1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

SSC MOCK TEST - 447 (SOLUTION)

1. (2) As, $57 \Rightarrow(5+7)^{3}-(5+7)^{2}=1584$

Similarly, $46 \Rightarrow(4+6)^{3}-(4+6)^{2}=900$
2. (1) Waiter serve the food, while Mechanic repairs.
3. (4) Except 1997, others are divisible by 3.
4. (4)
(1) B
$\stackrel{F}{\mathrm{D}}$
(2) $(4) \Rightarrow 2+4=(6)$
(3) $\begin{array}{cc}\text { I } & \text { J } \\ (9) & (10) \Rightarrow 9+10=(19)\end{array}$
$\begin{array}{cc}\text { (2) } & \mathrm{L} \\ (12) & \mathrm{M} \\ (13)\end{array} \Rightarrow 12+13=\stackrel{\mathrm{Y}}{\mathrm{Y}} \mathrm{(25)}$
5. (2) As,

(4) ${ }^{(7)}$
$\mathrm{K} \quad \mathrm{M}$

Similarly,

6. (3) $2^{2}+1=5$
$3^{2}+2=11$
$4^{2}+3=19$
$5^{2}+4=29$
$6^{2}+5=41$
$7^{2}+6=55$
7. (1)

8. (2)

C's house is in the North of E's house at a distance of 90 m .

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
9. (1) As, $(13 \times 12)+(1+3+1+2)=163$

Similarly, $(10 \times 15)+(1+0+1+5)=157$
10. (3)

Hence, Neha is the cousin of that girls.

12. (3) In first column,
$(13+12)+(13+12)^{2}=650$
In second column,
$(15+16)+(15+16)^{2}=992$
In third column,
$(8+9)+(8+9)^{2}=\mathbf{3 0 6}$
13. (4) $126+3-8 \times 12 \div 4=-50$

After Changing + and \div each other,
$126 \div 3-8 \times 12+4=-50$
$42-8 \times 12+4=-50$
$46-96=-50$
$-50=-50$
14. (1) Time from 8 AM on a day to 1 PM on the following day $=29$ hours 24 hours 10 minute of this clock $=24$ hours of the correct clock
$\frac{145}{6}$ hours of this clock $=24$ hours of the correct clock.
29 hours of this clock $=24 \times \frac{6}{145} \times 29$ hours of the correct clock $=28$ hours 48 minute of the correct clock.

Therefore, the correct time is 28 hours 48 minute after 8 AM.
Required time is 48 minute past 12 .
15. (2) 3. Shoulder \rightarrow 4. Elbow \rightarrow 1. Wrist \rightarrow 5. Palm \rightarrow 6. Finger \rightarrow 2. Nails
16. (2) Let the present age of son be x years.

Father's age $=2 \mathrm{x}$ years
ATQ,
$(\mathrm{x}-10) \times 3=2 \mathrm{x}-10$
$3 x-30=2 x-10$
$\mathrm{x}=20$ years
$\therefore \quad$ Present age of son $=20$ years

I. False
II. False
III. True

Hence, only conclusion III follows.
18. (3)
19. (1)
20. (2) From statement I, II and III,
$\mathrm{C}<\mathrm{U}>\mathrm{B}<\mathrm{D}$
Hence, B is shorter than U and D .
21. (3) Opposite faces of given cubes:
\% \rightarrow \#
(a) $\rightarrow+$
$\& \rightarrow$ *
22. (2)
23. (1)
24. (1)
25. (1)
26. (4) Jagjivan Ram, who was India's defence minister during the 1971 war, was instrumental in the creation of the 'Joint Command' of Bangladesh and Indian Forces for the final assault which led to victory.
27. (4) Pancreas makes about 8 ounces of digestive juice filled with enzymes. These are the different enzymes: Lipase. This enzyme works together with bile, which your liver produces, to break down fat in your diet.
30. (3) Adventure sports enthusiast Ajeet Bajaj on Wednesday became the first Indian to ski to the North Pole.
31. (1) The Nilgiris-Eastern Ghats reserves which includes Nagarahole spread across Karnataka, Kerala and Tamil Nadu is known as "Asia's elephant empire", with about 10000 elephants. India is home to the largest number of Asiatic Elephants.
32. (3) Gluteus maximus is the largest muscle in the human body. It is large and powerful because it has the job of keeping the trunk of the body in an erect posture. It is the chief antigravity muscle that aids in walking up stairs.
33. (3) According to the India State of Forest Report, 2011, released by the Forest Survey of India (FSI) on 7 February, the total forest cover in the country is now at 692027 sq km . This accounts for 21.05% of the total geographical area of India.
34. (2) 'High Gate', or the "Door of victory", was built in 1575 A.D. by Mughal emperor Akbar to commemorate his victory over Gujarat. It is the main entrance to the Jama Masjid at Fatehpur Sikri, which is 43 km from Agra, India. Buland Darwaza is the highest gateway in the world and is an example of Mughal architecture.
36. (2) The Jan Vishwas (Amendment of Provisions) Bill, 2023 was passed recently by the Lok Sabha. It aims to boost ease of doing business and living in India.
37. (1) Seismology is the study of earthquakes and the structure of the earth, by both naturally and artificially generated seismic waves.
39. (3) The Pushkar Fair, also called the Pushkar Camel Fair or locally as Kartik Mela or Pushkar ka Mela is an annual multi-day livestock fair and cultural fete held in the town of Pushkar. It is famous for its camel trading event.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
40. (3) Vijaya Vittala Temple is the Prominent attractions of Hampi, Vittala Temple Complex is the most extravagant architectural showpiece of Hampi.
43. (1) A 35-year-old female elephant was found dead at Mavathuru in the Bailuru wildlife range of Biligiri Ranganathaswamy Temple Tiger Reserve (BRT), Hanur taluk. BRT, located in Karnataka's Chamarajanagar district, bridges the Western and Eastern Ghats.
46. (2) Beriberi is a disease caused by a vitamin B-1 deficiency, also known as thiamine deficiency. There are two types of the disease: wet beriberi and dry beriberi. Wet beriberi affects the heart and circulatory system.
47. (2) Nichrome is used to make the coils used in water heaters. It is an alloy of chromium and nickel present in proportions of 80% and 20% respectively. It is extensively used, as nichrome has high resistance and good heat emitting properties.
50. (3) Uttar Pradesh government has launched 'Mitra Van' under Vriksharopan Jan Abhiyan2024, aiming to plant 35 crore saplings along the Uttar Pradesh-Nepal border. Coordinated by the Forest Department, the campaign will involve 35 forest divisions and neighboring state dignitaries.
51. (1)
$\frac{1+\frac{1}{7 \frac{3}{5}}}{2+\frac{1}{3+\frac{1}{1+\frac{1}{4}}}} \div 0.5=\frac{1+\frac{5}{38}}{2+\frac{1}{3+\frac{4}{5}}} \div 0.5$
$=\frac{\frac{43}{38}}{2+\frac{5}{19}} \div 0.5=\frac{\frac{43}{\frac{38}{43}}}{\frac{19}{19}} \div 0.5$
$=\frac{1}{2} \div 0.5=\frac{1}{2} \times \frac{1}{0.5}=1$
52. (3)
$4^{11}+4^{12}+4^{13}+4^{14}$
$=4^{11}\left(4^{0}+4^{1}+4^{2}+4^{3}\right)$
$=4^{11}(1+4+16+64)$
$=4^{11} \times 85$
53. (4)

In $\triangle \mathrm{ABC}, \mathrm{AB}$ is extended to D such that $\mathrm{BC}=\mathrm{BD}$.
Thus, $\angle \mathrm{BCD}=\angle \mathrm{CDB}$
Given, $\angle \mathrm{ABC}=140^{\circ}$
$\angle \mathrm{ABC}=\angle \mathrm{BCD}+\angle \mathrm{BDC}$ (exterior angle is equal to the sum of their opposite interior angles)

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$\angle \mathrm{BCD}+\angle \mathrm{BDC}=140^{\circ}$
$\angle \mathrm{BCD}=\angle \mathrm{BDC}=\frac{140}{2}=70^{\circ} \quad(\because \angle \mathrm{BCD}=\angle \mathrm{BDC})$
Now, $\triangle \mathrm{ACD}$ becomes a right angled Δ.
Thus, $\angle \mathrm{ACD}=90^{\circ}$
$\angle \mathrm{ACB}+\angle \mathrm{BCD}=90^{\circ}$
$\angle \mathrm{ACB}+70^{\circ}=90^{\circ}$
$\angle \mathrm{ACB}=90^{\circ}-70^{\circ}=20^{\circ}$
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}+\angle \mathrm{ABC}+\angle \mathrm{ACB}=180^{\circ} \quad$ (Sum of all the angles in triangle is 180°)
$\angle \mathrm{A}+140^{\circ}+20^{\circ}=180^{\circ}$
$\therefore \quad \angle \mathrm{A}=180^{\circ}-160^{\circ}=20^{\circ}$
54. (3) Upstream speed $=22 \mathrm{~km} / \mathrm{hr}$

Downstream speed $=36 \mathrm{~km} / \mathrm{hr}$
$\therefore \quad$ Average speed $=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}=\frac{2 \times 22 \times 36}{22+36}=\frac{44 \times 36}{58}=27 \frac{9}{29} \mathrm{~km} / \mathrm{hr}$
55. (4) CP of an article $=₹ 2500$

SP of an article $=2500 \times \frac{125}{100}=₹ 3125$
Net profit $=(3125-2500-175)=₹ 450$
$\therefore \quad$ Profit $\%=\left(\frac{450}{2500} \times 100\right) \%=18 \%$
56. (2) Let the number of students in section $B=x$

Number of students in section $A=x \times \frac{125}{100}=1.25 x$
ATQ,
$x+1.25 x=135$
$2.25 x=135$
$x=\frac{135}{2.25}=60$
Number of students in section $B=60$
Number of students in section $A=60 \times 1.25=75$
Let the average score of section A be y.
Average score of section $B=y \times \frac{120}{100}=1.2 y$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
ATQ,
$75 \times y+60 \times 1.2 y=135 \times 98$
$75 y+72 y=135 \times 98$
$147 \mathrm{y}=135 \times 98$
$\mathrm{y}=\frac{135 \times 98}{147}=90$
$\therefore \quad$ Average score of students in section $\mathrm{A}=90$
57. (1) $\sin \theta+\cos \theta=\frac{9}{8}$

Squaring both sides,
$\sin \theta+\cos \theta+2 \sin \theta \cdot \cos \theta=\frac{81}{64}$
$1+2 \sin \theta \cdot \cos \theta=\frac{81}{64}$
$2 \sin \theta \cdot \cos \theta=\frac{81}{64}-1$
$2 \sin \theta \cdot \cos \theta=\frac{17}{64}$
$\therefore \quad \sin \theta \cdot \cos \theta=\frac{17}{64 \times 2}=\frac{17}{128}$
58. (1) Let his capital be ₹x.

ATQ,
$\frac{\frac{x}{3} \times 7}{100}+\frac{\frac{x}{4} \times 8}{100}+\frac{\frac{5 x}{12} \times 10}{100}=1122$
$\frac{7 x}{300}+\frac{8 x}{400}+\frac{5 x}{120}=1122$
$\frac{28 x+24 x+50 x}{1200}=1122$
$\frac{102 x}{1200}=1122$
$\therefore \quad \mathrm{x}=\frac{1122 \times 1200}{102}=₹ 13200$
59. (4) 20% of $\mathrm{A}=25 \%$ of $\mathrm{B}=15 \%$ of C

A : B : $C=\frac{1}{20}: \frac{1}{25}: \frac{1}{15}=15: 12: 20$
$\therefore \quad$ Required difference $=\frac{164500}{47} \times 3=₹ 10500$
60. (3) Let the number be $16 a$ and $16 b$.

ATQ,
$16 a \times 16 b=16 \times 1232$
$a b=77$
Then possible pairs of a and b are (1×77) and (7×11)
But since both are three digits number.
So, first number $=7 \times 16=112$
Second number $=11 \times 16=176$
$\therefore \quad$ Required sum $=112+176=288$
61. (3) $\alpha+\beta=1$ and $\alpha \beta=1$
$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$\alpha^{2}+\beta^{2}=1-2=-1$
Roots of new equation $=\alpha^{3} \beta$ and $\beta^{3} \alpha$
Sum of roots $=\alpha^{3} \beta+\beta^{3} \alpha=\alpha \beta\left(\alpha^{2}+\beta^{2}\right)=1 \times-1=-1$
Product of roots $=\alpha^{4} \beta^{4}=1$
$\therefore \quad$ Equation $=\mathrm{x}^{2}-($ Sum of roots $) \mathrm{x}+$ product of roots $=0$
$=x^{2}-(-1) x+1=0$
$=\mathrm{x}^{2}+\mathrm{x}+1=0$
62. (2) Area of circle $=\pi r^{2}$
$\pi r^{2}=5544$
$r^{2}=\frac{5544}{22} \times 7$
$\mathrm{r}^{2}=1764$
$\mathrm{r}=42 \mathrm{~cm}$
Perimeter of circle $=2 \pi \mathrm{r}$
$=2 \times \frac{22}{7} \times 42=264 \mathrm{~cm}$
Perimeter of rectangle $=\frac{264}{2}=132 \mathrm{~cm}$
$2(1+b)=132$
$50+b=66$
$\mathrm{b}=66-50=16 \mathrm{~cm}$
$\therefore \quad$ Area of rectangle $=50 \times 16=800 \mathrm{~cm}^{2}$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
63. (1) Let the investment of C is x months.

Ratio of annual investment of A, B and C $=25000 \times 12: 30000 \times 12: 40000 \times \mathrm{x}$
$=300: 360: 40 \mathrm{x}=15: 18: 2 \mathrm{x}$

Share of C in the annual profit $==\frac{x}{33+2 x} \times 260000=20000$
$\frac{x}{33+2 x}=\frac{1}{13}$
$13 \mathrm{x}=33+2 \mathrm{x}$
$11 \mathrm{x}=33$
$x=3$
$\therefore \quad$ Required month $=3$ months
64. (2) Let the present age of A be x years and present age of B be y years.

2 years ago,
Age of $A=(x-2)$ years
Age of $B=(y-2)$ years
ATQ,
$(x-2)=2(y-2)$
$x-2=2 y-4$
$x=2 y-2$
6 years hence,
Age of $A=(x+6)$ years
Age of $B=(y+6)$ years
ATQ,
$x+6+y+6=67$
$x+y=67-12$
$x+y=55$
$2 y-2+y=55 \quad[$ From (i) $]$
$3 y=57$
$y=\frac{57}{3}=19$ years
Put the value of y in equation (i),
$x=2 \times 19-2=36$ years
$\therefore \quad$ Age of $\mathrm{A}=36$ years

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
65. (1)

Total work

$\mathrm{P} \rightarrow 12$	36	3
$\mathrm{Q} \rightarrow 18$		2

$(P+Q)$'s one day work $=3+2=5$ unit
$(P+Q)$'s 6 day work is $5 \times 6=30$ unit
Work left $=36-30=6$ unit
$\therefore \quad$ Fraction of work left $=\frac{\text { Work left }}{\text { Total work }}=\frac{6}{36}=\frac{1}{6}$
66. (3) Let the salary of Mohan be ₹100.

He spends 10% of the salary on food
Amount spend on food is 10% of $100=₹ 10$
He spends 20% of remaining amount on transportation and insurance
Amount spend on transportation is 20% of $90=₹ 18$
He spends 5% of remaining amount on insurance
Amount spend on insurance is 5% of $72=₹ 3.6$
He spends 25% of remaining amount on medicine and education
Amount spend on medicine and education is 25% of $68.4=₹ 17.1$
The amount he is left with to save $=100(10+18+3.6+17.1)=₹ 51.3$
Now, the percentage of amount saved $=\left(\frac{51.3}{100} \times 100\right) \%=51.3 \%$
67. (1) $\frac{2 \sin \theta-\cos \theta}{\cos \theta+\sin \theta}=1$

Dividing numerator and denominator by $\sin \theta$,

$$
\begin{aligned}
& \frac{2 \sin \theta-\cos \theta}{\frac{\sin \theta}{\cos \theta+\sin \theta}}=1 \\
& \frac{2-\cot \theta}{\cot \theta+1}=1 \\
& 2-\cot \theta=\cot \theta+1 \\
& 2 \cot \theta=1 \\
& \cot \theta=\frac{1}{2}
\end{aligned}
$$

68. (4) $\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)$
$=\left(\mathrm{x}^{2}-\frac{1}{\mathrm{x}^{2}}\right)\left[\left(\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}\right)^{2}-1\right]$
$=\left(\mathrm{x}^{2}-\frac{1}{\mathrm{x}^{2}}\right)\left(\mathrm{x}^{4}+\frac{1}{\mathrm{x}^{4}}+1\right)=\mathrm{x}^{6}-\frac{1}{\mathrm{x}^{6}}$
69. (3)

In $\triangle P Q R$,
$(\mathrm{PR})^{2}+(\mathrm{PQ})^{2}=(\mathrm{QR})^{2}$
$(\mathrm{PQ})^{2}=(\mathrm{QR})^{2}-(\mathrm{PR})^{2}$
$(12.5)^{2}-(7.5)^{2}$
$156.25-56.25=100$
$P Q=10 \mathrm{~cm}$
In \triangle RPO,
$(\mathrm{RP})^{2}+(\mathrm{PO})^{2}=(\mathrm{RO})^{2}$
$(7.5)^{2}+(5)^{2}=(\mathrm{RO})^{2}$
$(\mathrm{RO})^{2}=81.25$
$\therefore \quad \mathrm{RO}=\frac{5 \sqrt{13}}{2} \mathrm{~cm}$
70. (3) Let the length of each train be x m .

Speed of first train $=\frac{x}{6} \mathrm{~m} / \mathrm{s}$
Speed of second train $=\frac{x}{8} \mathrm{~m} / \mathrm{s}$
Now, Relative speed $=\frac{x}{6}+\frac{x}{8}=\frac{4 x+3 x}{24}=\frac{7 x}{24} \mathrm{~m} / \mathrm{s}$
$\therefore \quad$ Required time to pass each other $=\frac{\mathrm{x}+\mathrm{x}}{\frac{7 \mathrm{x}}{24}}=\frac{2 \mathrm{x} \times 24}{7 \mathrm{x}}=\frac{48}{7}$ seconds

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
71. (2) 1 st man's 3 day's work $=\frac{3}{9}$

2nd man's 3 day's work $=\frac{3}{6}$
The boy's 3 day's work $=1-\left(\frac{3}{9}+\frac{3}{6}\right)$
$=\frac{3}{18}$
Their share will be in the ratio
$=\frac{3}{9}: \frac{3}{6}: \frac{3}{18}=2: 3: 1$
The share of boy $=₹ 1260 \times \frac{1}{6}=₹ 210$
72. (3) Total CP of product $\mathrm{A}=900+300=₹ 1200$

$$
\therefore \quad \mathrm{SP}=1200 \times \frac{105}{100}=₹ 1260
$$

73. (2) SP of product $\mathrm{C}=2000+500+250=₹ 2750$
$C P$ of product $B=800+300=₹ 1100$
$\therefore \quad$ Required $\%=\left(\frac{2750}{1100} \times 100\right) \%=250 \%$
74. (4) Required difference $=(1275+200)-(725+450)$
= 1475 - 1175 = 300
75. (3) Required difference $=60500 \times \frac{(14+9)}{100}-18000 \times \frac{(18+15)}{100}$
$=13915-5940=7975$

MEANINGS IN ALPHABETICAL ORDER

SSC MOCK TEST - 447 (ANSWER KEY)

1. (2)	26. (4)
2. (1)	27. (4)
3. (4)	28. (2)
4. (4)	29. (4)
5. (2)	30. (3)
6. (3)	31. (1)
7. (1)	32. (3)
8. (2)	33. (3)
9. (1)	34. (2)
10. (3)	35. (2)
11. (2)	36. (2)
12. (3)	37. (1)
13. (4)	38. (3)
14. (1)	39. (3)
15. (2)	40. (3)
16. (2)	41. (3)
17. (3)	42. (4)
18. (3)	43. (1)
19. (1)	44. (2)
20. (2)	45. (1)
21. (3)	46. (2)
22. (2)	47. (2)
23. (1)	48. (3)
24. (1)	49. (2)
25. (1)	50. (3)

51.	(1)
52.	(3)
53.	(4)
54.	(3)
55.	(4)
56.	(2)
57.	(1)
58.	(1)
59.	(4)
60.	(3)
61.	(3)
62.	(2)
63.	(1)
64.	(2)
65.	(1)
66.	(3)
67.	(1)
68.	(4)
69.	(3)
70.	(3)
71.	(2)
72.	(3)
73.	(2)
74.	(4)
75.	(3)

76. (3)
77. (3)
78. (1)
79. (3)
80. (3)
81. (2)
82. (1)
83. (2)
84. (2)
85. (1)
86. (2)
87. (2)
88. (3)
89. (4)
90. (4)
91. (4)
92. (3)
93. (2)
94. (2)
95. (4)
96. (1)
97. (1)
98. (2)
99. (3)
100. (4)
101. (3) Replace 'were' with 'was' in the part (3)
102. (3) In the part (3) remove definite article 'the'.
103. (4) The correct spelling is 'Manageable'.
104. (4) The correct spelling of 'Contrapsion' is 'Contraption', 'Cunstruction' is 'Construction' and 'Controdiction' is 'Contradiction'.
