marks of 50 students of the class $=81 \times 50=4050$
and, total marks of 45 students of the class $=80 \times 45=3600$
Now, total marks obtained by 5 students $=4050-3600=450$
Then, average marks of 5 students $=\frac{450}{5}=90$
36. (C) Let the marked price of the article be ₹ x.
A.T.Q,
$x \times \frac{8-1}{8} \times \frac{80+7}{80}=3045$
$x \times \frac{7}{8} \times \frac{87}{80}=3045$
$x=\frac{3045 \times 8 \times 80}{7 \times 87}=3200$
$\therefore \quad$ Marked price of the article $=₹ 3200$
37. (B) Amount given by the man to his wife $=64200 \times \frac{25}{100}=₹ 16,050$

Then, amount given by the man to his sons $=64200-16050=₹ 48150$
Now, $\mathrm{A}\left[1+\frac{r}{100}\right]^{3}=\mathrm{B}\left[1+\frac{r}{100}\right]^{5}$
$\frac{A}{B}=\left(1+\frac{r}{100}\right)^{2}$
$\frac{A}{B}=\left(\frac{21}{20}\right)^{2}=\frac{441}{400}$
i.e., the amount is distributed in A and B in the ratio $=441: 400$

Then, $(441+400)$ units $=48150$
841 units $=48150$
1 unit = $\underline{48150}$
841
Then, share of $B=400$ units
$=\frac{48150}{841} \times 400=₹ 22901.3$
38. (D) SP of $60 \%=\mathrm{CP}$ of 100%

Let the number of oranges be 100 .
and, SP of the 60 oranges $=₹ 100$
CP of the 60 oranges $=₹ 60$
Then,
Now, profit percentage $=\frac{100-60}{60} \times 100=\frac{200}{3} \%$

Again, SP of $(100-60) \times \frac{60}{100}$ oranges $=24 \times \frac{4}{3}=32$
Total $\mathrm{CP}=100$ and $\operatorname{total} \mathrm{SP}=100+32=132$
Profit percentage $=\frac{32}{100} \times 100=32 \%$
39. (C) Let the speed of the car be $x \mathrm{kmph}$
A.T.Q,
$\frac{400}{2000} \times 2=\frac{x(x-10)}{10} \times 3$
$2 x+20=3 x-30$
$x=50$
Then, distance between the two cities $=\frac{50(50+10)}{10} \times 2=600 \mathrm{~km}$

40 (B) $\operatorname{cose} \theta+\cot \theta=2$
$\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}=2$
$\frac{1+\cos \theta}{\sin \theta}=2$
$\frac{2 \cos ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}=2$
$\cot \frac{\theta}{2}=2$
$\tan \frac{\theta}{2}=\frac{1}{2}$
We know that,
$\sin \theta=\frac{2 \tan \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}$
$\sin \theta=\frac{2 \times \frac{1}{2}}{1+\left(\frac{1}{2}\right)^{2}}$
$\sin \theta=\frac{1}{\frac{5}{4}}=\frac{4}{5}$
41. (C) Area of the square when the wire is bent to form square $=\left(\frac{88}{4}\right)^{2}=484 \mathrm{~cm}^{2}$ when the wire
is bent in the form of circle then radius of the circle $=\frac{88}{2 \pi}=14 \mathrm{~cm}$
Then, area of the circle $=\pi r^{2}=\frac{22}{7} \times 14 \times 14=616 \mathrm{~cm}^{2}$
Now, percentage change in the two enclosed areas $=\frac{616-484}{484} \times 100=27.27 \%$
42. (A) Let the CP of the goods be ₹ 100

Then, MP of the goods $=₹ 120$
A.T.Q,

SP of half the stock $=120 \times \frac{1}{2}=₹ 60$
SP of $\frac{1}{4}$ th of the stock $=60 \times \frac{1}{2} \times \frac{90}{100}=₹ 27$
and, SP of remaining $\frac{1}{4}$ stock $=30 \times \frac{80}{100}=₹ 24$
\therefore Total SP of the good $=60+27+24=₹ 111$
Now, profit percent $=\frac{111-100}{100} \times 100=11 \%$
43. (A)

A.T.Q,
$B D=B C-D C$
$B D=4.5-1.5=3 \mathrm{~cm}$
Now, BD: DC = $3: 1.5=2: 1$
\therefore Areas of $\triangle \mathrm{ABD}$ and $\Delta \mathrm{ACD}$ will be in the ratio $2: 1$
44. (C) $x=5+2 \sqrt{6}$
and, $\frac{1}{x}=5-2 \sqrt{6}$
Then, $x-\frac{1}{x}=(5+2 \sqrt{6})-(5-2 \sqrt{6})=4 \sqrt{6}$
Taking cube on both sides, we get
$x^{3}-\frac{1}{x^{3}}-3 \times x \times \frac{1}{x}\left(x-\frac{1}{x}\right)=(4 \sqrt{6})^{3}$
$x^{3}-\frac{1}{x^{3}}-3 \times 4 \sqrt{6}=384 \sqrt{6}$
$x^{3}-\frac{1}{x^{3}}=396 \sqrt{6}$
45. (B) $p\left(p^{2}+6 p+12\right)=p^{3}+6 p^{2}+12 p=(p+2)^{3}-2^{3}$
$=(98+2)^{3}-8=100000-8=999992$
46. (C) We know that,

Distance between two points $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(5-3)^{2}+(8-2)^{2}}=\sqrt{2^{2}+6^{2}}=2 \sqrt{10}$ units
Then, radius of the circle $=\frac{2 \sqrt{10}}{2}=\sqrt{10}$ units
Now, Area of circle $=\pi r^{2}=\pi \times \sqrt{10} \times \sqrt{10}=10 \pi$ sq. units
47. (C) Required rate $=\frac{400}{2000} \times 100=20 \%$
48. (A) Consider the equation $x^{3}+q x+r=0$

Here, sum of the roots $=0$
i.e. $a+b+c=0$
$\therefore \quad a^{3}+b^{3}+c^{3}-3 a b c=0$
49. (A) We know that,
$\frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}} \frac{c}{\sin \mathrm{C}}$
and, $a: b: c=1: \sqrt{3}: 2$
Here, $a^{2}+b^{2}=c^{2}$
So, $\angle \mathrm{C}=90^{\circ}$
Now, $\frac{a}{\sin \mathrm{~A}}=\frac{c}{\sin \mathrm{c}}$
$\frac{1}{\sin A}=\frac{2}{\sin 90}$
$\sin \mathrm{A}=\frac{1}{2} \Rightarrow \mathrm{~A}=30^{\circ}$
and, $\frac{b}{\sin B}=\frac{c}{\sin c}$
$\frac{\sqrt{3}}{\sin B}=\frac{2}{\sin 90}$
$\sin B=\frac{\sqrt{3}}{2}=B=60^{\circ}$
$\therefore \quad \angle \mathrm{A}: \angle \mathrm{B}: \angle \mathrm{C}=30^{\circ}: 60^{\circ}: 90^{\circ}=1: 2: 3$
50. (A) $\frac{\tan \mathrm{A}}{1-\cot \mathrm{A}}+\frac{\cot \mathrm{A}}{1-\tan \mathrm{A}}=\frac{\tan \mathrm{A}}{1-\frac{1}{\tan \mathrm{~A}}}+\frac{\tan \mathrm{A}}{1-\tan \mathrm{A}}$
$=\frac{\tan ^{2} \mathrm{~A}}{\tan \mathrm{~A}-1}-\frac{1}{\tan \mathrm{~A}(\tan \mathrm{~A}-1)}=\frac{(\tan \mathrm{A}-1)\left(\tan ^{2} \mathrm{~A}+1+\tan \mathrm{A}\right)}{\tan \mathrm{A}(\tan \mathrm{A}-1)}$
$=1+\tan \mathrm{A}+\cot \mathrm{A}$
51. (D) $x^{2}-c^{2}=y$

On putting the values, we get
$(a+b)^{2}-c^{2}=a b$
$a^{2}+b^{2}+2 a b-c^{2}=a b$
$a^{2}+b^{2}-c^{2}=-a b$
we know that
$\cos \mathrm{C}=\frac{a^{2}+b^{2}-c^{2}}{2 \mathrm{ab}}$
$\cos C=\frac{-a b}{2 a b}$
$\cos \mathrm{C}=\frac{-1}{2} \Rightarrow c=120^{\circ}$
Then, area of $\Delta \mathrm{ABC}=\frac{1}{2} \times a \times b \times \sin 120^{\circ}$
$=\frac{1}{2} \times a \times b=\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{4} a b$
52. (C)

A.T.Q,
$r+r+l=20$
$l=20-2 r$
We know that,
Area of sector $=\frac{1}{2} l r$
So, $A=\frac{1}{2} \times(20-2 r) \times r$
$\mathrm{A}=r(10-r)$
For A to be maximum when r and $(10-r)$ are equal.
So, $\mathrm{r}=10-\mathrm{r}$
$2 r=10$
$r=5$
Then, $A=5 \times 5=25$ sq. meter
53. (B)

Here, $a=1 \times 5=5 \mathrm{~km}$, and, $b=3 \times 5=15 \mathrm{~km}$ We know that,
$\cos \mathrm{C}=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\frac{-1}{2}=\frac{25+225-c^{2}}{150}$
$c^{2}=325$
$c=5 \sqrt{13} \mathrm{~km}$
54. (A) $\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)=-\frac{3}{2}$
$\cos \beta \cos \gamma+\sin \beta \sin \gamma+\cos \gamma \cos \alpha+\sin \gamma \sin \alpha+\cos \alpha \cos \beta+\sin \alpha \sin \beta=-\frac{3}{2}$
$3+2$ cos β cos $\gamma+2$ sin β sin $\gamma+2$ cos γ cos $\alpha+2 \sin \gamma \sin \alpha+2 \cos \alpha \cos \beta+$ $2 \sin \alpha \sin \beta=0$
$\sin ^{2} \alpha+\cos ^{2} \alpha+\sin ^{2} \beta+\cos ^{2} \beta+\sin ^{2} \gamma+\cos ^{2} \gamma+2 \cos \beta \cos \gamma+2 \sin \beta \sin \gamma+2 \cos \gamma \cos \alpha+2 \sin \gamma$ $\sin \alpha+2 \cos \alpha \cos \beta+2 \sin \alpha \sin \gamma=0$
$(\sin \alpha+\sin \beta+\sin \gamma)^{2}+(\cos \alpha+\cos \beta+\cos \gamma)^{2}$
$\sin \alpha+\sin \beta+\sin \gamma=0$ and $\cos \alpha+\cos \beta+\cos \gamma=0$

55．（B）dividend $=6^{2 x}-(34)^{2 x+1}=36^{x}-(34)^{2 x+1}$
$=(35+1)^{x}-(35-1)^{2 x+1}$
when it is dividend by 7 ，
Remainder $=1^{x}-(-1)^{2 x+1}=1-(-1)=2$
56．（B）Let $\mathrm{S}=1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\frac{14}{3^{4}}+\ldots \ldots \ldots$
Then，$\frac{1}{3} S=\frac{1}{3}+\frac{2}{3^{2}}+\frac{6}{3^{3}}+\frac{10}{3^{4}} \ldots \ldots$.
$\frac{2}{3} S=1+\left(\frac{2}{3}-\frac{1}{3}\right)+\left(\frac{6}{3^{2}}-\frac{2}{3^{2}}\right)+\left(\frac{10}{3^{3}}-\frac{6}{3^{3}}\right)+\left(\frac{14}{3^{4}}-\frac{10}{3^{4}}\right)+$ \qquad
$\frac{2}{3} S=1+\frac{1}{3}+\frac{4}{3^{2}}+\frac{4}{3^{3}}+\frac{4}{3^{4}} \ldots \ldots .$.
$\frac{2}{3} S=\frac{\frac{4}{3}}{1-\frac{1}{3}}$
$\frac{2}{3} S=2$
$S=3$
57．（D） $\cos (\alpha-\beta)=\frac{3}{5} \Rightarrow \tan (\alpha-\beta)=\frac{4}{3}$ and， $\sin (\alpha+\beta)=\frac{8}{17} \Rightarrow \tan (\alpha+\beta)=\frac{8}{15}$
Now， $\tan 2 \alpha=\frac{\tan (\alpha-\beta)+\tan (\alpha-\beta)}{1-\tan (\alpha+\beta) \cdot \tan (\alpha-\beta)}=\frac{\frac{4}{3}+\frac{8}{15}}{1-\frac{4}{3} \times \frac{8}{15}}=\frac{84}{13}$
58．（C）In a 3 －D space，we know that，
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\cos ^{2} 45^{\circ}+\cos ^{2} 120^{\circ}+\cos ^{2} \gamma=1$
$\frac{1}{2}+\frac{1}{4}+\cos ^{2} \gamma=1$
$\cos ^{2} \gamma=\frac{1}{4}$
Then，the angle made by AB with the positive z－axis $=60^{\circ}$
59．（D） $\mathrm{A}=\sin ^{2} x+\cos ^{4} x$
$A=1-\cos ^{2} x+\cos ^{4} x$
$A=\left(\cos ^{2} x-\frac{1}{2}\right)^{2}+\frac{3}{4}$
Here， $0 \leq \cos ^{2} x \leq 1$
So，$\frac{3}{4} \leq \mathrm{A} \leq 1$
60. (A) $3 \sin A+4 \cos B=6 \ldots \ldots \ldots$ (i)
and, $4 \sin B+3 \cos A=1$
Squaring and adding equation (i) and (ii), we get
$9 \sin ^{2} \mathrm{~A}+16 \cos ^{2} \mathrm{~B}+24 \sin \mathrm{~A} \cos \mathrm{~B}+16 \sin ^{2} \mathrm{~B}+9 \cos ^{2} \mathrm{~A}+24 \cos \mathrm{~A} \sin \mathrm{~B}=6^{2}+1^{2}$
$9\left(\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}\right)+16\left(\sin ^{2} \mathrm{~B}+\cos ^{2} \mathrm{~B}\right)+24(\sin \mathrm{~A} \cos \mathrm{~B}+\cos \mathrm{A} \sin \mathrm{B})=37$
$25+24 \sin (\mathrm{~A}+\mathrm{B})=37$
$24 \sin (\mathrm{~A}+\mathrm{B})=12$
$\sin (A+B)=\frac{1}{2}$
$\sin (\pi-C)=\frac{1}{2}$
$\sin \mathrm{C}=\frac{1}{2} \Rightarrow \mathrm{C}=30^{\circ}$
61. (B) Efficiency of $\mathrm{A}=1$

Efficiency of $B=1.5$
Let B worked for x hours
Then,
$\frac{\mathrm{A} \times 12}{\frac{5}{8}}=\frac{\mathrm{B} \times x}{\frac{3}{8}}$
$3 \mathrm{~A} \times 12=5 \mathrm{~B} \times x$
$3 \times 1 \times 12=5 \times 1.5 \times x$
$x=\frac{36}{5 \times 1.5}=4.8$ hours
62. (C)

Now, efficiency of 5 men, 5 women and 4 children $=5+\frac{4}{2}+\frac{2}{2}=8$
Then, time taken to complete the work $=\frac{40}{8}=5$ hours
63. (C) Let distance between A and $\mathrm{B}=x \mathrm{~km}$

According to the question,
Total time taken by car $(\mathrm{t})=\frac{x}{\mathrm{P}_{1}}+\frac{x}{\mathrm{P}_{2}}+\frac{x}{\mathrm{P}_{2}}$
$\mathrm{t}=\frac{\mathrm{P}_{2} x+\mathrm{P}_{1} x+\mathrm{P}_{1} x}{\mathrm{P}_{1} \mathrm{P}_{2}}$
\therefore Average speed at the car $=\frac{3 x}{\frac{\mathrm{P}_{2} x+2 \mathrm{P}_{1} x}{\mathrm{P}_{1} \mathrm{P}_{2}}}=\frac{3 \mathrm{P}_{1} \mathrm{P}_{2}}{\mathrm{P}_{2}+2 \mathrm{P}_{1}}$

$K D$

Campus
K D Campus Pvt. Ltd
1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

64.	(B)	A	B	C
		1200	1080	1080
		1000	1000	$\underline{950}$

Ratio of distance travelled by A, B and C = $1200 \times 1000: 1080 \times 1000: 1080 \times 950$
= $1000: 900: 855$
When A travells 800 m , then distance travelled by $\mathrm{C}=\frac{855}{1000} \times 800=684 \mathrm{~m}$
\therefore The distance by which A beat $C=800-684=116 \mathrm{~m}$
65. (B)

Efficiency time
Suresh 120100
Mahesh 100120
A.T.Q,

120 units $=30$ days
1 unit $=\frac{1}{4}$ days
Then, time taken by Suresh to complete the work $=100$ units $=100 \times \frac{1}{4}=25$ days
66. (A) Area of intersecting region $=(4 \pi-3 \sqrt{3}) \frac{r^{2}}{6}=\frac{1}{6}(4 \pi-3 \sqrt{3}) \mathrm{cm}^{2}$
$=\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right) \mathrm{cm}^{2}$
67. (C) We know that,

Sum of the cubes of first n natural numbers $=\left[\frac{n(n+1)}{2}\right]^{2}$
Sum of the cubes of first 15 natural numbers $=\left(\frac{15 \times(15+1)}{2}\right)^{2}=\left(\frac{15 \times 16}{2}\right)^{2}=15^{2} \times 8^{2}$
Then, average $=\frac{15^{2} \times 8^{2}}{15}=15 \times 64=960$
68. (C) $\mathrm{P}\left[\frac{r}{100}\right]^{2}=81$
where, $r=\frac{15}{2}$
Then, $P\left[\frac{15}{200}\right]^{2}=81$
$P=\frac{81 \times 200 \times 200}{15 \times 15}$
P = ₹ 14400
$\therefore \quad$ Principal amount $=₹ 14400$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
69. (D) $\sqrt{5 x-14}+\sqrt{5 x+14}=7+\sqrt{21}$

Squaring both side, we get
$5 x-14+5 x+14+2 \sqrt{25 x^{2}-14^{2}}=49+21+2 \times 7 \sqrt{21}$
On comparing we get,
$10 x=70$ and $2 \sqrt{25 x^{2}-196}=14 \sqrt{21}$
So, $x=7$
70. (B)

We know that the sum of two interior angle is equal to the external angle
So, $\mathrm{PTQ}=64^{\circ}+36^{\circ}=100^{\circ}$
Now, In $\Delta \mathrm{TQS}$,
$\angle \mathrm{T}=\frac{100^{\circ}}{2}=50^{\circ}$ and $\angle \mathrm{S}=90^{\circ}$
Then, $\angle \mathrm{PQR}=180^{\circ}-\left(50^{\circ}+90^{\circ}\right)=180^{\circ}-140^{\circ}=40^{\circ}$
71. (B) Let the revolutions made during the journey be n.

Then,
$n \times 2 \pi r=\frac{900000}{60} \times 55$
$\mathrm{n} \times \frac{22}{7} \times 21=\frac{900000 \times 55}{60}$
$\mathrm{n}=\frac{900000 \times 55 \times 7}{60 \times 22 \times 21}$
$\mathrm{n}=12500$
72. (A) $\left\{\frac{4}{3} \pi r_{1}{ }^{3}+\frac{4}{3} \pi r_{2}{ }^{3}+\frac{4}{3} \pi r_{3}{ }^{3}\right\} \frac{3}{4}=\frac{4}{3} \pi R^{3}$
$\frac{4}{3} \pi\left(r_{1}{ }^{3}+r_{2}{ }^{3}+r_{3}{ }^{3}\right) \times \frac{3}{4}=\frac{4}{3} \pi \mathrm{R}^{3}$
$\left(2^{3}+4^{3}+6^{3}\right) \times \frac{3}{4}=R^{3}$
$\mathrm{R}=6$
Then, diameter of the new ball $=2 \times 6=12 \mathrm{~cm}$
73. (D) $x \times \frac{2 \tan ^{2} 15^{\circ}}{2-\left(1+\tan ^{2} 15^{\circ}\right)}=\cos 30^{\circ}+\sin 60^{\circ}$
$x \times \frac{2 \tan ^{2} 15^{\circ}}{1-\tan ^{2} 15^{\circ}}=\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}$
$x \times \tan 30^{\circ}=\sqrt{3}$
$x \times \frac{1}{\sqrt{3}}=\sqrt{3}$
$x=3$
74. (B) $25 \%=\frac{1}{4} \rightarrow$ Profit

Then, $\mathrm{SP}=4+1=5$
Now,
Number of pens bought for 4 rupees $=4 \times 5=20$
and, SP of 20 pens = ₹5
Then,
Number of pens sold for ₹ $5=\frac{20}{5}=4$
75. (A) In an equilateral triangle, the ratio of inradius and circumradius is $1: 2$.
76.
(C) $\frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}-\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}=112 \sqrt{3}$
$\frac{\left(x+\sqrt{x^{2}-1}\right)^{2}-\left(x-\sqrt{x^{2}-1}\right)^{2}}{\left(x-\sqrt{x^{2}-1}\right)\left(x+\sqrt{x^{2}-1}\right)}=112 \sqrt{3}$
$\frac{4 x \sqrt{x^{2}-1}}{x^{2}-\left(x^{2}-1\right)}=112 \sqrt{3}$
$x \sqrt{x^{2}-1}=28 \sqrt{3}$
Squaring both sides, we get
$x^{2}\left(x^{2}-1\right)=28 \times 28 \times 3$
$x^{4}-x^{2}-2352=0$
On solving, we get $x=7$
77. (A)

Area of $\Delta \mathrm{OAB}=\operatorname{ar}(\Delta \mathrm{OAM})+\operatorname{ar}(\mathrm{AMNB})-\operatorname{ar}(\Delta \mathrm{OBN})$
$=\frac{1}{2} \times 2 \times 6+\frac{1}{2}(6+2) \times 4-\frac{1}{2} \times 6 \times 2=16$ sq. units

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
78. (B) $p(x+y)^{2}=5$
$(x+y)^{2}=\frac{5}{p}$
and, $q(x-y)^{2}=3$
$(x-y)^{2}=\frac{3}{q}$
Now, $(x+y)^{2}-(x-y)^{2}=\frac{5}{p}-\frac{3}{q}$
$4 x y=\frac{5 q-3 p}{p q}$
$4 p q x y=5 q-3 p$
Then, $p^{2}(x+y)^{2}+4 p q x y-q^{2}(x-y)^{2}=5 p+(5 q-3 p)-3 q$
$=5 p+5 q-3 p-3 q=2 p+2 q=2(p+q)$
79. (D) $x=\frac{5-2 \sqrt{6}}{5+2 \sqrt{6}}$
$x=\frac{(5-2 \sqrt{6})(5-2 \sqrt{6})}{(5+2 \sqrt{6})(5-2 \sqrt{6})}$
$x=25+24-20 \sqrt{6}$
similarly, $y=49+20 \sqrt{6}$
Then, $x+y=98$
Squaring both sides, we get
$x^{2}+y^{2}+2 x y=98^{2}$
$x^{2}+y^{2}=98^{2}-2=9602$
80. (B) When medians of a triangle interest each other at right angle

Then, $\mathrm{AB}^{2}+\mathrm{AC}^{2}=5 \mathrm{BC}^{2}$
$5 \mathrm{BC}^{2}=18^{2}+21^{2}$
$5 \mathrm{BC}^{2}=324+441$
$\mathrm{BC}^{2}=\frac{765}{5}$
$\mathrm{BC}^{2}=153$
$\mathrm{BC}=3 \sqrt{17} \mathrm{~cm}$
81. (C) $x=3^{\frac{1}{3}}+3^{\frac{-1}{3}}$

Taking cube on both sides, we get
$x^{3}=3+\frac{1}{3}+3 \times 3^{\frac{1}{3}} \times 3^{\frac{-1}{3}}\left(3^{\frac{1}{3}}+3^{\frac{-1}{3}}\right)$
$x^{3}=\frac{10}{3}+3 x$
$3 x^{3}-9 x=10$
$3 x^{3}-9 x-8=2$
82. (A) Speed of runner $A=\frac{400}{80}=5 \mathrm{~m} / \mathrm{s}$
and, speed of runner $B=\frac{200}{50}=4 \mathrm{~m} / \mathrm{s}$
Now, Time taken by A to finish 1200 metre race $=\frac{1200}{5}=240 \mathrm{sec}$.
Then, distance travelled by B in $240 \mathrm{sec} .=240 \times 4=960 \mathrm{~m}$
\therefore Distance by which A beat B $=1200-960=240 \mathrm{~m}$
83. (C) Let the numbers of markers of the institution be x.

Then,
$x \times 80=15 \times 600+(x-15) 60$
$80 x=9000+60 x-900$
$80 x-60 x=9000-900$
$20 x=8100$
$x=405$
\therefore Total number of the workers of the institution $=405$
84. (C) We know that,
$\mathrm{P}=\frac{x}{\left(1+\frac{r}{100}\right)}+\frac{x}{\left(1+\frac{r}{100}\right)^{2}} \cdots \cdots \cdots+\frac{x}{\left(1+\frac{r}{100}\right)^{3}}$
where $\mathrm{P}=$ principal sum
$x=$ amount of each instellment
$r=$ rate of interest
and $n=$ number of installments
Then, $25200=x\left[\frac{20}{21}\right]+x\left[\frac{20}{21}\right]^{2}+x\left[\frac{20}{21}\right]^{3}$
$25200=x \times \frac{20}{21}\left[1+\frac{20}{21}+\frac{400}{441}\right]$
$x=\frac{25200 \times 21 \times 441}{20 \times 1261}=₹ 9253.65$
85. (C) Let $x=\sqrt{a+b}-\sqrt{a-b}$
where $a=3$ and $\mathrm{b}=\sqrt{-2+6 \sqrt{2}}$
Squaring both sides, we get
$x^{2}=(\mathrm{a}+\mathrm{b})+(\mathrm{a}-\mathrm{b})-2 \sqrt{a^{2}-b^{2}}$
$x^{2}=2 a-2 \sqrt{a^{2}-b^{2}}$
On putting the respective values
$x^{2}=2 \times 3-2 \sqrt{3^{2}-(\sqrt{-2+6 \sqrt{2}})^{2}}$
$x^{2}=6-2 \sqrt{9+2-6 \sqrt{2}}$
$x^{2}=6-2(3-\sqrt{2})$
$x^{2}=6-6+2 \sqrt{2}$
$x^{2}=2 \sqrt{2}$
$x=2^{\frac{3}{4}}$
86. (A) Area of the regular octagon in a circle $=\frac{1}{2} r^{2} \sin 45^{\circ} \times 8$
$=\frac{1}{2} \times 2 \times 2 \times \frac{1}{\sqrt{2}} \times 8=8 \sqrt{2}$ sq. units
87. (D) $\sec \theta \operatorname{cosec} \theta=\frac{1}{\cos \theta \cdot \sin \theta}=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \cdot \sin \theta}=\tan \theta+\cot \theta$ let $\tan \theta=x$ and $\cot \theta=\frac{1}{x}$

Then, $x^{5}+\frac{1}{x^{5}}=123$
$\left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{2}+\frac{1}{x^{2}}\right)-\left(x+\frac{1}{x}\right)=123$
$\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right)\left[\left(x+\frac{1}{x}\right)^{2}-2\right]-\left(x+\frac{1}{x}\right)=123$
put $x+\frac{1}{x}=t$
$\left(\mathrm{t}^{3}-3 \mathrm{t}\right)\left(t^{2}-2\right)-t=123$
Using options; we get $t=3$
$\therefore \quad \sec \theta \operatorname{cosec} \theta=3$
88. (B) S.P of the toy $=500 \times \frac{80}{100} \times \frac{95}{100}=₹ 380$
89. (C) A

B

$6000 \times 8 \quad 8000 \times 9$
$+10000 \times 4 \frac{+3000 \times 3}{81000}$
Ratio of profit of A and $B=88: 81$
Now, the amount which A takes as allowance $=150 \times 12=₹ 1800$
Then, Remaining profit $=10250-1800=₹ 8450$
This profit is shared between A and B
So, share of $B=\frac{8450}{88+81} \times 81=₹ 4050$
90. (A) Total age reduced when an old student is replaced by a new student $=35 \times 4=140$ months Then, age of the new student $=22$ years -140 months $=10$ years 4 months
91. (D) Time taken to travel from A to C and back $=16$ hours

Then, time taken to travel from A to B and back $=2 \times 16=32$ hours
Now, time taken to travel from B to A $=32-20 \frac{1}{3}=11 \frac{2}{3}$ hours
92. (C) Percentage of candidates who passed in the examination $=82+75-78=79$

Then, percentage of candidates who failed in the examination $=100-79=21$
A.T.Q,
$21 \%=4200$
Then, total number of candidates $=100 \%=\frac{4200}{21} \times 100=20000$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
93. (B)

Now, New ratio -

	Milk	Water
A	36	24
B	90	30
C	120	60
	246	$:$
	41	114
		19

Then, required ratio $=41: 19$
94. (D) $40 \%=\frac{2}{5}$

Then, CP $\rightarrow 5$
$\mathrm{MP} \rightarrow 5+2=7$
and 10% discount $=\frac{1}{10} \rightarrow$ discount
So, MP $\rightarrow 10$ and SP $\rightarrow 10-1 \rightarrow 9$
CP MP SP
$\begin{array}{llll}5 & 7 & 7\end{array}$

10	10	9
50	70	63

Now, gain percent $=\frac{63-50}{50} \times 100=26 \%$
95. (C) $\frac{2}{3} \mathrm{~A}=\frac{3}{5} \mathrm{~B}$
$\frac{\mathrm{A}}{\mathrm{B}}=\frac{9}{10}$
Now, $(9+10)$ units $=2850$
1 unit = 150
Then, profit of $\mathrm{B}=10$ units $=10 \times 150=₹ 1500$
96. (B) $72^{\circ}=₹ 1875$

Then, monthly income of the family $=360^{\circ}=\frac{1875}{72} \times 360=₹ 9375$
97. (D) Percentage of savings $=\frac{108}{360} \times 100=30 \%$
98. (B) Ratio of expenses on rent and food $=72: 90=4: 5$
99. (A) Monthly income of the family $\left(360^{\circ}\right)=15000$

Now, average of expenses on rent, food and misellaneous $=\frac{72+90+72}{3}=78^{\circ}$
As, $360^{\circ}=₹ 15000$
Then, $78^{\circ}=\frac{15000}{360} \times 78=₹ 3250$
100. (C) Ratio of average of expenses on food, rent and miscellaneous items to the average of expenses
on savings and clothing $=\frac{72+72+90}{3}: \frac{108+18}{2}$
$=\frac{234}{3}: \frac{126}{2}=26: 21$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

QUANTITATIVE ABILITY - 68 (ANSWER KEY)

1. (B)
2. (D)
3. (A)
4. (B)
5. (C)
6. (B)
7. (C)
8. (B)
9. (D)
10. (C)
11. (A)
12. (B)
13. (D)
14. (C)
15. (B)
16. (C)
17. (A)
18. (C)
19. (B)
20. (D)
21. (C)
22. (B)
23. (D)
24. (C)
25. (C)
26. (B)
27. (C)
28. (B)
29. (C)
30. (A)
31. (A)
32. (B)
33. (C)
34. (B)
35. (B)
36. (C)
37. (B)
38. (D)
39. (C)
40. (B)
41. (C)
42. (A)
43. (A)
44. (C)
45. (B)
46. (C)
47. (C)
48. (A)
49. (A)
50. (A)
51. (D)
52. (C)
53. (B)
54. (A)
55. (B)
56. (B)
57. (D)
58. (C)
59. (D)
60. (A)
61. (B)
62. (C)
63. (C)
64. (B)
65. (B)
66. (A)
67. (C)
68. (C)
69. (D)
70. (B)
71. (B)
72. (A)
73. (D)
74. (B)
75. (A)
76. (C)
77. (A)
78. (B)
79. (D)
80. (B)
81. (C)
82. (A)
83. (C)
84. (C)
85. (C)
86. (A)
87. (D)
88. (B)
89. (C)
90. (A)
91. (D)
92. (C)
93. (B)
94. (D)
95. (C)
96. (B)
97. (D)
98. (B)
99. (A)
100. (C)
