QUANTITATIVE ABILITY - 69 (SOLUTION)

1. $\quad(\mathrm{C})(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=n(\mathrm{~A})+n(\mathrm{~B})+n(\mathrm{C})-n(\mathrm{~A} \cap \mathrm{~B})-n(\mathrm{~B} \cap \mathrm{C})-n(\mathrm{~A} \cap \mathrm{C})+n(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})$

Percentage of total failed candidates $=20+15+25-5-10-15+2=32$
Percentage of total candidates who passed $=100-32=68 \%$
2. (A) Let the cost price of Table is T and Fan is F.
$125 \% \mathrm{~T}+120 \% \mathrm{~F}$
$120 \% \mathrm{~T}+125 \% \mathrm{~F}$
ATQ,
$5 \%(T-F)=-60$
$\mathrm{F}-\mathrm{T}=\frac{60}{5} \times 100=₹ 1200$
$F+T=36580$
Adding (iii) and (iv)
$2 \mathrm{~F}=37780$
C. P of fan $=F=₹ 18890$

Put $\mathrm{F}=₹ 18890$ in (iv),
$18890+\mathrm{T}=36580$
$\therefore \quad$ C.P of Table $=T=₹ 17690$
3. (A)

C. P of Book $=400 \times 40=₹ 16,000$
C. P of Pen $=500 \times 40=₹ 20,000$
4. (D)

1st case: Train is late by $=(4-1)=3$ hours
$\therefore \quad$ Scheduled time between A and $\mathrm{D}=3 \times 3=9$ hours
$\frac{\text { Initial time }}{\text { Total time due to delay }}=\frac{3}{4}$
2nd case: During Travelling train is late by $=3 \frac{1}{2}-1=2 \frac{1}{2}$ hours
$\therefore \quad$ Scheduled time between B and D $=3 \times \frac{5}{2}=7 \frac{1}{2}$ hours
Time taken between A and $\mathrm{B}=\left(9-7 \frac{1}{2}\right)=1 \frac{1}{2}$ hours
Distance covered $=150 \mathrm{~km}$
Speed of train $=\frac{150}{1 \frac{1}{2}}=150 \times \frac{2}{3}=100 \mathrm{~km} / \mathrm{hr}$
Total distance between C and $D=(3+9) \times 100=1200 \mathrm{~km}$
5. (C) $4 \sec \theta=5$

$$
\sec \theta=\frac{5}{4}
$$

$\mathrm{AB}=\sqrt{5^{2}-4^{2}}=\sqrt{9}=3$

$$
\frac{3 \sin \theta-4 \sin ^{3} \theta}{4 \cos ^{3} \theta-3 \cos \theta}=\frac{3 \times \frac{3}{5}-4 \times\left(\frac{3}{5}\right)^{3}}{4 \times\left(\frac{4}{5}\right)^{3}-3 \times \frac{4}{5}}=\frac{\frac{9}{5}-\frac{4 \times 27}{125}}{\frac{4 \times 64}{125}-\frac{12}{5}}=\frac{225-108}{256-300}=-\frac{117}{44}
$$

6. (A)

$\mathrm{BC}=\sqrt{\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}}=\sqrt{a^{4}+b^{4}+2 a^{2} b^{2}-\left(a^{4}+b^{4}-2 a^{2} b^{2}\right)}$
$=\sqrt{2 a^{2} b^{2}+2 a^{2} b^{2}}=\sqrt{4 a^{2} b^{2}}=2 a b$
$\therefore \quad \tan \theta=\frac{a^{2}-b^{2}}{2 a b}$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
7. (D) ATQ,
₹ $150=2.5 \mathrm{~kg}$ Rice
4 kg Rice $=7 \mathrm{~kg}$ Sugar
14 kg Sugar $=3 \mathrm{~kg}$ Tea
9 kg Tea $=7 \mathrm{~kg}$ Coffee
21 kg Coffee $=₹ x$
$x=\frac{150}{2.5} \times \frac{4}{7} \times \frac{14}{3} \times \frac{9}{7} \times 21=₹ 4320$
$\therefore \quad$ Required cost $=₹ 4320$
8.

Efficiency of $(A+B+C)=\frac{A+B+B+C+C+A}{2}=\frac{5+4+3}{2}=\frac{12}{2}=6$ units
Efficiency of $A=6-(B+C)=6-4=2$
Efficiency of $B=6-(A+C)=6-3=3$
Efficiency of $C=6-(A+B)=6-5=1$
\therefore Required time taken by $A=\frac{120}{2}=60$ days ; $B=\frac{120}{3}=40$ days ; $C=\frac{120}{1}=120$ days
9. (D) Let the length of the train traveling at a speed of $90 \mathrm{~km} / \mathrm{hr}$ be $x \mathrm{~m}$ and length of bridge be $y \mathrm{~m}$.
$\therefore \quad$ Length of another train $=(x-100) \mathrm{m}$
$x+y=90 \times \frac{5}{18} \times 36=5 \times 180=900 \mathrm{~m}$
Length of another train + bridge $=800 \mathrm{~m}$
\therefore Time taken by another train to cross a bridge $=\frac{800}{45 \times \frac{5}{18}} \mathrm{sec}=64$ seconds
10. (A) Let the principal be $=₹ 100$

Total S.I. $=₹(6+6.5+7+7.5)=₹ 27$
$\because 27$ unit = ₹ 3375 (given)
$\therefore \quad 100$ unit $=125 \times 100=₹ 12500$
The amount taken as a loan by her $=₹ 12500$

Campus

K D Campus Pvt. Ltd

11. (C) $\frac{a}{b}=\frac{\frac{\sqrt{5}+1}{\sqrt{5}-1}}{\frac{\sqrt{5}-1}{\sqrt{5}+1}}=\frac{\sqrt{5}+1}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{(\sqrt{5}+1)^{2}}{(\sqrt{5}-1)^{2}}$
$=\frac{5+1+2 \sqrt{5}}{5+1-2 \sqrt{5}}=\frac{6+2 \sqrt{5}}{6-2 \sqrt{5}}=\frac{2(3+\sqrt{5})}{2(3-\sqrt{5})}=\frac{3+\sqrt{5}}{3-\sqrt{5}}$

Applying componendo and dividendo, we have $\frac{a+b}{a-b}=\frac{3+\sqrt{5}+3-\sqrt{5}}{(3+\sqrt{5})-(3-\sqrt{5})}$
$=\frac{6}{2 \sqrt{5}}=\frac{3}{\sqrt{5}}$
$\therefore\left(\frac{a-b}{a+b}\right)^{2}=\left(\frac{\sqrt{5}}{3}\right)^{2}=\frac{5}{9}$
12. (C) Let the total number of benches $=x$

ATQ,
$6(x+1)=7 x-5$
$6 x+6=7 x-5$
$x=11$
Total number of bench in class $=11$
Total number of students in class $=6(11+1)=72$
13. (D)

Given: $L M \| C B$ and $L N \| C D$
In $\triangle \mathrm{ABC}$,
LM \|CB, using Basic Proportionality Theorem
$\therefore \quad \frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AL}}{\mathrm{AC}}$
(i)

Also in $\triangle \mathrm{ADC}$,
LN ||CD, using basic proportionality
$\therefore \quad \frac{\mathrm{AN}}{\mathrm{AD}}=\frac{\mathrm{AL}}{\mathrm{AC}}$
From (i) and (ii),
$\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}$
14. (C) Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{9 \times 4 \times 3 \times 2}=6 \sqrt{6} \mathrm{~cm}^{2}$
$\therefore \quad \mathrm{R}=\frac{a b c}{4 \Delta}=\frac{5 \times 6 \times 7}{4 \times 6 \sqrt{6}}=\frac{35}{4 \sqrt{6}} \mathrm{~cm}$
15. (D)

$\mathrm{BC}=a, \mathrm{AC}=b$
$\mathrm{AB}=\sqrt{\mathrm{AC}^{2}+\mathrm{BC}^{2}}=\sqrt{b^{2}+a^{2}}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AC}=\frac{1}{2} a b$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{CD}=\frac{1}{2} \times \sqrt{a^{2}+b^{2}} \times \mathrm{p}$
$\therefore \quad \frac{1}{2} \mathrm{ab}=\frac{1}{2} \times \sqrt{a^{2}+b^{2}} \times \mathrm{p}$
$a^{2} b^{2}=\left(a^{2}+b^{2}\right) p^{2}$
$\frac{1}{p^{2}}=\frac{a^{2}+b^{2}}{a^{2} b^{2}}$
$\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
16.
(A) $12 \frac{1}{2} \%=\frac{1}{8} \xrightarrow{\times 4} 4$

Now he can purchase 32 mangoes for ₹ 1 .
Earlier he used to purchase $=32-4=28$ mangoes for $₹ 1$.
New price $=₹ \frac{1}{32}$; Old price $=₹ \frac{1}{28}$
17. (C) Initial amount $=₹ 1400$

In the $1^{\text {st }}$ year, he deposited $=\frac{30}{100} \times 1400=420$

In $2^{\text {nd }}$ year, he deposited $=\frac{40}{100} \times(1400+420)=728$
Total amount present in his locker $=1400+420+728=₹ 2548$
18. (D)

$$
\begin{aligned}
& 1-\frac{1}{1-\frac{1}{\left.1-\frac{1}{1-\frac{1}{x}}\right\}}}=1-\frac{1}{1-\frac{1}{1-\frac{1}{x-1}}} \\
& \left.=1-\frac{1}{\frac{x-1}{x}}\right\} 1-\frac{x}{x-1}=\frac{x-1-x}{x-1}=\frac{-1}{x-1} \\
& =1-\frac{1}{1+x-1}=1-\frac{1}{x}=\frac{x-1}{x}
\end{aligned}
$$

19.

Ratio $=50000: 75000=2: 3$
$\therefore \quad \mathrm{P}: \mathrm{II}^{\text {nd }}$ year amount must also be in the ratio of $2: 3$.
$\frac{\mathrm{P}}{50000}=\frac{2}{3}$
$P=\frac{100000}{3}=₹ 33333.33$
20. (D)

$\therefore \quad$ Area of shaded part $=\frac{1}{2} \times 2 \times 4=4$ units
21. (B) $\sin 17^{\circ}=\frac{x}{y}$
$\cos 17^{\circ}=\sqrt{1-\sin ^{2} 17^{\circ}}=\sqrt{1-\frac{x^{2}}{y^{2}}}=\sqrt{\frac{y^{2}-x^{2}}{y^{2}}}=\frac{\sqrt{y^{2}-x^{2}}}{y}$
$\sec 17^{\circ}=\frac{y}{\sqrt{y^{2}-x^{2}}}$
$\sin 73^{\circ}=\sin \left(90^{\circ}-17^{\circ}\right)=\cos 17^{\circ}$
$\therefore \quad \sec 17^{\circ}-\sin 73^{\circ}=\frac{y}{\sqrt{y^{2}-x^{2}}}-\frac{\sqrt{y^{2}-x^{2}}}{y}=\frac{x^{2}}{y \sqrt{y^{2}-x^{2}}}$
22. (D) $\cot 30^{\circ}=\cot \left(90^{\circ}-60^{\circ}\right)=\tan 60^{\circ}$
$\cot 75^{\circ}=\cot \left(90^{\circ}-15^{\circ}\right)=\tan 15^{\circ}$
$\cot 30^{\circ}-\cot 75^{\circ}$
$\therefore \quad \tan 15^{\circ}-\tan 60^{\circ}$
$\frac{\tan 60^{\circ}-\tan 15^{\circ}}{\tan 15^{\circ}-\tan 60^{\circ}}=-1$
23. (A) $100 \leftarrow$ Total voters
$\downarrow-10 \%$ (votes not cast)
$90 \leftarrow$ votes cast
$\downarrow-10 \%$ (invalid votes)
$81 \leftarrow$ valid votes

8% of $81 \rightarrow 1620$
$\frac{8}{100} \times 81 \rightarrow 1620$
$\therefore \quad 100 \rightarrow \frac{1620}{8 \times 81} \times 100 \times 100=25,000$
The number of voters enrolled in voter list $=25000$
24. (A) Distance between A and $B=\frac{150}{(75-60)} \times(75+60)=2025 \mathrm{~km}$
25. (B) Let the total number of books be x.

Then, $x \times \frac{80}{100} \times \frac{75}{100} \times \frac{70}{100}=29400$
$x=70000$
\therefore Total number of books $=70000$
26. (D) $\tan \theta=\frac{1}{\sqrt{7}}$

$\mathrm{AC}=\sqrt{1^{2}+(\sqrt{7})^{2}}=\sqrt{8}=2 \sqrt{2}$
$\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\cos ^{2} \theta+\sec ^{2} \theta}=\frac{(2 \sqrt{2})^{2}-\left(\frac{2 \sqrt{2}}{\sqrt{7}}\right)^{2}}{\left(\frac{\sqrt{7}}{2 \sqrt{2}}\right)^{2}+\left(\frac{2 \sqrt{2}}{\sqrt{7}}\right)^{2}}=\frac{8-\frac{8}{7}}{\frac{7}{8}+\frac{8}{7}}$
$=\frac{56-8}{7} \times \frac{56}{49+64}=\frac{48}{7} \times \frac{56}{113}=\frac{384}{113}$
27. (A) $3 \cot \theta=2$
$\cot \theta=\frac{2}{3}$

$\mathrm{AC}=\sqrt{3^{2}+2^{2}}=\sqrt{9+4}=\sqrt{13}$

$$
\frac{4 \sin \theta-3 \cos \theta}{2 \sin \theta+6 \cos \theta}=\frac{4 \times \frac{3}{\sqrt{13}}-3 \times \frac{2}{\sqrt{13}}}{2 \times \frac{3}{\sqrt{13}}+6 \times \frac{2}{\sqrt{13}}}=\frac{\frac{12-6}{\sqrt{13}}}{\frac{6+12}{\sqrt{13}}}=\frac{6}{18}=\frac{1}{3}
$$

Campus

K D Campus Pvt. Ltd

28. (D) Area of field $=31684$ sq m

Perimeter $=\sqrt{31684} \times 4 \mathrm{~m}=178 \times 4$
Length of each circuit $=178 \times 4 \times \frac{105}{100}$
Since the wire goes round 4 times,
$\therefore \quad$ Total length of wire required $=178 \times 4 \times \frac{105}{100} \times 4 \mathrm{~m}=2990.4 \mathrm{~m}$
29. (B) Here $a=50$ metres, $b=78$ metres, $c=112$ metres

$$
\begin{aligned}
\therefore & \mathrm{s}=\frac{1}{2}(50+78+112) \mathrm{m}=\frac{1}{2} \times 240=120 \mathrm{~m} \\
& s-a=(120-50) \mathrm{m}=70 \mathrm{~m} \\
& \mathrm{~s}-b=(120-78) \mathrm{m}=42 \mathrm{~m} \\
& s-c=(120-112) \mathrm{m}=8 \mathrm{~m} \\
& \text { Area }=\sqrt{120 \times 70 \times 42 \times 8}=1680 \text { sq. } \mathrm{m} \\
& \text { Perpendicular }=\frac{2 \times \text { Area }}{\text { Base }}=\frac{1680 \times 2}{112}=30 \mathrm{~m}
\end{aligned}
$$

30. \quad (A) Area $=\frac{1}{2} \times$ height $\times($ sum of parallel sides $)$
$250=\frac{1}{2} \times$ height $\times(15+10)$
height $=\frac{250 \times 2}{25}=20 \mathrm{~m}$
31. (D)

$H=(6 y+7 y) \frac{2}{13} \Rightarrow H=2 y$
Area $=\frac{1}{2}(6 y+7 y) 2 y$
$208=13 y^{2} \Rightarrow y=4$
$\mathrm{AC}^{2}=26^{2}+8^{2}$
$\mathrm{AC}^{2}=676+64$
$\mathrm{AC}^{2}=740$
32. (C) $x=a(\sin \theta+\cos \theta)$
$y=b(\sin \theta-\cos \theta)$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{a^{2}(\sin \theta+\cos \theta)^{2}}{a^{2}}+\frac{b^{2}(\sin \theta-\cos \theta)^{2}}{b^{2}}$
$=\left(\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta\right)+\left(\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta\right)=2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=2$
33. (B) Required ratio $=\frac{\frac{5}{8} \times 4+\frac{1}{3} \times 3}{\frac{3}{8} \times 4+\frac{2}{3} \times 3}=\frac{\frac{5}{2}+1}{\frac{3}{2}+2}=\frac{\frac{7}{2}}{\frac{7}{2}}=1: 1$
34. (B) $\frac{5 x^{2}-3 y^{2}}{x y}=\frac{11}{2} \Rightarrow 5 \frac{x}{y}-3 \frac{y}{x}=\frac{11}{2}$

$$
\begin{aligned}
& 10\left(\frac{x}{y}\right)^{2}-11\left(\frac{x}{y}\right)-6=0 \\
& \left(2 \frac{x}{y}-3\right)\left(5 \frac{x}{y}+2\right)=0 \\
& \frac{x}{y}=\frac{3}{2} \text { or }-\frac{2}{5}
\end{aligned}
$$

$\frac{x}{y}$ is a positive value. So answer will be $\frac{3}{2}$
35. (B)

Let $\mathrm{BC}=y$ and $\mathrm{AB}=x$
The area of $\Delta \mathrm{CEF}=$ area of $\Delta \mathrm{CEB}-$ area of $\triangle \mathrm{CFB}=\frac{1}{2}\left(\frac{2 x}{3}\right) y-\frac{1}{2}\left(\frac{x}{3}\right) y=\frac{x y}{3}-\frac{x y}{6}=\frac{x y}{6}$

Ratio of area of \triangle CEF and area of $\square \mathrm{ABCD}$ is $\frac{x y}{6}: x y=1: 6$
36. (C)

Distance travelled by the sparrow in 2 minutes $=B D$
$=50 \sqrt{3} \cot 30^{\circ}+50 \sqrt{3} \cot 60^{\circ}=150+50=200 \mathrm{~m}$

Speed of the sparrow $=\frac{200}{2} \times \frac{60}{1000}=6 \mathrm{~km} / \mathrm{hr}$
37. (B) Let the length of diagonal be $d \mathrm{~cm}$ and $2 d \mathrm{~cm}$ and each side be $a \mathrm{~cm}$.

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \times 2 d \times d \\
& 160=\frac{1}{2} \times 2 d^{2} \\
& d=4 \sqrt{10} \mathrm{~cm} \\
& \text { Now, } a=\frac{1}{2} \sqrt{(4 \sqrt{10})^{2}+(8 \sqrt{10})^{2}}=\frac{1}{2} \sqrt{160+640}=\frac{1}{2} \sqrt{800} \\
& =\frac{1}{2} \times 10 \times 2 \sqrt{2}=10 \sqrt{2} \mathrm{~cm}
\end{aligned}
$$

38. (B)
39.

(C) $\frac{1+\frac{1}{2}}{1-\frac{1}{2}} \div \frac{4}{7}\left(\frac{2}{5}+\frac{3}{10}\right)$ of $\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}=\frac{\frac{3}{2}}{\frac{1}{2}} \div \frac{4}{7}\left(\frac{7}{10}\right)$ of $\frac{\frac{5}{6}}{\frac{1}{6}}=\frac{3}{1} \div \frac{4}{10}$ of $\frac{5}{1}$
$=\frac{3}{1} \div\left(\frac{4}{10} \times \frac{5}{1}\right)=\frac{3}{1} \div \frac{2}{1}=\frac{3}{2}$
40. (D) ATQ,
$2 x+3 x+5 x=180^{\circ}-\left(15^{\circ}+15^{\circ}+15^{\circ}\right)$
$10 x=135^{\circ}$
$5 x=67.5^{\circ}$
Greatest angle $=67.5^{\circ}+15^{\circ}=82.5^{\circ}=82.5^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{11}{24} \pi$
41. (A) ATQ,

Required Area of paper used $=2 \pi r h=2 \times \frac{22}{7} \times 125 \times 28=22000 \mathrm{~cm}^{2}$
42. (B)

Height of the building $=h \mathrm{~m}$
ATQ,
$\mathrm{BC}=\mathrm{AB} \times \cot x^{\circ}=h \cot x$
$\mathrm{BD}=\mathrm{BC} \times \tan 45^{\circ}=h \cot x$
Height of the chimney $=(h \cot x-h) m$
43. (A) Let A's income be $=4 x$

Therefore, A's expenses, $=4 x-25$
Let B's income be $=5 x$
Therefore, B's expenses $=5 x-50$
The ratio of their expenses $=5: 6$ (given)
$\frac{4 x-25}{5 x-50}=\frac{5}{6}$
$24 x-150=25 x-250$
Therefore, $x=100$
A's income $\equiv 4 x=₹ 400$
B's income $\equiv 5 x=₹ 500$
44. (C) $\mathrm{A}+\mathrm{B}$
\qquad 3
B 2
C 2

Work done by A and B in 4 days $=3 \times 4=12$ units
Work done by B in next 2 days $=2 \times 2=4$ units
Remaining units of work $=24-12-4=8$ units
Time required by C to finish the job $=\frac{8}{2}=4$ days
45. (A) Area of a regular hexagon $=6 \times$ Area of an equilateral triangle
$=6 \times \frac{\sqrt{3}}{4} x^{2}=\frac{9}{2 \sqrt{3}} x^{2}$ square unit
46. (C)

$\mathrm{BC}=\mathrm{AB} \tan 30^{\circ}=8 \sqrt{3} \times \frac{1}{\sqrt{3}}=8 \mathrm{~m}$
$\mathrm{AC}=\frac{\mathrm{BC}}{\sin 30^{\circ}}=\frac{8 \times 2}{1}=16 \mathrm{~m}$
Height of post $=\mathrm{BC}+\mathrm{AC}=(8+16)=24 \mathrm{~m}$

K D Campus Pvt. Ltd

47. (A) ATQ,

Given that,
$\mathrm{OO}^{\prime}=12 \mathrm{~cm}$
$\mathrm{OD}=\mathrm{O}^{\prime} \mathrm{D}=6 \mathrm{~cm}$ and, $\mathrm{AB}=16$
$\therefore \quad \mathrm{AD}=\mathrm{BD}=8 \mathrm{~cm}$
Hence, Radius of circle $\left(\mathrm{OA}=\mathrm{O}^{\prime} \mathrm{A}\right)=\sqrt{8^{2}+6^{2}}=10 \mathrm{~cm}$
48. (B) ATQ,

$\mathrm{OE}=\sqrt{15^{2}-12^{2}}=9 \mathrm{~cm}$
Given that,
$\mathrm{EF}=21 \mathrm{~cm}$ and, $\mathrm{OF}=\mathrm{EF}-\mathrm{OE}=21-9=12 \mathrm{~cm}$
Hence, $\mathrm{FC}=\sqrt{15^{2}-12^{2}}=9$
$\therefore \quad$ Length of second chord $(\mathrm{CD})=2 \times \mathrm{FC}=2 \times 9=18 \mathrm{~cm}$
49. (D)

Let the speed of the boat is $x \mathrm{~km} / \mathrm{hr}$ in still water.
ATQ,
$\frac{21}{x+2.5}+\frac{21}{x-2.5}=\frac{230}{60}$
Now help from option put $x=11.5 \mathrm{~km} / \mathrm{hr}$, then both sides will be equal so, option (D) is correct.
Speed of boat in still water $=11.5 \mathrm{~km} / \mathrm{hr}$
50. (A)

Let the distance between two points A and B is $d \mathrm{~km}$. And the speed of the motorboat in still water is $x \mathrm{~km} / \mathrm{hr}$ and the speed of the stream is $y \mathrm{~km} / \mathrm{hr}$.
From question,
Condition (i);
$\frac{d}{(x+y)}+\frac{d}{(x-y)}=5$
$\left[\because 20 \%=\frac{1}{5}\right.$ original time $\Rightarrow 5$ New time $\left.\Rightarrow 1\right]$

Condition (ii); when speed of boat is doubled
$\frac{d}{(2 x+y)}+\frac{d}{(2 x-y)}=1$
Now, form equation (i) \& (ii) :
From (i): $d[x+y+x-y]=5\left(x^{2}-y^{2}\right)$
$d=\frac{5\left(x^{2}-y^{2}\right)}{2 x}$
From (ii) $d[2 x+y+2 x-y]=4 x^{2}-y^{2}$
$d=\frac{4 x^{2}-y^{2}}{4 x}$
Distance would be equal in both the cases:
$\frac{5\left(x^{2}-y^{2}\right)}{2 x}=\frac{4 x^{2}-y^{2}}{4 x}$
$10 x^{2}-10 y^{2}=4 x^{2}-y^{2}$
$6 x^{2}=9 y^{2}$
$\frac{x^{2}}{y^{2}}=\frac{9}{6} \Rightarrow \frac{x^{2}}{y^{2}}=\frac{3}{2}$
$\frac{x}{y}=\sqrt{\frac{3}{2}}$
51. (B) Age of mother - age of daughter $=31$ years

Age of father - age of son $=30$ years
Age of father - age of daughter $=34$ years
From (i) and (iii),
Age of father - age of mother $=3$ years
Age of mother $=30-3=27$ years
52. (B) ATQ,
$\left(1-\frac{5}{x}\right)^{5}=\frac{32}{211+32}=\frac{32}{243}=\left(\frac{2}{3}\right)^{5}$
$1-\frac{5}{x}=\frac{2}{3} \Rightarrow \frac{5}{x}=\frac{1}{3}$
$x=15$ litres
Initial amount of milk in the container $=15$ litres
53. (A) $5 x \times 12: 4 x \times 4+(4 x+1000) \times 8: 3 x \times 8+(3 x+2000) \times 4=15: 14: 11$
$\therefore \frac{5 x \times 12}{4 x \times 4+(4 x+1000) \times 8}=\frac{15}{14}$
$\frac{4 x \times 15}{16 x+32 x+8000}=\frac{15}{14}$
$56 x-48 x=8000$
$x=1000$
Investment of C in the beginning $=3 \times 1000=₹ 3000$
54. (A) Expenditure $=\frac{\text { Income }}{\left[\frac{\text { Profit } \%}{100}+1\right]}$

ATQ,
$\frac{I_{1}}{\frac{35}{100}+1}=\frac{I_{2}}{\frac{40}{100}+1}$
$\frac{I_{1}}{I_{2}}=\frac{135}{140}$
$\therefore \quad \mathrm{I}_{1}: \mathrm{I}_{2}=27: 28$
55. (D) Given,
(Income - Expenditure $=1.5$ lakh $)$
$\because \quad$ Profit $\%=\frac{\text { Income }-\operatorname{Exp}}{\operatorname{Exp}} \times 100=\frac{1.5}{\exp } \times \frac{100}{10}=40$
Expenditure $=\frac{15}{4}=3.75$ lakh
56. (C) Profit $\%=\left[\frac{\text { Income }}{\text { Exp. }}-1\right] \times 100$

Income $=\left[\frac{\text { Profit \% }}{100}+1\right]$ Exp.
ATQ,
$\operatorname{Exp} . \mathrm{A}\left[\frac{50}{100}-1\right] ; \operatorname{Exp} \cdot \mathrm{B}\left[\frac{30}{100}+1\right]$
$\frac{\text { Exp. } \mathrm{A}}{\text { Exp. } \mathrm{B}}=\frac{130}{150}$
$\operatorname{Exp} \mathrm{A}: \operatorname{Exp} \mathrm{B}=13: 15$
57. (A) $\frac{\text { Company A }}{\text { Company B }}=\frac{30}{45}$

Required ratio $=2: 3$
58. (A)

$$
\begin{array}{ll}
\left(\frac{3}{2}-1\right) \text { unit } \rightarrow 40, & \left(\frac{3}{2}-1\right) \text { unit } \rightarrow 20 \\
\frac{1}{2} \text { unit } \rightarrow 40, & \frac{1}{2} \text { unit } \rightarrow 20 \\
1 \text { unit } \rightarrow 80, & 1 \text { unit } \rightarrow 40
\end{array}
$$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$\because \quad$ In 40 minutes it is covering 30 kms .
$\therefore \quad \frac{40}{60}$ hours it is covering 30 kms .
$\therefore \quad 1$ hour $=\frac{30 \times 3}{2}=45 \mathrm{kms}$
Speed $=45 \mathrm{~km} / \mathrm{hr}$
Total distance $=60+30+($ distance covered in 40 minutes $)=60+30+30=120 \mathrm{~km}$
59. (B) Length of journey $=150 \mathrm{~km}$
$\frac{1}{3} \mathrm{rd}$ of journey $=150 \times \frac{1}{3}=50 \mathrm{~km}$
Remaining $\frac{2}{3}$ of journey $=150-50=100 \mathrm{~km}$
$\therefore \quad$ Average speed $=\frac{\text { Total Distance }}{\text { Total Time }}=\frac{150}{\frac{50}{30}+\frac{100}{45}}$
$=\frac{150}{\frac{5}{3}+\frac{20}{9}}=\frac{150}{35} \times 9=\frac{270}{7} \mathrm{kmph}=38 \frac{4}{7} \mathrm{kmph}$
60. (D) $x_{1}=2, x_{2}=3$ and $y_{1}=5, y_{2}=9, m=3, n=4$
$\mathrm{P}=\frac{\left(m x_{2}+n x_{1}\right)}{m+n}, \frac{\left(m y_{2}+n y_{1}\right)}{m+n}=\frac{[(3 \times 3+4 \times 2)]}{7}, \frac{[(3 \times 9+4 \times 5)]}{7}$
$=\frac{9+8}{7}, \frac{27+20}{7}=\left(\frac{17}{7}, \frac{47}{7}\right)$
61. (D) Let the number of ₹ 2 rupee coins is $6 x$ and number of $₹ 5$ coin is $11 x$.

If the number of ₹ 5 coins is halved, then he will have an amount of ₹ 395 .
ATQ,
$6 x \times 2+\left(\frac{11}{2} x\right) 5=395$
$39.5 x=395$
$x=10$
\therefore Number of ₹ 2 coins that Shweta has $=6 x=6 \times 10=60$
62. (C) A do the work for 3 days +3 days $=6$ days, B work for 3 days and C work for 3 days.
$\frac{6}{18}+\frac{3}{12}+\frac{3}{C}=1$
$\frac{3}{C}=1-\frac{1}{3}-\frac{1}{4}$
Three days work of $\mathrm{C}=\frac{3}{C}=\frac{12-4-3}{12}$
A: B : $C=\frac{6}{18}: \frac{3}{12}: \frac{5}{12}$
Ratio of share $=12: 9: 15=4: 3: 5$
Share of $C=\frac{5}{12} \times 24000=₹ 10,000$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
63. (B) Seats in executive class $=10 \%$ of $500=50$

Seats in chair car $=500-50=450$
Booking seats in total $=85 \%$ of $500=425$
Booking in executive class $=96 \%$ of $50=48$
Booking in chair class $=(425-48)=377$
\therefore Empty seats in chair class $=450-377=73$
64. (A) 12 men can complete the work in 36 days.
12×36 men can complete the work in 1 day.
Again,
18 women can complete the work in 60 days.
18×60 women can complete the work in 1 day.
Now, 12×36 men $=18 \times 60$ women
2 men = 5 women
Now, 8 men +20 women $=(4 \times 5+20)$ women $=40$ women 18 women complete the work in 60 days.

40 women's 20 days' work $=\frac{40 \times 20}{18 \times 60}=\frac{20}{27}$
Remaining work $=1-\frac{20}{27}=\frac{7}{27}$
18×60 women do 1 work in 1 day.
1 woman does $=\frac{1}{18 \times 60}$ Work in 1 day

1 woman does in 4 days $=\frac{1}{18 \times 60}=\frac{1}{18 \times 15}$ Work
$\frac{1}{18 \times 15}$ work is done in 4 days by 1 woman
$\therefore \quad \frac{7}{27}$ work is done in 4 days by $=\frac{18 \times 15 \times 7}{27}=70$ women
65. (D) We have $\frac{1}{x+1}+\frac{2}{y+2}+\frac{1009}{z+1009}=1$

$$
\begin{aligned}
& \frac{1}{x+1}-1+\frac{2}{y+2}-1+\frac{1009}{z+1009}-1=1-3 \\
& -\frac{x}{x+1}-\frac{y}{y+2}-\frac{z}{z+1009}=-2 \\
& \frac{x}{x+1}+\frac{y}{y+2}+\frac{z}{z+1009}=2
\end{aligned}
$$

66. (A) $\frac{20 x^{3}+12 x+3+5 x^{2}}{10 x^{3}+3+5 x^{2}+6 x}=\frac{4 x\left(5 x^{2}+3\right)+1\left(3+5 x^{2}\right)}{5 x^{2}(2 x+1)+3(2 x+1)}$

$$
=\frac{\left(5 x^{2}+3\right)(4 x+1)}{(2 x+1)\left(5 x^{2}+3\right)}=\frac{4 x+1}{2 x+1}=\frac{4 \times 9+1}{2 \times 9+1}=\frac{37}{19}=1 \frac{18}{19}
$$

67. (B) $\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{z}}=\frac{10}{3}$

$$
\left(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}\right)^{2}=\left(\frac{10}{3}\right)^{2}=\frac{x}{y}+2+\frac{y}{x}=\frac{100}{9}
$$

$(x+y)^{2}=\frac{100}{9} x y$
$x y=9$
$[\because x+y=10]$
68. (D) $\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}=(\sqrt{3})^{2}$
$x+\frac{1}{x}+2=3$
$x+\frac{1}{x}=1$
$\left(x+\frac{1}{x}\right)^{3}=x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)$
$1^{3}=x^{3}+\frac{1}{x^{3}}+3 \times 1$
$x^{3}+\frac{1}{x^{3}}=-2$
69. (C) $(u)^{3}+(-2 v)^{3}+(-3 w)^{3}=3 \times(-2)(-3) u v w$
$\therefore \quad u+(-2 v)+(-3 w)=0$
$u-2 v-3 w=0 \Rightarrow u-2 v=3 w$
70. (D)
71. (D) Number of workers in scale $\mathrm{V}=12 \%$ of $1500=180$

Number of working male in scale V $=12 \%$ of $800=96$
Number of working female in scale $V=180-96=84$
72. (B) In scale VII:

Total number of workers $=8 \%$ of $1500=120$
Number of male workers $=10 \%$ of $800=80$
Number of female workers $=120-80=40$
Required ratio $=80: 40=2: 1$
73. (A) Number of females in scale I $=330-192=138$

Number of females in scale VI $=210-72=138$
Number of females are same in scale I and VI.
74. (D) Average of working females in all scales $=\frac{138+81+157+62+84+138+40}{7}$

$$
=\frac{700}{7}=100
$$

$\therefore \quad$ Required number of scales $=4$ (II, IV, V, VII)
75. (B)

Area of $B D G F=$ Area of $(\triangle B D G)+$ Area of $(\triangle B G F)=\frac{1}{2}[$ Area of $(\triangle B G C)+$ Area of $(\triangle A B G)]$
$=\frac{1}{2}\left(\frac{1}{3} \times 120+\frac{1}{3} \times 120\right)=40 \mathrm{sq} . \mathrm{cm}$
76. (C)

$\angle \mathrm{AOD}+\angle \mathrm{BOD}=180^{\circ}$
$\angle \mathrm{AOD}=\frac{5}{12} \times 180^{\circ}=75^{\circ}$
$\angle \mathrm{BOD}=\frac{7}{12} \times 180^{\circ}=105^{\circ}$
Now, $\angle \mathrm{BOD}=\angle \mathrm{AOC}=105^{\circ}$
and $\angle \mathrm{AOD}=\angle \mathrm{BOC}=75^{\circ}$

[Angles of linear pair]

(Vertically opposite angles)
(Vertically opposite angles)
77. (A)

Now, $\mathrm{AB}|\mid \mathrm{EF}$ and EF$| \mid \mathrm{CD}$
$\angle \mathrm{XOF}=180^{\circ}-135^{\circ}=45^{\circ}$
And $\angle \mathrm{YOF}=40^{\circ} \quad$ (EF||CD, Alternate angles)
$\angle \mathrm{XOY}=\angle \mathrm{XOF}+\angle \mathrm{YOF}=45^{\circ}+40^{\circ}=85^{\circ}$
78. (A)

$\angle \mathrm{EAD}=\frac{\angle \mathrm{B}-\angle \mathrm{C}}{2}=\frac{60^{\circ}-40^{\circ}}{2}=10^{\circ}$
79. (C) Let the contribution of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S be ₹ p , ₹ r and ₹ s respectively.
$p+q+r+s=56$
Since contribution of Q, R and S together is 460% that of P , alone
$q+r+s=460 \%$ of p
$56-p=460 \%$ of p
$\mathrm{p}=₹ 10$ lakhs
P contributed ₹ 10 lakhs
Since contribution of P, R and S together is 366.66% that of Q's contribution
$p+r+s=366.66 \%$ of q
$56-q=366.66 \%$ of q
$q=₹ 12$ lakhs
Q contributed ₹ 12 lakhs
Since contribution of R is 40% that of P, Q and S together
$r=40 \%$ of $(p+q+s)$
$r=40 \%$ of $(56-r)$
$r=₹ 16$ lakh
R contributed ₹ 16 lakh
The contribution of $\mathrm{S}=56-(10+12+16)=₹ 18$ lakh
80. (A) Let C.P. $=₹ x$, then S.P. $=₹ 105 \times \frac{x}{100}$

Now C.P. $=\frac{95 x}{100}$ and gain $=10 \%$ of $\frac{95 x}{100}=\frac{95 x}{1000}$
S.P. $=\frac{95 x}{100}+\frac{95 x}{1000}=\frac{1045 x}{1000}$
$\frac{1045 x}{1000}-\frac{1050 x}{1000}=-2$
$x=₹ 400$
81. (B)

Total work to be done $=360$ unit
Shekher work for 56 day with the half efficiency then work done $=56 \times \frac{8}{2}=224$
Remaining work $=360-224=136$
This work is done by both Shekher and Sandeep together then time taken $=\frac{136}{8+9}=8$ Shekher and Sandeep work together for 8 days.
82. (D)

A

So ratio $=7: 9$
83. (D) $x^{2}+4 x+3=0$
$x^{2}+3 x+x+3=0$
$(x+3)(x+1)=0$
$x=-3,-1$
So, put $x=-1$ in $\frac{x^{3}}{x^{6}+27 x^{3}+27}=\frac{-1}{1+27(-1)^{3}+27}=\frac{-1}{1-27+27}=-1$

K D Campus Pvt. Ltd

84. (D) Let age of Heer be H.

Age of Ranjha be R.
$\mathrm{H} \times \mathrm{R}=240$
$(H+4)+(R-10)=25$
$\mathrm{H}+\mathrm{R}-6=25$
H $+\mathrm{R}=31$
$(\mathrm{H}+\mathrm{R})^{2}-(\mathrm{H}-\mathrm{R})^{2}=4 \mathrm{RH}$
$961-4 \times 240=(H-R)^{2}$
$961-960=(H-R)^{2}$
H-R = 1
Solving equation (i) and (ii),
$H+R=31$
$\mathrm{H}-\mathrm{R}=1$
$-\quad+\quad-$
$2 R=30$
$R=15$ years (Age of Ranjha)
85. (D)

with help of C they can do work in 3 days $=\frac{24}{A+B+C}=\frac{24}{4+3+x}=3$
$x=1$ (efficiency of C)
24 unit $=32,000$
1 unit $=\frac{32,000}{24}$
3 unit $=\frac{32,000}{24} \times 3=₹ 4000$
86. (B) $a \cos \theta+b \sin \theta=p$
$a \sin \theta-b \cos \theta=q$
on squaring and adding equation (i) and (ii),
$a^{2} \cos \theta+b^{2} \sin ^{2} \theta+2 a b \sin \theta \cos \theta+a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta-2 a b \sin \theta \cos \theta=p^{2}+q^{2}$
$a^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta+b^{2} \sin ^{2} \theta+b^{2} \cos \theta=p^{2}+q^{2}$
$a^{2}\left(\cos ^{2}+\sin ^{2} \theta\right)+b^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=p^{2}+q^{2}$
$a^{2}+b^{2}=p^{2}+q^{2}$
87. (B) $2 \operatorname{cosec}^{2} 30^{\circ}+x \sin ^{2} 60^{\circ}-\frac{3}{4} \tan ^{2} 30^{\circ}=10$
$2 \times(2)^{2}+x \times\left(\frac{\sqrt{3}}{2}\right)^{2}-\frac{3}{4} \times\left(\frac{1}{\sqrt{3}}\right)^{2}=10$
$8+\left(\frac{3 x}{4}\right)-\frac{3}{4} \times \frac{1}{3}=10$
$\frac{3 x}{4}=10+\frac{1}{4}-8$
$x=3$
88. (C) Let C.P of $1000 \mathrm{gms}=₹ 100$
C.P of $800 \mathrm{gms}=₹ 80$

800 gms used instead of 1000 gms
S.P of $800 \mathrm{gms}=₹ 100$ (Same as C.P of 1000 gm)
$\therefore \quad$ Profit $=₹ 20$
$\mathrm{P} \%=\frac{20}{80} \times 100=25 \%$
89. (A) Let the M.P $=x$
$\mathrm{S} . \mathrm{P}=x-16 \frac{2}{3} \%$ of $x\left(\right.$ Discount $\left.=16 \frac{2}{3} \%\right)=\frac{5 x}{6}$
$\mathrm{P} \%=10 \%$
C.P $=\frac{100}{100+\mathrm{P} \%} \times \mathrm{S} . \mathrm{P}=\frac{100}{100+10} \times \frac{5 x}{6}=\frac{25 x}{33}$

If C.P $=\frac{25 x}{33}$ then, M.P $=x$
If C.P $=550$, then M.P $=\frac{33 x}{25 x} \times 550=₹ 726$
90. (B) Let C.P of 100 m cloth $=₹ 100$

Because of faulity scale, C.P of 110 m cloth $=₹ 100$
C.P of $90 \mathrm{~m}=\frac{100}{110} \times 90=₹ \frac{900}{11}$

Discount on purchased price $=10 \%$
S.P of 90 m cloth $=\frac{90}{100} \times 100=₹ 90$

Profit $=$ S.P - C.P $=90-\frac{900}{11}=₹ \frac{90}{11}$
Profit $\%=\frac{\frac{90}{\frac{11}{\frac{900}{11}}} \times 100=10 \% ~}{x}$
91. (A) Let radius of circular garden is R.

Circumference of garden $2 \pi \mathrm{R}=1012 \mathrm{~m}^{2}$
$\mathrm{R}=\frac{1012}{2 \pi} \mathrm{~m}=\frac{1012 \times 7}{2 \times 22} \mathrm{~m}=161 \mathrm{~m}$
Outer radius of circular path $=161+3.5=164.5 \mathrm{~m}$
Area of path $=\pi(164.5)^{2}-\pi(161)^{2}=\pi \times 325.5 \times 3.5=3580.50 \mathrm{~m}^{2}$
Cost of gravelling $=3580.5 \times 0.32=₹ 1145.76$
92. (A) Required number of poles $=\frac{\text { Perimeter }}{\text { Distance between any two adjacent poles }}=\frac{84}{1.5}=50$
93. (C) Let α and β be the two roots of the equation.

$$
\begin{aligned}
& \alpha+\beta=-p, \quad \alpha \beta=q \\
& \alpha+\beta=\alpha^{2}+\beta^{2} \text { [given] } \\
& -p=(\alpha+\beta)^{2}-2 \alpha \beta \\
& -p=p^{2}-2 q \\
& p^{2}+p=2 q
\end{aligned}
$$

K D Campus Pvt. Ltd

94. (A) Let the two numbers be a and b .
$a \times b=24(a-b) \ldots \ldots$ (i)
$a+b=14$
$\mathrm{b}=14-a \ldots \ldots \ldots \ldots .$. (iii)
$a \times(14-a)=24(a-14+a)$
$14 a-a^{2}=48 a-336$
$a^{2}-34 a-336=0$
$a^{2}+42 a-8 a-336=0$
$a(a+42)-8(a+42)=0$
$(a+42)(a-8)=0$

$$
\left.\begin{array}{rl|r}
a+42 & =0 \\
a & =-42 & a-8
\end{array}\right)=0
$$

It can't be consider \quad So, large number is 8.
95. (C)

Distance travelled by $\mathrm{A}=\mathrm{BD}$
$\sqrt{l^{2}+b^{2}}=\frac{52 \times 15}{60}=13 \mathrm{~m}$
Distance travelled by $B=B C+C D$
$l+b=\frac{68 \times 15}{60}=17 \mathrm{~m}$
$(l+\mathrm{b})^{2}=l^{2}+b^{2}+2 l b$
$17^{2}=13^{2}+2 l b$
$2 l b=289-169=120$
$(l-b)^{2}=l^{2}+b^{2}-2 l b$
$(l-b)^{2}=169-120=49$
$l-\mathrm{b}=\sqrt{49}=7 \mathrm{~cm}$
$l+\mathrm{b}=17$
$\frac{l-\mathrm{b}=7}{l=12 \mathrm{~cm}}$
$b=17-12=5 \mathrm{~cm}$
Area of field $=12 \times 5=60 \mathrm{~cm}^{2}$
96. (B) Ratio of B and current $=5: 2: 2$

Ratio of current and $B_{2}=3: 3: 4$
Ratio of $B_{1}:$ current : $B_{2}=15: 6: 8$
Ratio of $B_{1}: B_{2}=15: 8$
97. (A) Area of circle $=\pi \mathrm{r}^{2}=\frac{22}{7} \times 35 \times 35=3850 \mathrm{Cm}^{2}$

Length of $\overparen{\mathrm{AB}} \Rightarrow 36=\frac{\theta}{360} 2 \pi r$
Area of $\overparen{\mathrm{AB}}=\frac{\theta}{36} \times 2 \pi r \times \frac{r}{2}$
$=36 \times \frac{35}{2}=630 \mathrm{~cm}^{2}$
Area of shaded part $=3850-630=3220 \mathrm{~cm}^{2}$
98. (D) $\sqrt{\frac{x-a}{x-b}}+\frac{a}{x}=\sqrt{\frac{x-b}{x-a}}+\frac{b}{x}$

$$
\begin{aligned}
& \left(\sqrt{\frac{x-a}{x-b}}-\sqrt{\frac{x-b}{x-a}}\right)^{2}=\left(\frac{b}{x}-\frac{a}{x}\right)^{2} \\
& \frac{x-a}{x-b}+\frac{x-b}{x-a}-2 \sqrt{\left(\frac{x-a}{x-b}\right)\left(\frac{x-b}{x-a}\right)}=\left(\frac{b-a}{x}\right)^{2} \\
& \frac{(x-a)^{2}+(x-b)^{2}-2(x-b)(x-a)}{(x-b)(x-a)}=\left(\frac{a-b}{x}\right)^{2} \\
& \frac{(x-a-x+b)^{2}}{x^{2}-a x-b x+a b}=\left(\frac{a-b}{x}\right)^{2} \\
& \frac{(b-a)^{2}}{x^{2}-a x-b x+a b}=\frac{(b-a)^{2}}{x^{2}} \\
& x^{2}=x^{2}-a x-b x+a b \\
& a b=x(a+b) \\
& x=\frac{a b}{a+b}
\end{aligned}
$$

QUANTITATIVE ABILITY - 69 (ANSWER KEY)

1. (C)
2. (A)
3. (A)
4. (D)
5. (C)
6. (A)
7. (D)
8. (A)
9. (D)
10. (A)
11. (C)
12. (C)
13. (D)
14. (C)
15. (D)
16. (A)
17. (C)
18. (D)
19. (C)
20. (D)
21. (B)
22. (D)
23. (A)
24. (A)
25. (B)
26. (D)
27. (A)
28. (D)
29. (B)
30. (A)
31. (D)
32. (C)
33. (B)
34. (B)
35. (B)
36. (C)
37. (B)
38. (B)
39. (C)
40. (D)
41. (A)
42. (B)
43. (A)
44. (C)
45. (A)
46. (C)
47. (A)
48. (B)
49. (D)
50. (A)
51. (B)
52. (B)
53. (A)
54. (A)
55. (D)
56. (C)
57. (A)
58. (A)
59. (B)
60. (D)
61. (D)
62. (C)
63. (B)
64. (A)
65. (D)
66. (A)
67. (B)
68. (D)
69. (C)
70. (D)
71. (D)
72. (B)
73. (A)
74. (D)
75. (B)
76. (C)
77. (A)
78. (A)
79. (C)
80. (A)
81. (B)
82. (D)
83. (D)
84. (D)
85. (D)
86. (B)
87. (B)
88. (C)
89. (A)
90. (B)
91. (A)
92. (A)
93. (C)
94. (A)
95. (C)
96. (B)
97. (A)
98. (D)
99. (B)
100. (C)
