QUANTITATIVE ABILITY - 73 (SOLUTION)

1. (B) As the average weight of A decreased after the student left, his weight must be more than the average weight of A. As the average weight of B decreased after the student joined, his weight must be less than the average weight of B . So, his weight must be between 40 kg and 60 kg .
2. (D) Distance covered by P, $\mathrm{t} h$ after starting from $\mathrm{X}=\mathrm{at}$

When Q overtakes P, then he would have covered $(a+b)(t-p)=a t-a p+b t-b p$ and this equals at $=a t-a p+b t-b p=a t$
$\mathrm{t}=\frac{\mathrm{p}(\mathrm{a}+\mathrm{b})}{\mathrm{b}}$
Let R start q h after Q started.
Distance covered by R when he overtakes P would be $(a+2 b)(t-p-q)=a t$
Substituting the value of t from equation (i) and simplifying, we get
$q=\frac{p a}{a+2 b}$
3. (C) Let the speeds of the cars leaving P and $Q b p k m / h$ and $q \mathrm{~km} / \mathrm{h}$, respectively.

Then, $\mathrm{px}=\mathrm{qy}$
and $\mathrm{pz}=\mathrm{qx}$
On dividing equation (i) by equation (ii), we get
$\frac{\mathrm{x}}{\mathrm{z}}=\frac{\mathrm{y}}{\mathrm{x}}$
$\mathrm{x}=\sqrt{\mathrm{yz}}$
4. (A) If the height is decreased by $x \mathrm{~cm}$, then Decrease in the volume
$=\left(\frac{1}{3}\right)\left[\pi r^{2} h-\pi r^{2}(h-x)\right]=\frac{1}{3} \pi r^{2} \mathrm{x}$
If the radius decreased by $x \mathrm{~cm}$, then Decrease in volume $=\left(\frac{1}{3}\right)\left[\pi r^{2} h-\pi(r-x)^{2} h\right]$ $=\left(\frac{1}{3}\right) \pi\left[\pi r^{2} h-\pi(r-x)^{2} h\right]=\left(\frac{1}{3}\right) \pi\left[r^{2} h-\left(r^{2}-2 \mathrm{xr}+\mathrm{x}^{2}\right) \mathrm{h}\right]$
$=\left(\frac{1}{3}\right) \pi\left[2 \mathrm{xrh}-\mathrm{x}^{2} \mathrm{~h}\right]$
Combining the above results,
$\pi \mathrm{r}^{2} \mathrm{x}=\pi\left[2 \mathrm{xrh}-\mathrm{x}^{2} \mathrm{~h}\right]$
Cancelling π and x both sides, we get
$r^{2}=2 r h-x h$
$\therefore \quad \mathrm{x}=\frac{-\mathrm{r}^{2}+2 \mathrm{rh}}{\mathrm{h}}$

K D Campus Pvt. Ltd

5. (C) $\frac{1}{1+\mathrm{p}+\mathrm{q}^{-1}}+\frac{1}{1+\mathrm{q}+\mathrm{r}^{-1}}+\frac{1}{1+\mathrm{r}+\mathrm{p}^{-1}}$
$\frac{q}{1+p q+1}+\frac{r}{r+q r+1}+\frac{p}{p+p r+1}$
$=\frac{q}{q+\frac{1}{r}+1}+\frac{r}{r+\frac{1}{p}+1}+\frac{p}{p+p r+1}$
$=\frac{q r}{q r+1+r}+\frac{p r}{p r+p+1}+\frac{p}{p+p r+1}$
$=\frac{\mathrm{qr}}{\frac{1}{\mathrm{p}}+1+\mathrm{r}}+\frac{\mathrm{pr}}{\mathrm{pr}+\mathrm{p}+1}+\frac{\mathrm{p}}{\mathrm{p}+\mathrm{pr}+1}$
$=\frac{\mathrm{pqr}}{1+\mathrm{p}+\mathrm{pr}}+\frac{\mathrm{pr}}{1+\mathrm{p}+\mathrm{pr}}+\frac{\mathrm{p}}{1+\mathrm{p}+\mathrm{pr}}$
$=\frac{\mathrm{pqr}+\mathrm{pr}+\mathrm{p}}{1+\mathrm{p}+\mathrm{pr}}=\frac{\mathrm{p}(\mathrm{qr}+\mathrm{r}+1)}{1+\mathrm{p}+\mathrm{pr}}=\frac{\mathrm{p}\left(\frac{1}{\mathrm{p}}+\mathrm{r}+1\right)}{1+\mathrm{p}+\mathrm{pr}}$
$=\frac{1+\mathrm{p}+\mathrm{pr}}{1+\mathrm{p}+\mathrm{pr}}=1$
$(\because \mathrm{pqr}=1)$
6. (D) Here, $10<\mathrm{n}<1000$

Let n be the two-digit number.
Then,
$\mathrm{n}=10 \mathrm{a}+\mathrm{b}$,
$P_{n}=a b$
$S_{n}=a+b$
$a b+a+b=10 a+b$
$a b=9 a$
$b=9$
So, there are 9 two digit numbers i.e. 19, 29, 39,..., 99.
Again, let n be the three-digit number.
Then, $\mathrm{n}=100 \mathrm{a}+10 \mathrm{~b}+\mathrm{c}$,
$\mathrm{P}_{\mathrm{n}}=\mathrm{abc}, \mathrm{S}_{\mathrm{n}}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
$\therefore \quad a b c+a+b+c=100 a+10 b+c$
$a b c=99 a+9 b$
$b c=99+9 \frac{b}{a}$
But the maximum value tor be $=81$ and RHS is more than 99 .
So, no three-digit number is possible.
Hence, required number of integers is 9 .

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
7. (C) Let $x \geq 0, y \geq 0$ anc $x \geq y$

Then, $|x+y|+|x-y|=4$
$x+y+x-y=4$
$x=2$

And in case $x \geq 0, y \geq 0, x \leq y$
$x+y+y-x=4$
$y=2$
Area in the first quadrant is 4 .
By symmetry, total area $=4 \times 4=16$ sq. units
8. (D) Statements I and II are wrong, since when p is prime number so it does not have any factor. So, when all factors (or numbers) before p do not involve in the product, so it is not divisible by p or any prime number greater than p. Statement III is wrong, since $1 \times 2 \times 3 \times 4 \times 5 \times$ 6 is divisible by 5 . Since, x in values prime number less than ($p-1$).
Hence Statement (iv) is correct.
9. (C)

$\angle \mathrm{OCT}=90^{\circ}, \angle \mathrm{DCT}=45^{\circ}$ and $\angle \mathrm{OCB}=45^{\circ}$
Also,
$\angle \mathrm{COB}=45^{\circ} \quad(\triangle \mathrm{BOC}$ is a right angled triangle $)$
$\angle \mathrm{AOC}=180^{\circ}-45^{\circ}=135^{\circ}$
Here, CD = 10
$\therefore \quad \mathrm{BC}=5 \mathrm{~cm}=\mathrm{OB}$
Then, in $\triangle B O C$,
$\mathrm{OC}=5 \sqrt{2} \quad$ (using Pythagoras theorem)
$\mathrm{OC}=\mathrm{OA}=5 \sqrt{2}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

In $\triangle \mathrm{AOC}$,
$\mathrm{AC}^{2}=\mathrm{OA}^{2}+\mathrm{OC}^{2}-2 \mathrm{OA} \cdot \mathrm{OC} \cdot \cos 135^{\circ}=2(\mathrm{OA})^{2}-2(\mathrm{OA})^{2} \cdot \cos 135^{\circ}$
$=2(5 \sqrt{2})^{2}-2(5 \sqrt{2})^{2} \times \frac{-1}{\sqrt{2}}=100+\frac{100}{\sqrt{2}}$
$\mathrm{AC}^{2}=170.70$
$\mathrm{AC}=13 \mathrm{~cm}$
\therefore Perimeter of $\triangle \mathrm{AOC}=\mathrm{AC}+\mathrm{OC}+\mathrm{AO}=13+5 \sqrt{2}+5 \sqrt{2}$
$=13+10 \times 1.1414=27 \mathrm{~cm}($ approx $)$
10. (A) $22^{3}+23^{3}+24^{3}+$ \qquad $+87^{3}+88^{3}$
On rearranging, $\left(22^{3}+88^{3}\right)+\left(23^{3}+87^{3}\right)+\left(24^{3}+86^{3}\right)+\ldots .+\left(54^{3}+56^{3}\right)+55^{3}$
Now, we know that $a^{n}+b^{n}$ is divisible by $(a+b)$, when n is odd number.
Therefore, all the terms except 55^{3} is divisible by 110 .
Now, the remainder when 55^{3} is divided by 110 is 55.
Hence, the required remainder when whole expression is divided by 110 is 55 .
11. (C)

In $\triangle \mathrm{ABC}$,
$\mathrm{AC}=\sqrt{10.5^{2}+14^{2}}$
$\mathrm{AC}=17.5 \mathrm{~m}$
$l=17.5 \mathrm{~m}$
Total surface area $=\pi r l+2 \pi r h=\frac{22}{7} \times 14 \times 17.5+2 \times \frac{22}{7} \times 14 \times 3=1034 \mathrm{~m}^{2}$
The cost of painting $=1034 \times 2=₹ 2068$
12. (A)
 y

Let length be x and breadth be y.
$(x+14)(y-6)=x y$
$x y-6 x+14 y-84=x y$
$14 y-6 x=84$
$(x-14)(y+10)=x y$
$x y+10 x-14 y-140=x y$
$10 x-14 y=140$

Adding equation (i) and (ii), we get
$4 \mathrm{x}=224$
$\mathrm{x}=56$
Put the value of x in equation (i),
$14 y-6 \times 56=84$
$14 y=420$
$y=30$
13. (A) Cost of raw material $=4 x$

Cost of labour $=3 x$
Cost of miscellaneous $=2 \mathrm{x}$
Total cost $=4 x+3 x+2 x=9 x$
New cost $=\frac{4 x \times 110}{100}+\frac{3 x \times 108}{100}+\frac{2 x \times 95}{100}=9.54 x$

Percentage rise $=\frac{9.54 x-9 x}{9 x} \times 100=6 \%$
14. (A) Let the number be x

$(3-x)(7-x)=(5-x)(6-x)$
$21-3 \mathrm{x}-7 \mathrm{x}+\mathrm{x}^{2}=30-5 \mathrm{x}-6 \mathrm{x}+\mathrm{x}^{2}$
$21-10 x+x^{2}=30-11 x+x^{2}$
$\mathrm{x}=9$
15. (B) $\mathrm{a}: \mathrm{b}=\frac{2}{9}: \frac{1}{3}, \mathrm{~b}: \mathrm{c}=\frac{2}{7}: \frac{5}{14}, \mathrm{~d}: \mathrm{c}=\frac{7}{10}: \frac{3}{5}$
$a: b=2: 3$
b:c $=4: 5$
d:c=7:6
c: $d=6: 7$

Then,
a : b:c $: d=48: 72: 90: 105=16: 24: 30: 35$
16. (D) Given, Total earning of $\mathrm{A}+\mathrm{B}+\mathrm{C}=₹ 76000$

Percentage of their saving are $30 \%, 25 \%$ and 20% respectively.
Let, savings of A, B and C be $4 x, 5 x$ and $6 x$ respectively
Now, 30% of $\mathrm{A}=4 x$
$30 \times \frac{\mathrm{A}}{100}=4 x$
$A=\frac{40}{3} x$ \qquad
Also, 25% of $B=5 x$
$25 \times \frac{\mathrm{B}}{100}=5 x$
$B=20 x$
Also, 20% of $\mathrm{C}=6 x$
$20 \times \frac{C}{100}=6 x$
$\mathrm{C}=30 x$

On using (ii), (iii) \& (iv) in (i), we get
$\frac{40 x}{3}+20 x+30 x=76,000$
$x=1200$
$A=\frac{40 x}{3}=\frac{40}{3} \times 1200=₹ 16000$
$B=20 x=20 \times 1200=₹ 24000$
$C=30 x=30 \times 1200=₹ 36000$
$\therefore \quad(\mathrm{A}+\mathrm{B})-\mathrm{C}=(40000-36000)=₹ 4000$
17. (C) Let money be P.

ATQ,
$\frac{\mathrm{P} \times 15 \times 5}{100}-\frac{\mathrm{P} \times 12 \times 4}{100}=1890$
$\frac{27 \mathrm{P}}{100}=1890$
$P=\frac{1890 \times 100}{27}$
$\mathrm{P}=₹ 7000$
18. (A) Let initial amount $=₹ x$

ATQ,
$\frac{x}{3} \times \frac{7 \times 2}{100}+\frac{2}{5} \times \frac{x \times 10 \times 2}{100}+\frac{4 \times x \times 12 \times 2}{15 \times 100}=1430$
$\frac{14 x}{300}+\frac{4 x}{50}+\frac{8 x}{125}=1430$
$\frac{7 x}{150}+\frac{2 x}{25}+\frac{8 x}{125}=1430$
$\frac{35 x+60 x+48 x}{750}=1430$
$143 x=1430 \times 750$
$x=\frac{1430 \times 750}{143}=₹ 7500$
19. (C) Let cost of 100 Articles is ₹ 100
$(\therefore$ 1Article $=₹ 1)$

If 100 articles $\xrightarrow{25 \% \text { Profit }} \frac{\text { S.P }}{₹ 125} \rightarrow$ Diff $=5$ unit $=100$
1 unit = ₹ 20

K D Campus Pvt. Ltd

20. (A) Let C. P. $=₹ x$
S.P. $=\frac{x \times 108}{100}$

Again C. P. $=\frac{x \times 80}{100}$
S.P. $=\frac{80 x}{100} \times \frac{140}{100}=\frac{112 x}{100}$

ATQ,
$\frac{112 x}{100}-\frac{108 x}{100}=640$
$x=₹ 16000$
21. (A) According to the Question

22. (D) According to the question,

He should purchase $=\frac{400}{320 \times 50 \%}=5$ shirts
23. (A) Let work done by a man in a day be x and work done by a woman be y

From question,
$4 x+6 y=\frac{1}{8}$
$3 x+7 y=\frac{1}{10}$
(ii)

On solving (i) \& (ii), we get
$x=\frac{11}{400}$ and $y=\frac{1}{400}$
Required ratio $=\frac{x}{y}=\frac{11}{400} \div \frac{1}{400}=11: 1$
24. (B) Given,
$\frac{1}{B}=\frac{2}{A}$
$A=2 B$
Also, given $\frac{1}{\mathrm{C}}=\frac{3}{\mathrm{~A}}$
$A=3 C$
Also, given $\frac{1}{\mathrm{~A}}+\frac{1}{\mathrm{~B}}+\frac{1}{\mathrm{C}}=\frac{1}{2}$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
On using (i) in (iii), we get
$\frac{1}{2 B}+\frac{1}{B}+\frac{3}{3 C}=\frac{1}{2}$
$\frac{1}{2 \mathrm{~B}}+\frac{1}{\mathrm{~B}}+\frac{3}{2 \mathrm{~B}}=\frac{1}{2} \quad[$ using (i) $\&$ (ii)]
$\frac{1+2+3}{2 \mathrm{~B}}=\frac{1}{2}$
$2 \mathrm{~B}=12$
$B=6$ days
25. (A) $\frac{\mathrm{M}_{1} \times \mathrm{D}_{1}}{\mathrm{~W}_{1}}=\frac{\mathrm{M}_{2} \mathrm{D}_{2}}{\mathrm{~W}_{2}}$
$\frac{100 \times 16}{\frac{1}{7}}=\frac{\mathrm{M}_{2} \times 80}{\frac{6}{7}}$
$\mathrm{M}_{2}=\frac{100 \times 16 \times 6}{80}$
$M_{2}=120$
Required labourers $=120-100=20$
26. (A) Given,
$A+B+C=14,400$. \qquad (i)

Let savings of A, B \& C are $8 x, 9 x$ and $20 x$ respectively.
Also given percentage of expenditure of A, B \& C are $80 \%, 85 \% \& 75 \%$ respectively.
$\therefore \quad$ Percentage of savings of $A, B \& C$ be $20 \%, 15 \%$ \& 25% respectively.
Now, 20% of $A=8 x$
$\frac{20 \times \mathrm{A}}{100}=8 x$
$A=40 x$. \qquad
Again, 15% of $\mathrm{B}=9 x$
$\frac{15 \times B}{100}=9 x$
$B=60 x$.
Again, 25% of $\mathrm{C}=20 x$
$\frac{25 \times C}{100}=20 x$
C $=80 x$.
On using (ii), (iii) and (iv) in (i), we get
$40 x+60 x+80 x=14,400$
$x=80$
$A=40 x=40 \times 80=₹ 3,200$
$B=60 x=60 \times 80=₹ 4,800$
$\mathrm{C}=80 x=80 \times 80=₹ 6,400$
27. (D) New ratio of fares $\left(1^{\text {st }}, 2^{\text {nd }}\right.$ and $\left.3^{\text {rd }}\right)=8 \times \frac{5}{6}: 6 \times \frac{11}{12}: 3 \times 1=80: 66: 36$

Ratio of passengers = 9:12:26
Ratio of amount collected $=40 \times 9: 12 \times 33: 26 \times 18$
Amount collected from 1st class fares $=\frac{90}{306} \times 1088=₹ 320$
28. (A) Speed $=15 \mathrm{~km}$ per hour $=15 \times \frac{5}{18}=\frac{25}{6} \mathrm{~m} / \mathrm{s}$.

Water flow out in one second $=0.2 \times 0.15 \times \frac{25}{6} \mathrm{~m}^{3}$
Volume of tank $=150 \times 100 \times 3 \mathrm{~m}^{3}$

Time taken $=\frac{150 \times 100 \times 3 \times 6}{.2 \times .15 \times 25}=100$ hours.
29. (D) Given,
$\frac{1}{\mathrm{~A}}=\frac{1}{8}$

Also given, $\frac{1}{\mathrm{~A}}-\frac{1}{\mathrm{~B}}=\frac{1}{20}$
$\frac{1}{\mathrm{~B}}=\frac{1}{\mathrm{~A}}-\frac{1}{20}$
$\frac{1}{B}=\frac{1}{8}-\frac{1}{20}$
$\frac{1}{B}=\frac{3}{40}$
B takes $\frac{40}{3}$ min to empty the tank
Also given, rate of water flowing out $=6 \mathrm{kl}$
\therefore Capacity of tank $=\frac{40}{3} \times 6 \mathrm{kl}=80 \mathrm{kl}$
30. (C) Speed $=\frac{350 \times 60}{1000}=21 \mathrm{~km} / \mathrm{hr}$

Total time taken $=\frac{84}{21}+13 \times 6$
$4+78 \mathrm{~min}=5$ hours +18 min.

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
31. (A) Let total coaches be N

Decrease in the speed $=x$
$x \propto \sqrt{\mathrm{~N}}$
$x=\mathrm{K} \sqrt{\mathrm{N}}$ [$\mathrm{K}=$ constant]
$4=K \sqrt{4}$
$K=2$
$24=K \sqrt{N}$
$24=2 \sqrt{\mathrm{~N}}$
$\sqrt{\mathrm{N}}=24 / 2$
$\mathrm{N}=144$ coaches
Number of coaches that can be exactly pulled by the engine $=144-1=143$ coaches
32. (C) Let minors be x

Consumption by adults $=8 \times 15=120$
Total Consumption $=(x+8) \times 10.8$
Average consumption by minors $=\frac{(8+x) 10.8-120}{x}=6$
$\mathrm{x}=7$
33. (C) Sum of 8 numbers $=20 \times 8=160$

Let the sixth number be x .
ATQ,
$\left(15 \frac{1}{2}\right) \times 2+\left(21 \frac{1}{3}\right) \times 3+x+x+4+x+7=160$
$31+64+3 x+11=160$
$3 x=160-106$
$x=\frac{54}{3}=18$
$8^{\text {th }}$ Number $=x+7=18+7=25$
34. (D) $\left(1+\mathrm{m}^{2}\right) x^{2}+2 \mathrm{mc} x+\mathrm{c}^{2}-\mathrm{a}^{2}=0$
$B=2 \mathrm{mc}$
$A=\left(1+m^{2}\right)$
$\mathrm{C}=\mathrm{c}^{2}-\mathrm{a}^{2}$
Roots are equal
$\therefore \quad \mathrm{D}=0$
$B^{2}-4 A C=0$
$(2 m c)^{2}-4\left(1+m^{2}\right)\left(c^{2}-a^{2}\right)=0$
$4 m^{2} c^{2}-4 c^{2}+4 a^{2}-4 m^{2} c^{2}+4 m^{2} a^{2}=0$
$-c^{2}+a^{2}+a^{2} m^{2}=0$
$c^{2}=a^{2}\left(1+m^{2}\right)$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
35. (D) Given,
$l x^{2}+n x+n=0$
$\alpha / \beta=p / q$
Equation (i) $\Rightarrow \alpha+\beta=-n / l \ldots \ldots$. . i
$\alpha \beta=n / l$ \qquad (iv)

Equation (ii) $\Rightarrow \sqrt{\alpha / \beta}=\sqrt{p / q}$
$\sqrt{\beta / \alpha}=\sqrt{q / p}$ \qquad
$\therefore \quad \sqrt{p / q}+\sqrt{q / p}+\sqrt{n / l}$
$=\sqrt{\alpha / \beta}+\sqrt{\beta / \alpha}+\sqrt{\alpha \beta}$ (using (v), (vi) $\&$ (iv))
$=\frac{\sqrt{\alpha}}{\sqrt{\beta}}+\frac{\sqrt{\beta}}{\sqrt{\alpha}}+\frac{\sqrt{\alpha \beta}}{1}=\frac{(\alpha+\beta)+(\alpha \beta)}{\sqrt{\alpha} \cdot \sqrt{\beta}}$
$=\frac{-n / l+n / l}{\sqrt{\alpha} \cdot \sqrt{\beta}}=0 / \sqrt{\alpha} \cdot \sqrt{\beta}=0$
36. (B) $3 x^{2}+2 x+1=0$
$a+b=-\frac{2}{3}$
$\mathrm{ab}=\frac{1}{3}$
Product of roots $=\frac{1-\alpha}{1+\alpha} \times \frac{1-\beta}{1+\beta}=3$

Sum of roots $=\frac{1-\alpha}{1+\alpha}+\frac{1-\beta}{1+\beta}=2$
Required equation $=x^{2}-$ (sum of the roots) $x+$ product of roots $=0$
$x^{2}-2 x+3=0$
37. (A)

Let height of the tower $=\mathrm{AB}$
In $\triangle \mathrm{ABC}$,
$\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$A B=60 \mathrm{~m}$.

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
In $\triangle \mathrm{ADB}$,
$\tan 30^{\circ}=\frac{60}{60+x}$
$\frac{1}{\sqrt{3}}=\frac{60}{60+x}$
$x=60(\sqrt{3}-1)=60 \times(1.73-1)$
$x=60 \times 0.73=43.8 \mathrm{~m}$
$\therefore \quad$ Required Speed $=\frac{43.8}{5} \times \frac{18}{5}=31.5 \mathrm{~km} / \mathrm{hr}$
38. (A)

In $\triangle \mathrm{AFC}$,
$\tan 30^{\circ}=\frac{h}{x}$
$x=\sqrt{3} \mathrm{~h}$
.(i)
In $\triangle \mathrm{AEC}$,
$\tan 60^{\circ}=\frac{h}{160-x}=\sqrt{3}$
$\sqrt{3}(160-x)=h$
$\sqrt{3}(160-\sqrt{3} h)=h$
[From (i)]
$4 h=160 \sqrt{3}$
$h=\frac{160 \sqrt{3}}{3} \mathrm{ft}=40 \sqrt{3} \mathrm{ft}$
39. (B) $\mathrm{OP}=2$
$\mathrm{OQ}=\frac{3}{2}$

$\therefore \quad \mathrm{PQ}=\sqrt{O P^{2}+O Q^{2}}=\sqrt{2^{2}+\left(\frac{3}{2}\right)^{2}}$
$=\sqrt{4+\frac{4}{9}}=\sqrt{\frac{25}{4}}$
$=\frac{5}{2}=2.5 \mathrm{~cm}$
40. (A)

Putting $x=0$ in $9 x-12 y=108$
we get, $\mathrm{y}=-9$
Putting $y=0$ in $9 x-12 y=108$,
we get, $x=12$
$\mathrm{OA}=12, \mathrm{OB}=9$
$\mathrm{AB}=\sqrt{O A^{2}+O B^{2}}=\sqrt{12^{2}+9^{2}}$
$=\sqrt{144+81}=\sqrt{225}=15$ units
41. (A) $\left(x+\frac{1}{x}\right)^{2}=3$
$x+\frac{1}{x}=\sqrt{3}$
On cubing both sides,

$$
x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)=3 \sqrt{3}
$$

$$
x^{3}+\frac{1}{x^{3}}=3 \sqrt{3}-3 \sqrt{3}=0
$$

$$
x^{6}+1=0
$$

$$
\therefore \quad x^{206}+x^{200}+x^{90}+x^{84}+x^{18}+x^{12}+x^{6}+1
$$

$$
=x^{200}\left(x^{6}+1\right)+x^{84}\left(x^{6}+1\right)+x^{12}\left(x^{6}+1\right)+\left(x^{6}+1\right)=0
$$

42. (A) $\mathrm{CD}=\mathrm{h}$ metre, $\mathrm{AB}=2 \mathrm{~h}$ metre

$\mathrm{OB}=\mathrm{OD}=\frac{x}{2}$ metre

From \triangle OCD,
$\tan \theta=\frac{h}{\frac{x}{2}}=\frac{2 h}{x}$ \qquad (i)

From $\triangle \mathrm{OAB}$,
$\tan \left(90^{\circ}-\theta\right)=\frac{A B}{B O}$
$\cot \theta=\frac{2 h}{\frac{x}{2}}=\frac{4 h}{x}$ \qquad

Multiplying both the equations,
$\tan \theta \cdot \cot \theta=\frac{2 h}{x} \times \frac{4 h}{x}$
$x^{2}=8 h^{2}$
$h=\frac{x}{2 \sqrt{2}}$ meter
43. (C) $\tan 2 \theta \cdot \tan 3 \theta=1$

$$
\begin{aligned}
& \tan 3 \theta=\frac{1}{\tan 2 \theta}=\cot 2 \theta \\
& \tan 3 \theta=\tan \left(90^{\circ}-2 \theta\right) \\
& 3 \theta=90^{\circ}-2 \theta \\
& 5 \theta=90^{\circ} \\
& \theta=18^{\circ}
\end{aligned}
$$

$$
2 \cos ^{2} \frac{5 \theta}{2}-1=2 \cos ^{2} 45^{\circ}-1=2 \times \frac{1}{2}-1=0
$$

44. (B) $\sin 17^{\circ}=\frac{x}{y}$
$\cos 17^{\circ}=\sqrt{1-\sin ^{2} 17^{\circ}}=\sqrt{1-\frac{x^{2}}{y^{2}}}=\sqrt{\frac{y^{2}-x^{2}}{y^{2}}}=\sqrt{\frac{y^{2}-x^{2}}{y^{2}}}$
$\therefore \quad \sec 17^{\circ}=\frac{y}{\sqrt{y^{2}-x^{2}}}$
$\sin 73^{\circ}=\sin \left(90^{\circ}-17^{\circ}\right)=\cos 17^{\circ}$
$\sec 17^{\circ}-\sin 73^{\circ}=\frac{y}{\sqrt{y^{2}-x^{2}}}-\frac{\sqrt{y^{2}-x^{2}}}{y}$
$=\frac{y^{2}-y^{2}+x^{2}}{y \sqrt{y^{2}-x^{2}}}=\frac{x^{2}}{y \sqrt{y^{2}-x^{2}}}$
45. (C) Votes got by Rahul Gandhi $=(100-10) \%$ of $\frac{4}{5}$ of total voters
$=90 \%$ of $\frac{4}{5}$ of total voters $=\frac{9}{10} \times \frac{4}{5}$ of total voters
$=\frac{18}{25}$ of total voters $=216$ voters

Now, Votes got by Varun Gandhi $=(100-20) \%$ of $\left(1-\frac{4}{5}\right)$ th of the total voters
$=80 \%$ of $\frac{1}{5}$ th of total voters $=\frac{4}{5} \times \frac{1}{5}$ of total voters
$=\frac{4}{25}$ of total voters $=\frac{216}{18} \times 4=48$ voters

So, total number of votes polled $=(216+48)$ votes $=264$ votes
46. (B) Net discount given by $\mathrm{A}=\left(5+25-\frac{5 \times 25}{100}\right) \%=28.75 \%$

Net discount given by B $=\left(16+12-\frac{16 \times 12}{100}\right) \%=26.08 \%$
A is giving more discount
It is more profitable to purchase the fan from A.
47. (C) $4+44+444+$ \qquad to n terms
$=4(1+11+111+\ldots$. to n terms $)$
$=\frac{4}{9}(9+99+999+$ to n terms)
$=\frac{4}{9}[(10-1)+(100-1)+(1000-1)+$ \qquad to n terms]
$=\frac{4}{9}\left[\left(10+10^{2}+10^{3}+\right.\right.$ \qquad to n terms) -n]
$=\frac{4}{9}\left[10\left(1+10+10^{2}+\right.\right.$ \qquad to n terms) $-n$]
$=\frac{40}{9}\left(\frac{10^{n}-1}{9}\right)-\frac{4}{9} n$
$\left[\because 1+10+10^{2}+\right.$ \qquad to n terms $=\frac{10^{n}-1}{9}$]
$=\frac{40}{81}\left(10^{\mathrm{n}}-1\right)-\frac{4}{9} n$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
48. (A) Cash price of refrigerator $=1500+\left(1020 \times \frac{10}{11}\right)+\left(1003+\frac{100}{121}\right)+\left(990 \times \frac{1000}{1331}\right)$
$=1500+\left\{\frac{(10200 \times 121)+(100300 \times 11)+990000}{1331}\right\}$
$=1500+\left(\frac{1234200+1103300+990000}{1331}\right)$
$=1500+\frac{3327500}{1331}=1500+2500=4000$

Alternative Method:-

Cash price of refrigerator $=1500+\frac{1020}{1.1}+\frac{1003}{(1.1)^{2}}+\frac{990}{(1.1)^{3}}$
$=1500+\frac{1020}{1.1}+\frac{1003}{1.21}+\frac{990}{1.331}$
$=1500+2500=4000$
49. (A)

In the given figure, after leaving the point A, balloon reach to point B vertically upward in 1.5 min

Here, $\mathrm{O} \rightarrow$ the observer
So, $\angle \mathrm{BOA}=60^{\circ}$ (Observer)
$\tan 60^{\circ}=\frac{A B}{O A}$
$\mathrm{AB}=\mathrm{OA} \tan 60^{\circ}=200 \times \sqrt{3} \mathrm{~m}$
So, speed of the balloon $=\frac{\text { distance }}{\text { time }}=\frac{A B}{\text { time to reach from } A \text { to } B}$
$=\frac{200 \sqrt{3} \mathrm{~m}}{\frac{1.5}{60} \mathrm{sec}}=3.87 \mathrm{~m} / \mathrm{sec}$.
50. (C)

Here,
$\mathrm{AB} \rightarrow$ height of the house
$\mathrm{CD} \rightarrow$ height of the window
ATQ,
$\angle \mathrm{ADB}=90^{\circ}$
Also,
here, line AD makes as angle θ° with the vertical line DE .
$\angle \mathrm{ADE}=\theta^{\circ}$
$\angle \mathrm{BDC}=90^{\circ}-\theta$
In $\triangle B C D$,
$\tan \left(90^{\circ}-\theta\right)=\frac{B C}{C D}=\frac{d}{C D}$
$\cot \theta=\frac{d}{C D}$
$C D=\frac{d}{\cot \theta}=d \tan \theta$
In $\triangle A D E$,
$\tan \theta=\frac{A E}{D E}=\frac{d}{D E}$
$D E=\frac{d}{\tan \theta}=d \cot \theta$
So, the height of the house,
$A B=C D+D E=d(\tan \theta+\cot \theta)$
$=d\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)=d\left(\frac{1}{\cos \theta \times \sin \theta}\right)=d \sec \theta \operatorname{cosec} \theta$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
51. (C)

44 m
Total area of the square field $=(44 \times 44) \mathrm{m}^{2}=1936 \mathrm{~m}^{2}$
At the rate of ₹ 1 per sq. mtr; the total cost would be ₹ 1936
But the total cost = ₹ 3536
Difference = ₹ $3536-₹ 1936=₹ 1600$
₹ 1600 would be the extra cost on the flower bed and as the extra cost on the flower bed is
₹ 1 per sq. mtr.
Area of flower bed $=1600$ sq. mtr.
Side of flower bed $=\sqrt{1600} \mathrm{~m}^{2}=40 \mathrm{~m}$
So, width of the gravel path $=\frac{44-40}{2}=2$ metre
52. (D) $3^{x^{2}-x y+y^{2}}=81=3^{4}$
$x^{2}-x y+y^{2}=4$
And $2^{x^{3}+y^{3}}=256=2^{8}$
$x^{3}+y^{3}=8$
Dividing (ii) by (i),
$x+y=2$
53. (B) The given equation $=c+\frac{d-y}{y}=e-1+\frac{f}{y}$
$c+\frac{d}{y}-\frac{y}{y}=e-1+\frac{f}{y}$
$c+\frac{d}{y}-1=\mathrm{e}-1+\frac{f}{y}$
$\frac{d}{y}-\frac{f}{y}=e-c$
$\frac{d-f}{y}=e-c$
$y=\frac{d-f}{e-c}$
54. (B) The given equation $=b x^{2}-a x+\log _{2} \mathrm{~m}^{y}=0$

Now,
Sum of the roots $=x_{1}+x_{2}$
$=\frac{-a}{b}=\frac{a}{b}$
The given relation $=x_{1}^{2}-x_{2}^{2}=a^{2}$
$\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)=a^{2}$
$\frac{a}{b}\left(x_{1}-x_{2}\right)=a^{2}$
[From equation (i)]
$x_{1}-x_{2}=a b$

From equation (i) and equation (ii)
$x_{1}=\frac{1}{2}\left[\frac{a}{b}+a b\right]=\frac{a\left(b^{2}+1\right)}{2 b}$
$x_{2}=\frac{1}{2}\left[\frac{a}{b}-a b\right]=\frac{a\left(1-b^{2}\right)}{2 b}$
Hence, the roots are $\frac{a}{2 b}\left(b^{2}+1\right)$ and $\frac{a}{2 b}\left(1-b^{2}\right)$.
55. (C) The given expression $=(\sqrt{k+l})^{2}+(\sqrt{m})^{2}+(\sqrt{n})^{2}+2 \sqrt{m} \sqrt{k+l}-2 \sqrt{n} \sqrt{m}-2 \sqrt{n} \sqrt{k+l}$
$=[\sqrt{k+l}+\sqrt{m}-\sqrt{n}]^{2}$
So, the square root of the given expressions $= \pm\lfloor\sqrt{k+l}+\sqrt{m}-\sqrt{n}\rfloor$
56. (A) Part of the cistern filled in $3 \min =\frac{3}{12}+\frac{3}{16}=\frac{21}{48}=\frac{7}{16}$

Let remaining $\frac{9}{16}$ part was filled in x min
Then, $\frac{x}{12} \times \frac{7}{8}+\frac{x}{16} \times \frac{5}{6}=\frac{9}{16}$
$x\left(\frac{7+5}{96}\right)=\frac{9}{16}$
$x=\frac{9}{16} \times \frac{96}{12}=4.5 \mathrm{~min}$
57. (A) Joining point O to three vertices A, B and C.

Now,
Area of $(\Delta \mathrm{OBC}+\Delta \mathrm{OCA}+\Delta \mathrm{OAB})=$ area of $\Delta \mathrm{ABC}$.
$\frac{1}{2}(a \times 8+a \times 7+a \times 6)=\frac{\sqrt{3}}{4} a^{2}=\frac{21 a}{2}$
$a=\frac{42}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$\therefore \quad a=14 \sqrt{3}$

Hence, area of triangle $\mathrm{ABC}=\frac{\sqrt{3}}{4} a^{2}$
$=\frac{\sqrt{3}}{4}(14 \sqrt{3})^{2} \mathrm{~m}^{2}=254.6 \mathrm{~m}^{2}$
58. (B) Ratio of investment of Sita, Gita and Rita
$=5000 \times 3+7000 \times 9):(4000 \times 1+3000 \times 11):(7000 \times 11)$
$=78000: 37000: 77000=78: 37: 77$
$\therefore \quad$ Share of Rita in profit $=\frac{77}{78+37+77} \times 1218=₹ 488.47$
59. (A) Let $P Q$ be the ladder such that its top Q is on the wall $O Q$ and bottom P is on the ground. The ladder is pulled away from the wall through a distance a, so that its top Q slides and takes position Q^{\prime}.
Clearly, $\mathrm{PQ}=\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$.
In $\Delta^{\text {'s }} \mathrm{POQ}$ and $\mathrm{P}^{\prime} \mathrm{OQ}^{\prime}$, we have
$\sin \alpha=\frac{O Q}{P Q}, \cos \alpha=\frac{O P}{P Q}$
$\sin \beta=\frac{O Q^{\prime}}{P^{\prime} Q^{\prime}}, \cos \beta=\frac{O P^{\prime}}{P^{\prime} Q^{\prime}}$
$\sin \alpha=\frac{b+y}{P Q}, \cos \alpha=\frac{x}{P Q}$
$\sin \beta=\frac{y}{P Q}, \cos \quad \beta=\frac{a+x}{P Q}$

$\sin \alpha-\sin \beta=\frac{b+y}{P Q}-\frac{y}{P Q}$ and $\cos \beta-\cos \alpha=\frac{a+x}{P Q}-\frac{x}{P Q}$
$\sin \alpha-\sin \beta=\frac{b}{P Q}$ and $\cos \beta-\cos \alpha=\frac{a}{P Q}$
$\frac{\sin \alpha-\sin \beta}{\cos \beta-\cos \alpha}=\frac{b}{a}$
$\frac{a}{b}=\frac{\cos \alpha-\cos \beta}{\sin \beta-\sin \alpha}$
60. (B) Number of tourists from USA $=\frac{5760}{32} \times \frac{16}{14} \times 100=20571$
61. (D) Number of tourists from China of age more than 60 years $=50000 \times \frac{14.25}{100} \times \frac{10}{100}=712$
62. (A) Number of tourists from Japan of age group $(16-30)=\frac{7500}{15} \times 12.75 \times \frac{25}{100}$

Number of tourists from USA of age group (0-15) $=\frac{7500}{15} \times 16 \times \frac{12}{100}$
\therefore Required ratio $=\frac{12.75 \times 25}{16 \times 12}=425: 256$
63. (D)
64. (C) Number of tourists from rest of the countries $=\frac{7980}{14.25} \times 28=15680$
$\therefore \quad$ Number of tourists from rest of countries of age group $(16-30)=15680 \times \frac{25}{100}=3920$
65. (B)

In $\triangle \mathrm{ADP}$,
Exterior $\angle \mathrm{ADC}=$ Interior $(\angle \mathrm{A}+\angle \mathrm{P})=40^{\circ}+20^{\circ}=60^{\circ}$
$\angle \mathrm{ABC}=\angle \mathrm{ADC}=60^{\circ}$
[Angles in the same segment]
Since AD is the diameter
$\angle \mathrm{ABD}=90^{\circ}$
So, $\angle \mathrm{DBC}=\angle \mathrm{ABD}-\angle \mathrm{ABC}$
$=90^{\circ}-60^{\circ}=30^{\circ}$
66. (A) Investment of $\mathrm{A}=50000 \times 12=₹ 600000$

Investment of $\mathrm{B}=60000 \times(12-x)$
Investment of $\mathrm{C}=70000 \times(12-x)$
ATQ,
$\frac{600000}{60000 \times(12-x)}=\frac{20}{18}$
$180=240-20 x$
$x=3$
67. (C)

	A B	C
Efficiency	$3: 2:$	6
Number of days	$2: 3:$	1

Number of days taken by $\mathrm{A}=12$
Number of days taken by $B=18$
Number of days taken by $\mathrm{C}=6$
1 day's work of $(A+B)=\frac{5}{36}$
1 day's work of $(B+C)=\frac{8}{36}$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

1 day's work $(C+A)=\frac{9}{36}$

In 5 days total work done $=\frac{35}{36}$
Now, the rest of work $\left(\right.$ i.e. $\left.\frac{1}{36}\right)$ is done by AC.
Number of days taken by AC for the rest of the work $=\frac{\frac{1}{36}}{\frac{9}{36}}$
There, total time taken to complete the work $=5+\frac{1}{9}=5 \frac{1}{9}$ days
68. (A) Filling done by all 3 pipes in $3 \min =\frac{3}{20}+\frac{3}{10}+\frac{3}{30}=\frac{11}{20}$

Filling done by 2 nd pipe in $3 \mathrm{~min}=\frac{3}{10}$ So, required ratio $=\frac{\frac{3}{10}}{\frac{11}{20}}=\frac{6}{11}$
69. (B) Average Speed $=\frac{\text { Total distance }}{\text { Total time }}$ ATQ,
$53+\frac{1}{3}=\frac{200}{\frac{50}{40}+\frac{150}{x}}$
$\frac{160}{3}=\frac{200 \times 40 x}{50 x+6000}$
$8000 x+960000=24000 x$
$16000 x=960000$
$x=60 \mathrm{Km} / \mathrm{h}$
70. (A) Rest part of milk $=1-\frac{40}{400}=\frac{9}{10}$

Required pure milk $=40 \times\left(\frac{9}{10}\right)^{6}$
$=40 \times \frac{9}{10} \times \frac{9}{10} \times \frac{9}{10} \times \frac{9}{10} \times \frac{9}{10} \times \frac{9}{10}$
$=21.2576$ litres ≈ 21.25 litres

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
71. (B)

$\sqrt{3} \rightarrow 5-1.3$
$\sqrt{3} \rightarrow 3.7$
$2 \rightarrow \frac{3.7}{\sqrt{3}} \times 2=\frac{7.4 \sqrt{3}}{3}$
Length of the ladder $=4.27 \mathrm{~m}$
Distance of the ladder from the foot of the pole $=\frac{3.7}{\sqrt{3}}$
$=\frac{3.7 \times 1.73}{3}=2.14 \mathrm{~m}$
72. (3) Number of employees in Teaching profession $=26800 \times \frac{15}{100}=4020$

Number of employees in Medical profession $=26800 \times \frac{27}{100}=7236$
Total number of employees $=4020+7336=11256$
Number of employees in Management profession $=26800 \times \frac{17}{100}=₹ 4556$
\therefore Required difference $=11256-4556=6700$
Quicker Method:
Required difference $=(15+27-17) \%$ of $26800=25 \%$ of $26800=6700$
73. (4) Total number of employees in Management profession $=26800 \times \frac{17}{100}=4556$

Number of female employees in Management profession $=4556 \times \frac{3}{4}=3417$
$\therefore \quad$ Required number of male employees in Management profession $=4556-3417=1139$
74. (2) Total number of employees from Film Production $=26800 \times \frac{19}{100}=5092$

Now, number of employees from Film Production who went on strike $=5092 \times \frac{25}{100}=1273$
$\therefore \quad$ Number of employees who have not participated in strike $=5092-1273=3819$

Quicker Method:

Required number of employees who have not participated in strike $=26800 \times \frac{75}{100}=3819$
75. (4) Required number of employees who participated in both Engineering and Industries professions $=26800 \times\left(\frac{9+13}{100}\right)=268 \times 22=5896$
76. (1) Total number of teachers $=26800 \times \frac{15}{100}=4020$

Number of teachers who are not permanent $=4020 \times \frac{3}{5}=804 \times 3=2412$
$\therefore \quad$ Number of teachers who are permanent $=4020-2412=1608$
77. (3) Average $=\frac{210+204+231+231}{4}=219$
78. (1) Total number of girls $=70+117+54+129+136+176=682$
79. (4) Required difference $=225-225=0$
80. (4) Let the total number of students be x.
$\therefore \quad$ Boys $=\frac{44 x}{100}$ and girls $=\frac{56 x}{100}$
ATQ,
$\frac{56 x}{100}-\frac{44 x}{100}=30$
$x=\frac{3000}{12}=250$
$\therefore \quad$ Boys $=\frac{44}{100} \times 250=110$
Similarly,

Total students $=\frac{132 \times 100}{40}=330$

Girls $=\frac{30 \times 330}{100}=99$
$\therefore \quad$ Ratio $=\frac{110}{99}=\frac{10}{9}$
81. (4) Students from $F_{1986}=375$

Students from $\mathrm{C}_{1986}=250$
Required $\%=\frac{375}{250} \times 100=150 \%$

K D Campus Pvt. Ltd

82. (B)

ABDE will be trapezium
$A B=4$ units
$\mathrm{DE}=\frac{1}{2} \mathrm{AB}=2$ units
$\mathrm{FB}=1$ unit, $\mathrm{BD}=2$ units.
$\mathrm{DF}=\sqrt{2^{2}-1^{2}}=\sqrt{3}$ units
$\therefore \quad$ Area of $\mathrm{ABDE}=\frac{1}{2}(\mathrm{AB}+\mathrm{DE}) \times \mathrm{DF}=\frac{1}{2}(4+2) \times \sqrt{3}=3 \sqrt{3}$ sq. units
83. (D)

$B D=$ length of diagonal $=$ speed \times time $=\frac{52}{60} \times 15=13$ metre
$\mathrm{BD}=\sqrt{l^{2}+b^{2}}$
$l^{2}+b^{2}=169$
Again,
$(l+b)=\frac{68}{60} \times 15=17$

$(l+b)^{2}=l^{2}+b^{2}+2 l b$
$17^{2}=169+2 l b$
$2 l b=289-169=120$
$l b=\frac{120}{2}=60 \mathrm{~m}^{2}$
84. (C)

Let Radius of circle $=a$ units
Area of semi circle $=\frac{\pi a^{2}}{2}$ sq. units
Area of triangle $\mathrm{ABD}=\frac{1}{2} \times a \times 2 a=a^{2}$
$\therefore \quad$ Area of shaded region $=\frac{\pi a^{2}}{2}-a^{2}=a^{2}\left(\frac{\pi}{2}-1\right)$ sq. units

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
85. (C) Since, point of intersection of medians is "centroid".
$\therefore \quad$ co-ordinates of centroid $=\left(\frac{0+5+7}{3}, \frac{6+3+3}{3}\right)=\left(\frac{12}{3}, \frac{12}{3 .}\right)=(4,4)$
86. (B) Pankaj $\rightarrow 20$ days

Let the total work $=20$ units
Then $25 \%=\frac{1}{4}$

Remaining work $=20 \times \frac{3}{4}=15$ units
15 units done by Neha in 10 days
20 units (Total work) done by Neha $=\frac{10}{15} \times 20=\frac{40}{3}$ days

\therefore Time required for Pankaj and Neha to complete the work $=\frac{40}{5}=8$ days
87. (D) Let the distance of total journey $=\operatorname{LCM}$ of $(8,6)=24$ units
$\therefore \quad \frac{3}{8}$ of the journey $=\frac{3}{8} \times 24=9$ units
$\frac{5}{6}$ of the journey $=\frac{5}{6} \times 24=20$ units i.e. it covered $20-9=11$ units of distance in 4.30
p.m. -11 a.m. $=5 \frac{1}{2}$ hours $=\frac{11}{2}$ hours

Speed of person $=\frac{11}{11 / 2}=2 \mathrm{~km} / \mathrm{hr}$
$\frac{3}{8}$ of the journey will be covered in $=\frac{9}{2}=4 \frac{1}{2}$ hours

Starting time $=11$ a.m $-4 \frac{1}{2}$ hours $=6.30$ a. m
88. (A) Required books in each stack $=$ HCF of each type of books $=$ HCF of 84,90 and $12=6$
89. (B) Alcohol : Water Alcohol : Water

1st Glass	$2: 1)_{\times 5}$	$10: 5$
2nd Glass	$3: 2)_{\times 3}$	$9: 6$
		$19: 11$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
90. (B) $\frac{(a-b)^{2}}{(b-c)(c-a)}+\frac{(b-c)^{2}}{(c-a)(a-b)}+\frac{(c-a)^{2}}{(a-b)(b-c)}$
$=\frac{(a-b)^{3}}{(a-b)(b-c)(c-a)}+\frac{(b-c)^{3}}{(a-b)(b-c)(c-a)}+\frac{(c-a)^{3}}{(a-b)(b-c)(c-a)}$
$\left[\begin{array}{l}\quad(a-b)+(b-c)+(c-a)=0 \\ \text { So, }(a-b)^{3}+(b-c)^{3}+(c-a)^{3}=3(a-b)(b-c)(c-a)\end{array}\right]$
$=\frac{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}{(a-b)(b-c)(c-a)}=\frac{3(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)}=3$
91. (C) Population of a town on 1st January $2001=500000$

Percentage increase in population $=4 \%$
So, population of a town on 1st January $2004=500000 \times\left(1+\frac{4}{100}\right)^{3}=562432$
92. (B)

$\mathrm{AB}=(5-3) \mathrm{cm}=2 \mathrm{~cm}$
$\mathrm{AC}=\mathrm{BC}=\frac{1}{2} \mathrm{AB}=1 \mathrm{~cm}$
$\mathrm{AP}=5 \mathrm{~cm}$ [radius of bigger circle]
So, $\mathrm{PC}=\sqrt{(5)^{2}-(1)^{2}}=\sqrt{24}=2 \sqrt{6} \mathrm{~cm}$
$\therefore P Q=2 \times 2 \sqrt{6}=4 \sqrt{6} \mathrm{~cm}$
93. (D) From the rule of alligation

Ratio between 1 st and 2 nd sum $=3: 5$
2nd sum $=\frac{5}{3} \times 7500=₹ 12500$
94. (C) Let the C.P. of each article be ₹ x

ATQ,
$\frac{50 \mathrm{x} \times 120}{100}+\frac{50 \mathrm{x} \times 140}{100}-\frac{100 \mathrm{x} \times 125}{100}=100$
$60 \mathrm{x}+70 \mathrm{x}-125 \mathrm{x}=100$
$5 x=100$
$\mathrm{x}=₹ 20$
95. (C) 25% (stolen) $+10 \%$ (Dropped) $\Rightarrow 35 \%=\frac{7}{20}, 50 \%=\frac{1}{2}$

Sum	- Remain	
20	-	13
2	-	1
40	-	13
$\downarrow \times 130$	$\downarrow \times 130$	
5200	1690	

96. (C)

Let R is a point where both the trains meet.
Till 2: 45 pm the distance covered by the second train $=\frac{70}{60} \times 60=70 \mathrm{~km}$
Remaining distance $=510-70=440 \mathrm{~km}$
Now relative speed of both trains $=50+60=110 \mathrm{~km} / \mathrm{h}$
Required time of meeting $=\frac{440}{110}=4$ hours
Distance from Delhi to meeting point $\mathrm{R}=4 \times 50=200 \mathrm{~km}$
97. (D)

$\angle \mathrm{OPS}=\angle \mathrm{OQS}=90^{\circ}$
$\angle \mathrm{PSQ}=20^{\circ} \quad$ (Given)
$\angle \mathrm{POQ}=160^{\circ}$
$\angle \mathrm{PSQ}+\angle \mathrm{POQ}=180^{\circ}$
$\mathrm{PTQ}=80^{\circ}$
PRQT is a cyclic quadrilateral
$\therefore \quad \angle \mathrm{PRQ}=180^{\circ}-80^{\circ}=100^{\circ}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI-09
98. (C) According to the question,
$\mathrm{n} \times \frac{90}{100} \times \frac{80}{100} \times \frac{75}{100}=270$
$\mathrm{n}=\frac{270 \times 10 \times 10 \times 100}{9 \times 8 \times 75}$
$\mathrm{n}=500$ chocolates

Short trick:

$10 \%=\frac{1}{10}, 20 \%=\frac{1}{5}, 25 \%=\frac{1}{4}$
ATQ,

Quantity	Remaining
10	9
5	4
4	3
200	108
$\square \times 2.5$	$\downarrow \times 2.5$
500	270

99. (B) Discount offered by Ravi $=25+5-\frac{25 \times 5}{100}=28.75 \%$

Discount offered by Vivek $=16+12-\frac{16 \times 12}{100}=26.08 \%$

Buying from Ravi is more preferable.
100. (C)

$\triangle \mathrm{ABC}$ is equilateral,
$\angle \mathrm{BCD}=\angle \mathrm{DCA}=30^{\circ} \mathrm{CD}$ bisects $\angle \mathrm{ACB}$
$\mathrm{ACE}=180^{\circ}-30^{\circ}=150^{\circ}$
$\mathrm{AC}=\mathrm{CE}$
$\angle \mathrm{CAE}=\angle \mathrm{CEA}=\frac{30}{2}=15^{\circ}$

Campus

K D Campus Pvt. Ltd

QUANTITATIVE ABILITY - 73 (ANSWER KEY)

$\begin{array}{lllllll}\text { 1. } & \text { (B) } & \text { 26. } & \text { (A) } & \text { 51. } & \text { (C) } & \text { 76. }\end{array}$ (1) $)$

