Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

IBPS RRB OFFICER PHASE - I - 153 (SOLUTION)

(1-5) :

Person	City	Company
Ramesh	Pune	GBL
Umesh	Kolkata	Wipro
Deepak	Raipur	Oracle/Fastrack
Teenu	Delhi	Videocon
Wadra	Nagpur	Wal-Mart
Vaibhav	Jaipur	Yahoo
Suresh	Mumbai	Fastrack/Oracle

1. (3)
2. (4)
3. (1)
4. (3)
5. (4)
(6-10) :
6. (4) $\mathrm{R}>\mathrm{S} \geq \mathrm{T}<\mathrm{U}, \mathrm{V}>\mathrm{T}>\mathrm{X}$
I. $\mathrm{V}>\overline{\mathrm{S}}[\mathrm{S} \geq \mathrm{T}<\mathrm{V}] \rightarrow$ False
II. $\mathrm{U}>\mathrm{V}[\mathrm{V}>\mathrm{T}<\mathrm{U}] \rightarrow$ False

Neither conclusion I nor II is true.
7. (4) I. $\mathrm{A} \geq \mathrm{E}[\mathrm{A}=\mathrm{B} \leq \mathrm{C} \geq \mathrm{E}] \rightarrow$ False II. $\mathrm{E}>\mathrm{D}[\mathrm{E} \leq \mathrm{C}>\mathrm{D}] \rightarrow$ False

Neither conclusion I nor II is true.
8. (4) $I . K \geq M[M \geq J=K] \rightarrow$ False $\mathrm{M} \geq \mathrm{H}[\mathrm{H}<\mathrm{I}>\mathrm{J} \leq \mathrm{M}] \rightarrow$ False
Neither conclusion I nor II is true.
9. (5) I. $\mathrm{S}>\mathrm{T}[\mathrm{T} \leq \mathrm{R}<\mathrm{S}] \rightarrow$ True
II. $\mathrm{P} \geq \mathrm{T}[\mathrm{P}=\mathrm{Q} \geq \mathrm{R} \geq \mathrm{T}] \rightarrow$ True

Both conclusion I and II are true.
10. (4) I. $\mathrm{R}>\mathrm{P}[\mathrm{R} \geq \mathrm{O}<\mathrm{P}] \rightarrow$ False
II. $\mathrm{R} \geq \mathrm{N}[\mathrm{R} \geq \mathrm{O} \leq \mathrm{N}] \rightarrow$ False

Neither conclusion I nor II is true.
(11-13) :

11. (5)
12. (2)
13. (4)
(14-17) :
14. (5) from statement I and II

$$
\begin{aligned}
& \text { She } \rightarrow \text { Su, } \\
& \text { he } \rightarrow \text { her } \rightarrow \text { gg } \\
& \text { he, }
\end{aligned} \text { him } \rightarrow \text { or }
$$

So, both statement I and II together are neccessary to answer the question.
15. (2) Statement II along is sufficient to answer the question.
16. (5) From statement I and II
$\mathrm{F}>\mathrm{C}, \quad \mathrm{A}>\mathrm{C}$
$\mathrm{F}>\mathrm{B}, \quad \mathrm{E}>\mathrm{B}(\mathrm{E}$ is not highest $)$
$\mathrm{D}<\mathrm{B}, \quad \mathrm{E}>\mathrm{A}$
Decending order of mark
$\mathrm{F}>\mathrm{E}>\mathrm{A}>\mathrm{C}>\mathrm{B}>\mathrm{D}$
So both statement I and II together are neccesary to anser the question.
17. (3) From statement I :

Bhanu is 12 th from the right end, so Amit is 10 th from the right end so $(15-10+1)$ $\rightarrow 6$ th from left end.
From II : Chunky is 8th from right end means before changing position, Amit was at 8 th position from right, So (20-8 $+1)=13$ th from the left end.
either statement I alone or II alone give the answer the question.
(18-22) :

Floor	Name	City
7	Vivek	Mumbai
6	Ashu	Delhi
5	Lucky	Pune
4	Abhi	Kolkata
3	Javed	Jaipur
2	Rajan	Goa
1	Kamal	Indore

23. (2)
24. (4)

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

(25-29) :

Friends	Day	Show
P	Tuesday	Monolog ue
Q	Thursday	Play
R	Saturday	Debate
S	Monday	Speech
T	Sunday	Music
U	Wednesday	Dance
V	Friday	Mimicry

25. (2)
26. (5)
27. (4)
28. (1)
(30-34) :

29. (2)
30. (1)
31. (5)
32. (3)
33. (2)
(35-39):
34. (4)
35. (3)

36. (3)

37. (4)

38. (4)

39. (2) As nothing is mentioned about separate earnings of husbands and wives.
(41-45) :
40. (2) $?=\frac{623898 \times 99}{60000}=1029.43 \approx 1030$
41.

(3) $?=\frac{4}{3} \times \frac{3}{7} \div \frac{6}{7} \div \frac{5}{9}$
$=\frac{4}{5} \times \frac{3}{7} \times \frac{7}{6} \times \frac{9}{5}=\frac{18}{25}$
43. (1) $(399.98)^{2}=$?
\Rightarrow ? $\approx(400)^{2}=160000$
44. (3) $\sqrt{624.9995}+(4.9989)^{2}=? \div \frac{1}{4.9900865}$
$\Rightarrow \sqrt{625}+(5)^{2} \approx ? \div \frac{1}{5}$
$\Rightarrow 25+25=? \times 5$
\Rightarrow ? $=\frac{50}{5}=10$
45. (3) $989.001+1.00982 \times 76.792=$?

$$
\begin{aligned}
\Rightarrow & ? \approx 989+1 \times 77 \\
& =989+77=1066 \approx 1065
\end{aligned}
$$

46.

(1) Amount remaining after

1 year $=4000\left(1+\frac{7.5}{100}\right)-1500=₹ 2800$
2 years $=2800\left(1+\frac{7.5}{100}\right)-1500=₹ 1510$
3 years $=1510\left(1+\frac{7.5}{100}\right)-1500=₹ 123.25$
47. (3) Let the number of students appeared in school X = 100
$\therefore \quad$ Number of students qualified in school
$\mathrm{X}=70$
$\therefore \quad$ According to question,
Number of students appeared in School $\mathrm{Y}=120$
Number of students qualified in School Y
$=70+50 \%$ of $70=70+35=105$
$\therefore \quad$ Required percentage
$=\frac{105 \times 100}{120}=87.5 \%$
48. (4) Required number of items
$=\frac{(3000+1000)}{(60-40)}=\frac{4000}{20}=200$
49. (1) Let the speed of train C be $x \mathrm{kmph}$.

Speed of train B relative to C
$=(120-x) \mathrm{kmph}$
$=\left[(120-x) \times \frac{5}{18}\right] \mathrm{m} / \mathrm{sec}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=\left(\frac{600-5 x}{18}\right)$
Distance covered $=100+200=300 \mathrm{~m}$
$\therefore \frac{300}{\left(\frac{600-5 x}{18}\right)}=120$
$\Rightarrow 300=\frac{120(600-5 x)}{18}$
$\Rightarrow \quad 10 \times 9=2(600-5 x)$
$\Rightarrow 90=1200-10 x$
$\Rightarrow 10 x=1200-90$
$\Rightarrow x=\frac{1110}{10}=111 \mathrm{kmph}$
50. (2) (1) If one green ball in a box, then number of ways $=6$
(2) If two green balls in a box, then number of ways $=5$
(3) If three green balls in a box, then the number of ways $=4$
(4) If four green balls in a box, then number of ways $=3$
(5) If five green balls in a box, then number of ways $=2$
(6) If six green balls in a box, then number of ways = 1
\therefore Total number of ways
$=6+5+4+3+2+1=21$
51. (1) Required percentage $=\frac{285}{540} \times 100$ $=52.77 \% \approx 53 \%$
52. (3) Required average
$=\frac{190+285+315+240+265}{5} \mathrm{~kg}$
$=259 \mathrm{~kg}$
53. (5) D is the farmer which produces maximum quantity of foodgrains.
54. (2) Required ratio $=600: 255=40: 17$
55. (4) Required difference $=(350-140)=210$ kg
56. (2) The pattern is:
$\frac{1050-30}{2}=510$
$\frac{510-26}{2}=242$
$\frac{242-22}{2}=110 \neq \mathbf{1 0 6}$
$\frac{110-18}{2}=46$
$\frac{46-14}{2}=16$
57. (1) The pattern is :
$550-2^{2}=550-4=546$
$546-3^{2}=546-9=537$
$537-4^{2}=537-16=521$
$521-5^{2}=521-25$
$=496 \neq 494$
$496-6^{2}=496-36=460$
58. (3) The pattern is:
$8+1 \times 13=21$
$21+2 \times 13=21+26=47$
$47+3 \times 13=47+39=86$
$86+4 \times 13=86+52$
$=138 \neq 140$
$138+5 \times 13$
$=138+65=203$
$203+6 \times 13$
$=203+78=281$
59. (2) The pattern is :
$4 \times 8-8=32-8=24$
$24 \times 7-7=168-7=161$
$161 \times 6-6=966-6$
$=960 \neq 965$
$960 \times 5-5=4800-5=4795$
60. (3) The pattern is:
$1 \times 2=2$
$2 \times 3=6 \neq 8$
$6 \times 4=24$
$24 \times 5=120$
$120 \times 6=720$
$720 \times 7=5040$
61. (5) 18 men $\times 28$ days $=24$ women $\times 54$
days
$7 \mathrm{~m}=18 \mathrm{w}$
$(12 \mathrm{~m}+18 \mathrm{w}) \times 16$ days $+x \times m \times 4$
days
$=18 \times 28$ days
$(12 \mathrm{~m}+7 \mathrm{~m}) \times 16+x \times \mathrm{m} \times 4=504$
$4 x=504-304$
$\Rightarrow x \times 4=200$
$x=\frac{200}{4}=50 \mathrm{men}$
62. (2) $\frac{x+2}{y+3}=\frac{5}{8}$
$8 x-5 y=-1$
$\frac{x+3}{y+4}=\frac{9}{11}$
$11 x-9 y=-1$
Or, from (i) and (ii)
$4 y=3 x$
\therefore Original fraction $=\frac{x}{y}=\frac{4}{3}$

Campus

 KD Campus

 KD Campus}

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

63. (3) Let price of 1 L of scotch be ₹ 1

CP of 9L of Scotch = ₹ 9
After adding soda he has a mixture of $=9+2=11 \mathrm{~L}$
Price of 11 L of mixture $=₹ 11$
As he sells the mixture at 10% higher price than the price of Scotch, So we need to calculate this percentage on pure scotch which is 9 L .
So 10% of $9=₹ 0.9$
Now, SP $=11+0.9=₹ 11.9$
Overall gain $=11.9-9=₹ 2.9$
Net Gain $\%=\frac{2.9}{9} \times 100=32.2 \%$
64. (5) Sum of money be ₹ 100
\therefore S. I after 14 year
$=\frac{100 \times 14 \times 8}{100}=₹ 112$
\therefore Total amount $=100+112=₹ 212$ and amount recieved after two years
$=212 \times \frac{110}{100} \times \frac{110}{100}=₹ 256.52$
$\therefore \mathrm{C} . \mathrm{I}=256.52-212=₹ 44.52$
Now. $4452 \rightarrow 6678$
$\therefore 100-\frac{6678}{4452} \times 100=₹ 15000$
65. (1) Let the present age of A be x years and that of B be y years.
Then, 4 year ago,
A's age $=(x-4)$ years
B's age $=(y-4)$ years
Now, according to the question,
$=\frac{\frac{x-4}{2}}{4(y-4)}=\frac{5}{12}$
or, $\frac{x-4}{2(4 y-16)}=\frac{5}{12}$
or, $\frac{x-4}{4 y-16}=\frac{5}{6}$
or, $6 x-24=20 y-80$
or, $6 x-20 y=-56$
or, $10 y-3 x=28$
After 8 years,
$\frac{x+8}{2}+2=y=8$
or, $\frac{x}{2}+4+2=\mathrm{y}+8$
or, $\mathrm{y}-\frac{x}{2}=-2$
or, $2 \mathrm{y}-\mathrm{x}=-4$
or, $x=2 y+4$
Putting the value of x in equation (i), we get
$10 y-3(2 y+4)=28$
or, $10 y-6 y-12=28$
or, $4 y=10$
Hence the present age of B is 10 years.
(66-70) :
66. (3) No. of qualified candidates in the year
$1995=900 \times \frac{64}{100}=576$
No. of male candidates who qualified in the year $1995=576-176=400$
\therefore Required ratio $=400: 176$
= $25: 11$
67. (4) No. of qualified candidates in the year 1996
$=700 \times \frac{140}{100} \times \frac{25}{100}=245$
68. (3) Let the appeared candidates in the year $1992=500$
and qualified candidates in the year 1992 $=400$
No. of qualified female candidate
$=\frac{400}{8} \times 3=150$
\therefore Required $\%=\left(\frac{150}{500} \times 100\right) \%=30 \%$
69. (4) No. of qualified candidates in the year
$1994=\left(\frac{72}{4} \times 14\right)=252$
\therefore Total no. of appeared candidates in the
year $1994=\left(\frac{252}{42} \times 100\right) \%=600$
70. (2) No. of qualified candidates in the year
$1993=480 \times \frac{60}{100}=288$
\therefore No. of qualified candidates in the year $1991=249 \times 2-288=210$
\therefore Required $\%=\left(\frac{210}{700} \times 100\right) \%=30 \%$
71. (2) Perimeter $=$ Distance covered in 8 min .
$=\left(\frac{12000}{60} \times 8\right) \mathrm{m}=1600 \mathrm{~m}$.
Let length $=3 x$ metres and breadth $=2 x$ metres.
Then, $2(3 x+2 x)=1600$ or $x=160$
\therefore Length $=480 \mathrm{~m}$ and Breadth $=320 \mathrm{~m}$

Campus

KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
\therefore Area $=(480 \times 320) \mathrm{m}^{2}=153600 \mathrm{~m}^{2}$
72. (4) Cost of $\frac{1}{4}$ of goods $=\frac{400}{4}=₹ 100$

SP of $\frac{1}{4}$ of goods $=100 \times \frac{80}{100}=₹ 80$
SP of whole item $=400 \times \frac{120}{100}=₹ 480$
\therefore SP of the remaining $\frac{3}{4}$ of goods must be ₹ $(480-80)=₹ 400$
But the CP of three-fourths of goods
$=₹ 100 \times 3=₹ 300$
\therefore Gain $\%=\left(\frac{100}{300} \times 100\right) \%=33 \frac{1}{3} \%$
73. (1) Total no. of balls $=5+8=13$
\therefore Required probability $=\frac{{ }^{5} C_{3}}{{ }^{13} C_{3}} \times \frac{{ }^{8} C_{3}}{{ }^{13} C_{3}}$
$=\frac{140}{20449}$
74. (5) CP of 1000 kg of mixture
$110000-30000=₹ 80000$
\therefore CP of one kg of mixture $=₹ 80$
By the method of alligation :

Required ratio $=3: 2$
75. (4) $\because \frac{3}{5} \%$ of total distance
$40 \times 3+60 \times 4.5$
$=120+270=390 \mathrm{~km}$
\therefore Total distance $=\frac{390}{3} \times 5=650 \mathrm{~km}$
\therefore Remaining distance $=650-390$
$=260 \mathrm{~km}$
\therefore Average speed $=\frac{260}{4}=65 \mathrm{kmph}$
(76-80) :
76. (2) $x^{2}-51 x+650=0$
$\Rightarrow x^{2}-26 x-25 x+650=0$
$\Rightarrow x(x-26)-25(x-26)=0$
$\Rightarrow(x-25)(x-26)=0$
$\Rightarrow x=25,26$
II. $y^{3}=15625$
$\Rightarrow y=25$
Clearly, $x \geq y$
77. (5) I. $2 x^{2}-33 x+91=0$
$\Rightarrow 2 x^{2}-26 x-7 x+91=0$
$\Rightarrow 2 x(x-13)-7(x-13)=0$
$\Rightarrow(2 x-7)(x-13)=0$
$\Rightarrow x=\frac{7}{2}, 13$
II. $2 y^{2}-39 y+70=0$
$\Rightarrow 2 y^{2}-4 y-35 y+70=0$
$\Rightarrow 2 y(y-2)-35(y-2)=0$
$\Rightarrow(2 y-35)(y-2)=0$
$\Rightarrow y=\frac{35}{2}, 2$
78. (3) I. $x^{2}-32 x+255=0$
$\Rightarrow x^{2}-15 x-17 x+255=0$
$\Rightarrow x(x-15)-17(x-15)=0$
$\Rightarrow(x-17)(x-15)=0$
$\Rightarrow x=17,15$
II. $y^{2}-39 y+378=0$
$\Rightarrow y^{2}-21 y-18 y+378=0$
$\Rightarrow y(y-21)-18(y-21)=0$
$\Rightarrow(y-18)(y-21)=0$
$\Rightarrow y=18,21$
Clearly, $x>y$
79. (3) I. $2 x^{2}-30 x-19 x+285=0$
$\Rightarrow 2 x(x-15)-19(x-15)=0$
$\Rightarrow(2 x-19)(x-15)=0$
$\Rightarrow x=\frac{19}{2}, 15$
II. $y^{2}+2 y-48=0$
$\Rightarrow y^{2}+8 y-6 y-48=0$
$\Rightarrow y(y+8)-6(y+8)=0$
$\Rightarrow(y-6)(y+8)=0$
$\Rightarrow y=6,-8$
Clearly, $x<y$
80. (5) I. $64 x^{2}-50=14$
$\Rightarrow 64 x^{2}=64$
$\Rightarrow x^{2}=1$
$\Rightarrow x=+1,-1$
II. $9 y^{2}+\sqrt{121}=\sqrt{225}$
$\Rightarrow 9 y^{2}+11=15$
$\Rightarrow 9 y^{2}=4$
$\Rightarrow y^{2}=\frac{4}{9}$
$\Rightarrow y=+\frac{2}{3},-\frac{2}{3}$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

IBPS RRB OFFICER PHASE - I - 153 (ANSWER KEY)

1. (3)
2. (4)
3. (5)
4. (2)
5. (1)
6. (2)
7. (4)
8. (2)
9. (4)
10. (1)
11. (5)
12. (4)
13. (2)
14. (5)
15. (2)
16. (1)
17. (5)
18. (4)
19. (3)
20. (5)
21. (2)
22. (2)
23. (4)
24. (5)
25. (3)
26. (3)
27. (3)
28. (4)
29. (4)
30. (1)
31. (4)
32. (3)
33. (2)
34. (2)
35. (3)
36. (1)
37. (3)
38. (3)
39. (1)
40. (3)
41. (4)
42. (1)
43. (2)
44. (1)
45. (3)
46. (5)
47. (2)
48. (4)
49. (2)
50. (1)
51. (3)
52. (2)
53. (3)
54. (5)
55. (2)
56. (3)
57. (5)
58. (1)
59. (3)
60. (4)
61. (3)
62. (4)
63. (2)
64. (2)
65. (4)
66. (1)
67. (5)
68. (4)
69. (2)
70. (5)
71. (3)
72. (3)
73. (5)

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- Whatapp with Mock Test No. and Question No. at 7053606571 for any of te doubts. Join the group and you may also share your suggestions and experience of sunday Mock Test.

Note:- If your opinion differs regarding any answer, please message the mock test and question number to $\mathbf{8 8 6 0 3 3 0 0 0 3}$

