SSC MOCK TEST - 252 (SOLUTION)

1. (B) As,
$\mathrm{R} \xrightarrow{+1} \mathrm{~S}$
$\mathrm{A} \xrightarrow{-3} \mathrm{X}$
$\mathrm{T} \xrightarrow{+5} \mathrm{Y}$
$\mathrm{E} \xrightarrow{-7} \mathrm{X}$
Similarly,
$\mathrm{M} \xrightarrow{+1} \mathrm{~N}$
$\mathrm{I} \xrightarrow{-3} \mathrm{~F}$
$\mathrm{N} \xrightarrow{+5} \mathrm{~S}$
$\mathrm{K} \xrightarrow{-7} \mathrm{D}$
2. (C) As,
$(6)^{2}+(5)^{2}=36+25=61$
Similarly,
$(7)^{2}+(6)^{2}=49+36=85$
3. (A) Ashok tree is the state tree of Uttar Pradesh, while Neam is the state tree of Anadra Pradesh.
4. (D) Except option (D), sum of all the numbers are even number.
5. (C) Except option (C), others have four legs.
6. (C) Except option (C), all others numbers are square root number.
7. (B) 3. Chapter \rightarrow 4. Characteristic $\rightarrow 2$. Chemical \rightarrow 5. Chemistry \rightarrow 1. Chicken
8. (C) Chapter
9. (D) $6 \times 2-2=10$
$10 \times 2+4=24$
$24 \times 2-6=42$
$42 \times 2+8=92$
$92 \times 2-10=174$
$174 \times 2+12=\mathbf{3 6 0}$
10. (C)

11. (D) From figure I, II and III

Adjacent Number of 3 is $5,4,6,1$
$\therefore 2$ will be opposite face of 3 .
12. (D) As,
$(6)^{3}-(4)^{3}=216-64=152$
Similarly,
$(6)^{3}-(2)^{3}=216-8=208$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
13. (B) From Ist Row,
$100+(4)^{3}=100+64=164$
From II ${ }^{\text {nd }}$ Row,
$25+(6)^{3}=25+216=241$

From III ${ }^{\text {rd }}$ Row,

$36+(3)^{3}=36+27=63$
14. (C) $132 \times 11+8-3 \div 12=-16$

From option C,
$132 \div 11+8-3 \times 12=-16$

$$
\begin{aligned}
& \frac{132}{11}+8-36=-16 \\
& 12+8-36=-16 \\
& -16=-16
\end{aligned}
$$

15. (C) As,

$$
\begin{aligned}
& \mathrm{T} \xrightarrow{+2} \mathrm{~V} \\
& \mathrm{E} \xrightarrow{-2} \mathrm{C} \\
& \mathrm{~N} \xrightarrow[+3]{+3} \mathrm{Q} \\
& \mathrm{~S} \xrightarrow[-3]{ } \mathrm{P} \\
& \mathrm{I} \xrightarrow[+4]{+4} \mathrm{M} \\
& \mathrm{O} \xrightarrow[+]{-4} \mathrm{~K} \\
& \mathrm{~N} \xrightarrow[+5]{+5} \mathrm{~S}
\end{aligned}
$$

Similarly,
$\mathrm{C} \xrightarrow{+2} \mathrm{E}$
$\mathrm{E} \xrightarrow{-2} \mathrm{C}$
$\mathrm{N} \xrightarrow{+3} \mathrm{Q}$
$\mathrm{T} \xrightarrow{-3} \mathrm{Q}$
$\mathrm{U} \xrightarrow{+4} \mathrm{Y}$
$\mathrm{R} \xrightarrow{-4} \mathrm{~N}$
$\mathrm{Y} \xrightarrow{+5} \mathrm{D}$
16. (C)

I. True
II. Doubt
III. False
IV. Doubt
Hence, only conclusion I and either conclusion II or IV follow.

$K D$ Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
17. (C) QRSQQR
18. (B)

Hence, Rahul is cousin of that man in the photograph.
19. (C)

Ekta
Hence, Ekta is facing to South direction.
20. (C) Yesterday Today

\downarrow	\downarrow
Monday	Tuesday

Today is Tuesday. So, after 7 days, it will be Tuesday and after 3 days of Tuesday will be Friday.
21.
(D)
$5 \xrightarrow{\times 2} 10$;
$23 \xrightarrow{\times 4} 92$;
$31 \xrightarrow{\times 6} \mathbf{1 8 6}$
22. (D)
23. (A)
24. (C) The figure is given below :

Simple triangles are IJO, BCJ, CDK, KQL, MLQ, GFM, GHN and NIO i.e. 8 in number.
Triangles composed of two components are ABO, AHO, NIJ, IGP, ICP, DEQ, FEQ, KLM, LCP and LGP i.e. 10 in number.
Triangles composed of four components are HAB, DEF, LGI, GIC, ICL and GLC i.e. 6 in number.
Total number of triangles in the figure $=8+10+6=24$
25. (C) $68,97,33,40$
26. (D) Bahadur Shah II (1837-1862 AD), the last Mughal King, who was confined by the British to the Red Fort. During the revolt of 1857, he was proclaimed the Emperor by the rebellions. He was deported to Rangoon following the 1857 rebellion.
28. (C) Celestial Bodies that have their own heat and which emit light in large amounts is called as stars. They have their own heat and light, which they emit in large amounts. Planets are also celestial bodies, but they do not have their own heat and light. They are lit by the light of stars.
29. (B) Selvas: the Equatorial rainforest of Amazon Basin Llanos: the Savanna grasslands in the north-west South America Campos: the Savanna grasslands in the east South America Pampas: The temperate grasslands of Argentina
30. (D) Hyderabad is known as the 'City of Pearls' on account of its role in the pearl trade.
31. (C) Water has maximum density at $4^{\circ} \mathrm{C}$. So at this temperature, it sinks down to bottom and stays there. If it cools further, it will become less dense and move up. So while the upper layers can cool enough to form ice, the bottom layers remain as water at $4^{\circ} \mathrm{C}$.
32. (B) The scheme has been launched as a part of "Atmanirbhar Bharat Abhiyan". It is claimed to generate a total investment of ₹ 35,000 crore and generate ₹ 9 lakh skilled and semiskilled employments. The scheme would benefit ₹ 8 lakh units through access to information, training and better exposure.
34. (D) The persons with ' O ' blood group do not have antigens in the red corpuscles. So that blood will not cause agglutination of corpuscles if mixed with any type of blood. So group 'O' persons are called universal donors.
36. (A) Data (information) is stored in computers as Files. At the core of the computer is the central processing unit or CPU, the source of control that runs all programs and instructions.
37. (D) Kathakali is a Hindu performance art in the Malayalam-speaking southwestern region of Kerala.
38. (A) The Egyptians believed that there was a power behind every phenomenon of nature, but the Sun was their most important God, worshipped under different names as the creator of all things. Other Egyptian gods were the king of the other world, god of the floods, and the moon god. There were also local gods, sometimes represented by symbols, such as the hawk, crocodile jackal and cow. These were probably clan totems in some distant past.
39. (C) Among the groups of stars that enable us to find our direction on the earth's surface are the Great Bear in the northern skies (northern hemisphere) and Southern Cross in the southern hemisphere.
40. (A) The Union Government has recently launched Kisan Credit Card campaign to help dairy farmers. The Government will provide Kisan Credit Card (KCC) to about 1.5 crore dairy farmers who belong to Milk Unions and Milk producing Companies.
43. (C) Chronometer is an accurate clock which keeps accurate time at all temperatures. It is used in navigation at sea.
45. (A) Parenchyma is a simple permanent plant tissue that contains non-specialized cells with thin cell walls. These cells are loosely packed. Parenchyma helps in storing food and providing support to plants. The parenchyma of stem and roots helps in the storage of water and nutrients.
46. (D) The Union Finance Minister hiked the maximum insurance provided for bank deposits to ₹ 5 Lakh, per depositor, in her recent Union Budget 20-21. ₹ 1 lakh limit is now increased to 5 lakhs, per depositor.
47. (D) Vitamin K is an essential vitamin that is needed by the body for blood clotting, bone building, and other important processes.
48. (B) Water has maximum density at $4^{\circ} \mathrm{C}$ i.e. minimum volume for a given mass.
50. (B) B. R. Ambedkar belonged to the then Bombay Presidency.

$K D$

 Campus

 Campus

 K D Campus Pvt. Ltd

 K D Campus Pvt. Ltd}

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
51. (D) Let the number male of be x and the number of female be y. ATQ,
$\frac{40.8 x+21 y}{x+y}=32$
$40.8 x+21 y=32 x+32 y$
$8.8 x=11 y$
$\frac{x}{y}=\frac{11}{8.8}=\frac{5}{4}$

Required Percentage $=\frac{5}{9} \times 100=\frac{500}{9} \%=55 \frac{5}{9} \%$
52.
$\frac{0.7 \times 1.29 \times 0.13}{(0.35)^{3}+(0.43)^{3}-8(0.39)^{3}}=\frac{2 \times 0.35 \times 3 \times 0.43 \times \frac{0.39}{3}}{(0.35)^{3}+(0.43)^{3}-(0.78)^{3}}$
$=\frac{0.35 \times 0.43 \times 0.78}{(0.35)^{3}+(0.43)^{3}-(0.78)^{3}}$
Now, $0.35+0.43+(-0.78)=0$
$(0.35)^{3}+(0.43)^{3}-(0.78)^{3}=3 \times(0.35) \times(0.43) \times(0.78)$

So, we have
$\frac{0.35 \times 0.43 \times 0.78}{-3 \times 0.35 \times 0.43 \times 0.78}=-\frac{1}{3}$
53. (C) 3840, 5720, 7788

So, the greatest number, d can be 188
Now,

$r=80$

$$
r=80
$$

$$
r=80
$$

In all three cases r is same.
So, $(\mathrm{d}+\mathrm{r})=(188+80)=268$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
54. (A)

Let $\mathrm{PA}=\mathrm{PC}=\mathrm{x}$ (tangent from point P)
$\mathrm{QA}=\mathrm{QB}=\mathrm{y}$ (tangent from point Q)
$R B=R C=Z$ (tangent from point R)
Now,
$x+y+y+z+z+x=16+12+8$
$2(x+y+z)=36$
$x+y+z=18$
$x+y=16$
$y+z=8$
$x+z=12$
Solving equation (i) and (iii),

$$
\begin{gathered}
x+y+z=18 \\
-y+z=\underline{8} \\
\hline x=10 \\
\hline
\end{gathered}
$$

Solving equation (i) and (iv),
$x+y+z=18$
$\frac{-x+\quad z^{-}=12}{y=6}$
$\therefore \quad P C=x=10 \mathrm{~cm}$
$Q B=y=6 \mathrm{~cm}$
$\mathrm{PC}+\mathrm{QB}=(10+6) \mathrm{cm}=16 \mathrm{~cm}$
55.

$$
\text { (B) } \begin{aligned}
& \frac{19 x}{3 x^{2}+7 x+3}=1 \\
& 19 x=3 x^{2}+7 x+3 \\
& 19 x=3 x\left(x+\frac{1}{x}\right)+7 x \\
& 3 x\left(x+\frac{1}{x}\right)=12 x
\end{aligned}
$$

$x+\frac{1}{x}=4$
$x^{3}+\frac{1}{x^{3}}=(4)^{3}-3(4)=52$
$x^{2}+\frac{1}{x^{2}}=(4)^{2}-2=14$
$\therefore \mathrm{x}^{3}+\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{x}^{3}}+\mathrm{x}^{2}=52+14=66$
56. (C)

In $\triangle A B D$,
$\angle \mathrm{BAD}=180^{\circ}-90^{\circ}-64^{\circ}=26^{\circ}$
$\angle \mathrm{BAE}=26^{\circ}+18^{\circ}=44^{\circ}$
$\angle \mathrm{BAE}=\angle \mathrm{EAC}=44^{\circ}$ (AE is the angle bisector)
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{ACB}=180^{\circ}-88^{\circ}-64^{\circ}=28^{\circ}$
57. (B) Height $=\frac{1}{6} \times 2 \mathrm{r}=\frac{\mathrm{r}}{3}$

Volume of cylinder = Volume of sphere
$\pi r^{2} h=\frac{4}{3} \pi r^{3}$
$\pi r^{2} \times \frac{r}{3}=\frac{4}{3} \pi \times 2 \times 2 \times 2$
$r^{3}=32$
$r=2 \sqrt{4}$
$d=4 \sqrt{4}$
Curved surface area of cylinder $=2 \pi r h$
$=2 \times \pi \times 2 \sqrt{4} \times \frac{4 \sqrt{4}}{6}=\frac{32 \pi}{3}$
58. (A) Let total sum invested be 200x.

Then,
$200 x$ of $\frac{2}{4}=200 x \times \frac{2}{4}=100 x$
$200 x$ of $\frac{1}{5}=200 x \times \frac{1}{5}=40 x$
Remaining Amount $=200 x-(100 x+40 x)=60 x$
Then,
$\frac{100 \mathrm{x} \times 4 \times 3}{100 \times 2}+\frac{40 \mathrm{x} \times 3 \times 10}{100 \times 3}+\frac{60 \mathrm{x} \times 5 \times 6}{100 \times 2}=646$
$6 x+4 x+9 x=646$
$19 x=646$
$\mathrm{x}=\frac{646}{19}=34$
$\mathrm{x}=34$
\therefore Total sum $=200 \mathrm{x}=200 \times 34=₹ 6800$

K>

 Campus

 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
59. (D) Let be SP of ₹ 100.

Profit $=20 \%$ of $100=₹ 20$
CP = SP - Profit = ₹ $100-₹ 20=₹ 80$
Profit $\%=\frac{\text { Profit } \times 100}{\mathrm{CP}}=\frac{20 \times 100}{80}=25 \%$

Short-trick:

$20 \%=\frac{20}{100}=\frac{1}{5} \rightarrow$ Profit
C. $\mathrm{P}=5-1=4$

Profit $\%=\left(\frac{1}{4} \times 100\right)=25 \%$
60. (C) $95+93+91+89+$ \qquad $+1$
After 1, next term will be $-1,-3,-5$ and so on. So, it will decrease the sum.
$1+3+5+$ \qquad $+89+91+93+95$
It is sum of odd number up to 95 .
Sum of odd numbers $=n^{2}$
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \times \mathrm{d}$
$95=1+(n-1) \times 2$
$\frac{94}{2}=n-1$
$\mathrm{n}=48$
Sum of first 48 odd numbers $=48^{2}=2304$

Alternate method:

$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \times \mathrm{d}]$
$=\frac{48}{2}[2 \times 1+(48-1) \times 2]=24 \times 96=2304$
61. (C) Let the maximum marks of each subject be 100 .

Total maximum marks of 4 subjects $=(4 \times 100)=400$
The marks obtained by the student $=70 \%$ of $400=280$
Marks obtained by student in $I^{\text {st }}$ subject $=280 \times \frac{5}{5+4+3+2}=100$
Marks obtained by student in $2^{\text {nd }}$ subject $=280 \times \frac{4}{5+4+3+2}=80$

Marks obtained by student in $3^{\text {rd }}$ subject $=280 \times \frac{3}{5+4+3+2}=60$

Marks obtained by student in $4^{\text {th }}$ subject $=280 \times \frac{2}{5+4+3+2}=40$
Passing marks of each subject $=42 \%$ of $100=42$
Hence, he pass the examination in 3 subjects.
62. (B) Let the number be x, y and z respectively.

ATQ,
$\frac{x+y}{2}+z=186$
$\frac{y+z}{2}+x=158$
$\frac{x+z}{2}+y=160$
Adding equation (i), (ii) and (iii),
$\frac{x+z}{2}+z+\frac{y+z}{2}+x+\frac{z+x}{2}+y=186+158+160$
$2(\mathrm{x}+\mathrm{y}+\mathrm{z})=504$
$x+y+z=252$
Average of x, y and $z=\frac{x+y+z}{3}=\frac{252}{3}=84$
63. (C) Speed of train $=45 \mathrm{~km} / \mathrm{h}$
$=45 \times \frac{5}{18}=\frac{25}{2} \mathrm{~m} / \mathrm{s}$
Total distance travelled by train $=(212+188)=400 \mathrm{~m}$
Time $=\frac{\text { Distance }}{\text { Speed }}=\frac{400 \times 2}{25}=32$ seconds
64. (C) Let the sum be ₹ x.
S.I $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{\mathrm{x} \times 4 \times 1}{100}=₹ \frac{\mathrm{x}}{25}$

When interest is compounded half yearly
Rate $=6 \%$ p.a $=\frac{6}{2} \%$ half yearly $=3 \%$ half yearly
Time $=1$ year $=(1 \times 2)$ half year $=2$ half year
C.I $=P\left[\left(1+\frac{R}{100}\right)^{t}-1\right]$
$=x\left[\left(1+\frac{3}{100}\right)^{2}-1\right]$
$=x\left[\frac{10609}{10000}-1\right]=₹ \frac{609 x}{10000}$
ATQ,
$\frac{609 x}{10000}-\frac{x}{25}=104.50$
$\frac{209 x}{10000}=104.50$
$x=\frac{10450 \times 100}{209}=₹ 5000$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

Short trick:

When interest is compounded half yealry, then effective rate of interest
$=\left(\frac{6}{2}+\frac{6}{2}-\frac{\frac{6}{2} \times \frac{6}{2}}{100}\right) \%=6.09 \%$
Difference of rate of interest $=(6.09-4) \%=2.09 \%$
$\because \quad 2.09 \%=₹ 104.50$
$\therefore \quad 100 \%=\frac{104.50}{2.09} \times 100=₹ 5000$
65. (C) Days Total work Efficiency

12.5 days work of Ram $=(12.5 \times 4)=50$

Remaining work $=120-50=70$
Combined efficiency of Ram and Shyam $=(4+3)=7$
Time taken by Ram and Shyam to complete 70 works $=\frac{70}{7}=10$ days
Hence, Shyam worked for 10 days.
66. (B) Let the x liters of water should be added.

In 30 litres mixture,
Quantity of milk $=30 \times \frac{7}{7+3}=21$ litres
Quantity of water $=(30-21)=9$ litres
ATQ,
$\frac{21}{9+x}=\frac{3}{7}$
$147=27+3 x$
$3 \mathrm{x}=120$
$\therefore \quad \mathrm{x}=40$ litres
Short trick:
$\left.\begin{array}{lclllll} & \text { Milk } & : & \text { Water } & \text { Milk } & : & \text { Water } \\ \text { Firstly } & (7 & : & 3) \times 3 & 21 & : & 9 \\ \text { After mixing } & (3 & : & 7) \times 7 & 21 & : & 49\end{array}\right)+40$
$(21+9)$ units $=30$ litres
40 units $=\left(\frac{30}{3} \times 40\right)$ litres $=40$ litres
67. (A) We know that,
$a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$ or $a^{3}+b^{3}+c^{3}-3 a b c=0$
$x+y+z=3.4125-5.6236+2.2111=5.6236-5.6236=0$
Then,
$\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}=0$
68. (B) $\frac{2 \sin \mathrm{~A}(1+\sin \mathrm{A})}{1+\sin \mathrm{A}+\cos \mathrm{A}}$
$=\frac{2 \sin \mathrm{~A}(1+\sin \mathrm{A})(1+\sin \mathrm{A}-\cos \mathrm{A})}{(1+\sin \mathrm{A}+\cos \mathrm{A})(1+\sin \mathrm{A}-\cos \mathrm{A})}$
$=\frac{2 \sin A(1+\sin A)(1+\sin A-\cos A)}{(1+\sin A)^{2}-(\cos A)^{2}}$
$\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]$
$=\frac{2 \sin \mathrm{~A}(1+\sin \mathrm{A})(1+\sin \mathrm{A}-\cos \mathrm{A})}{(1+\sin \mathrm{A})^{2}-\left(1-\sin ^{2} \mathrm{~A}\right)}$
$=\frac{2 \sin A(1+\sin A)(1+\sin A-\cos A)}{(1+\sin A)(1+\sin A-1+\sin A)}$
$=\frac{2 \sin \mathrm{~A}(1+\sin \mathrm{A})}{2 \sin \mathrm{~A}(1+\sin \mathrm{A})} \times(1+\sin \mathrm{A}-\cos \mathrm{A})$
$=(1+\sin A-\cos A)$
69. (A) $5 \sin \theta-4 \cos \theta=0$
$5 \sin \theta=4 \cos \theta$
$\frac{5 \sin \theta-2 \cos \theta}{5 \sin \theta+3 \cos \theta}$
Putting the value of $5 \sin \theta$,
$\frac{4 \cos \theta-2 \cos \theta}{4 \cos \theta+3 \cos \theta}=\frac{2 \cos \theta}{7 \cos \theta}=\frac{2}{7}$
70. (C) Let the side of cube be $x \mathrm{~cm}$.

Volume of cube $=(\text { side })^{3}=x^{3} \mathrm{~cm}^{3}$
Let the cube is cut along its height So, the sides of cuboid is $x \mathrm{~cm}, \mathrm{x} \mathrm{cm}$ and $\frac{x}{3} \mathrm{~cm}$.
Total surface are of cuboid $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$
$=2\left(\mathrm{x} \times \mathrm{x}+\mathrm{x} \times \frac{\mathrm{x}}{3}+\mathrm{x} \times \frac{\mathrm{x}}{3}\right) \mathrm{cm}^{2}$
$=2\left(\mathrm{x}^{2}+\frac{2 \mathrm{x}^{2}}{3}\right) \mathrm{cm}^{2}=\frac{10 \mathrm{x}^{2}}{3} \mathrm{~cm}^{2}$
Total surface area of cube $=6 \times(\text { side })^{2}=\left(6 \times x^{2}\right) \mathrm{cm}^{2}$
Required ratio $=6 x^{2}:\left(2 \times \frac{10 x^{2}}{3}\right)=18 x^{2}: 20 x^{2}=9: 10$
71. (D)

2	2400
2	1200
2	600
2	300
2	150
3	75
5	25
	5

$1200=2^{5} \times 3^{1} \times 5^{2}$
Number of factors of $2400=(5+1)(1+1)(2+1)=6 \times 2 \times 3=36$
72. (B) Required $\%=\left(\frac{67-60.6}{60.6} \times 100\right)=\frac{6.4}{60.6} \times 100$
$=10.561 \% \approx 11 \%$
73. (B) Number of students in class III $=601$
$\because \quad 120.2^{\circ}=601$
$\therefore \quad 1^{\circ}=\frac{601}{120.2^{\circ}}=5$
Number of students in class $I=\left(82.2^{\circ} \times 5\right)=411$
Number of students in class IV $=\left(67^{\circ} \times 5\right)=335$
Number of students in class $\mathrm{V}=30^{\circ} \times 5=150$
Required average $=\left(\frac{411+335+150}{3}\right)=\frac{896}{3}=298 \frac{2}{3}$
74. (B) Angle represents the number of boys in class II $=60.6^{\circ} \times \frac{2}{2+3}=12.12^{\circ} \times 2=24.24^{\circ}$

Angle represents the number of boys in class $\mathrm{V}=30^{\circ} \times \frac{2}{2+1}=20^{\circ}$
Angle represents the total number of students in class $\mathrm{I}=82.2^{\circ}$
Required ratio $=(24.24+20): 82.2^{\circ}$
$=\left(44.24: 82.2^{\circ}\right)=4424: 8220$
$=1106: 2055$
75. (C) Number of students in class II and III $=1800 \times \frac{60.6^{\circ}+120.2^{\circ}}{360^{\circ}}=\left(5 \times 180.8^{\circ}\right)=904$

Number of students in class $I=1800 \times \frac{82.2^{\circ}}{360}=411$
$x=904-411=493$
Hence, x lies between 400 and 500 .

MEANINGS IN ALPHABETICAL ORDER

Altruistic

Anaerobic
Blatant
Commensurate
confined
Constituent
Desultory
Exemplary
Fallacy
Fiasco
Grievance
Idiotic
Immaculate
Innocuous
Magnitude
Nuisance
Optometrist

	th
Parity	co
Parsimony	ex
	or
Perennial	la
Venerable	in
Visceral	of

showing a disinterested and selfless concern for the well-being of others
an absence of free oxygen
(of bad behavior) done openly and unashamedly
corresponding in size or degree; in proportion limited to a certain extent
a component part of something
lacking a plan, purpose, or enthusiasm
serving as a desirable model
a false belief;
a complete failure
a complaint;
very stupid;
perfectly clean, neat, or tidy
not harmful or offensive;
the great size or extent of something
anything that annoys or is unpleasant;
A person who has a profession of examining the eyes for visual defects and prescribing corrective lenses
the state or condition of being equal
extreme unwillingness to spend money or use resources
lasting or existing for a long or apparently
infinite time
accorded a great deal of respect
of or relating to the viscera

पा फक्र री

अना क से य
मु ख र
(किसि वस्तु) के अनु स्म
से मित
हा ट क
असं गत
अनु करप १ य
\% L T ति
अस लता
पि का य
मू ख` ता पू प
बे दा ग
हा fि न करने वा ला
परिमा ण , मा ラT T
विषन, ख लल
आँख ${ }^{\prime}{ }^{\prime}$ के लिएलं सबना ने

मित० ययिता

चिरस थ T य

आ दरप १ य
आं तसं बं धि

SSC MOCK TEST - 252 (ANSWER KEY)

1. (B)	26. (D)
2. (C)	27. (C)
3. (A)	28. (C)
4. (D)	29. (B)
5. (C)	30. (D)
6. (C)	31. (C)
7. (B)	32. (B)
8. (C)	33. (B)
9. (D)	34. (D)
10. (C)	35. (B)
11. (D)	36. (A)
12. (D)	37. (D)
13. (B)	38. (A)
14. (C)	39. (C)
15. (C)	40. (A)
16. (C)	41. (B)
17. (C)	42. (B)
18. (B)	43. (C)
19. (C)	44. (A)
20. (C)	45. (A)
21. (D)	46. (D)
22. (D)	47. (D)
23. (A)	48. (B)
24. (C)	49. (D)
25. (C)	50. (B)

51. (D)
52. (A)
53. (C)
54. (D)
55. (B)
56. (C)
57. (A)
58. (C)
59. (D)
60. (D)
61. (D)
62. (D)
63. (D)
64. (C)
65. (A)
66. (D)
67. (D)
68. (B)
69. (D)
70. (C)
71. (C)
72. (C)
73. (B)
74. (A)
75. (A)
76. (B)
77. (A) Replace 'is living' by 'has been living', as this is an example of Present Continuous tense since the time is given in the sentence.
78. (C) Change 'did' into 'had done'
79. (D) The correct spelling of 'Comensurate' is 'Commensurate'.
80. (D) The correct spelling of 'Grievence' is 'Grievance'.
