UP SI MOCK TEST - 47 (SOLUTION)

81. (C)

Total spend money $=30+21+24=75$
Remaining salary $=(100-75)=25$
According to the question
25 unit $\rightarrow 2500$
1 unit $\rightarrow \frac{2500}{25}=100$
Total salary $=100 \times 100=₹ 10,000$
82. (D) Worth of house for $A=₹ 10,000$

Cost price of house for $\mathrm{B}=\frac{10,000 \times 115}{100}$
= ₹ 11,500

New cost price for $A=\frac{11500 \times 85}{100}$
= ₹ 9775
Total profit $=(11500-10000)+(10000-9975)$
$=1500+225$ = ₹ 1725
Percentage gain $=\frac{1725}{10000} \times 100=17.25 \%$
83. (B) $\frac{6}{4}=\frac{h}{50}$ (Assuming ' h ' be the height of pole)
$\Rightarrow h=\frac{50 \times 6}{4}=75$ feet
84. (B) The total interest for the two consecutive periods of six month each would be
$=\left(\frac{6}{2}+\frac{6}{2}+\frac{\frac{6}{2} \times \frac{6}{2}}{100}\right) \%$
$=\left(3+3+\frac{3 \times 3}{100}\right) \%$
i.e. 6.09% of the sum

Hence, the amount to be paid after one year would be $(100+6.09) \%$
i.e. 106.09% of the sum
\therefore Required amount
$=\frac{9000 \times 106.09}{100}=₹ 9548.10$
85. (A) Train covers 84 m length of platform in $21-9=12 \mathrm{sec}$.
\therefore Speed of the train $=\frac{84}{12}=7 \mathrm{~m} / \mathrm{sec}$

$$
=7 \times \frac{18}{5} \mathrm{~km} / \mathrm{hr}=25.2 \mathrm{~km} / \mathrm{hr}
$$

86. (A)

ATQ,
$(6+4+3)$ units $=₹ 6500$
1 unit $=₹ 500$
Share of B $=500 \times 4=₹ 2000$
87. (D) Let the cost price of buffalo $=₹ x$

Profit $=(720-x)$
Loss $=(x-510)$
According to the question,
$2(720-x)=(x-510)$
$\Rightarrow 1440-2 x=x-510$
$\Rightarrow 3 x=1950$
$\Rightarrow x=650$
\therefore CP of the buffalo $=₹ 650$
88. (D) Let the no. of voters be 100 ATQ,

\therefore Total voters $=100 \times 15=1500$
89. (C) Let the original fraction be $\frac{x}{y}$ then,
$\frac{x \times 132 \%}{y \times 175 \%}=\frac{12}{25}$
$\therefore \frac{x}{y}=\frac{12}{25} \times \frac{175}{132}=\frac{7}{11}$
90. (C) $x=0.5$ and $y=0.2$ (Given)
$\therefore \sqrt{0.6} \times(3 y)^{x}$
$=\sqrt{0.6} \times(3 \times 0.2)^{0.5}$
$=\sqrt{0.6} \times(0.6)^{\frac{1}{2}}$
$=\sqrt{0.6 \times 0.6}=0.6$
91. (A) CD||AB
$\therefore \angle \mathrm{AED}=\angle \mathrm{PDC}=34^{\circ}$ (corresponding angle)
$\therefore \angle \mathrm{DEF}=180^{\circ}-78^{\circ}-34^{\circ}=68^{\circ}$
$\because \mathrm{QD} \| \mathrm{EF}$
$\therefore \angle \mathrm{PDQ}=\angle \mathrm{DEF}=68^{\circ}$ (corresponding angle)
92. (B) $x=3+2 \sqrt{2}$
$\therefore \frac{1}{x}=\frac{1}{3+2 \sqrt{2}}$
$=\frac{1}{3+2 \sqrt{2}} \times \frac{3-2 \sqrt{2}}{3-2 \sqrt{2}}$
$=\frac{3-2 \sqrt{2}}{9-8}=3-2 \sqrt{2}$
$\therefore\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}=x+\frac{1}{x}-2$
$\Rightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}=3+2 \sqrt{2}+3-2 \sqrt{2}-2=4$
$\therefore \sqrt{x}-\frac{1}{\sqrt{x}}=2$
93. (A) Area of walls $=2(l+b) \times h$
$=2(8+6) \times 3=84 \mathrm{~m}^{2}$
Area of two windows and a door
$=2\left(1 \frac{1}{2} \times 1\right)+\left(2 \times 1 \frac{1}{2}\right)=6 \mathrm{~m}^{2}$
\therefore Area to be covered $=84-6=78 \mathrm{~m}^{2}$
\therefore Area of paper $=$ Area to be covered $=$ $78 \mathrm{~m}^{2}$
$\Rightarrow(l \times b)$ of paper $=78$
\Rightarrow length of paper $=\frac{78}{50} \times 100 \mathrm{~m}$
$=156 \mathrm{~m}$
\therefore cost $=\frac{156 \times 25}{100}=₹ 39$
94. (A) $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
$\Rightarrow(4 \sqrt{3})^{2}=16+2(a b+b c+c a)$
$\Rightarrow 48=16+2(a b+b c+c a)$
$\Rightarrow 2(a b+b c+c a)=48-16=32$
$\Rightarrow a b+b c+c a=16$
95. (B)

$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{2}{1}$
$\Rightarrow \mathrm{AB}=2 k, \mathrm{BC}=k$
$\therefore \mathrm{AC}=\sqrt{(2 k)^{2}+k^{2}}=\sqrt{5 k^{2}}$
$=\sqrt{5 k}$
$\therefore \sin \mathrm{A}+\cot \mathrm{C}=\frac{\mathrm{BC}}{\mathrm{AC}}+\frac{\mathrm{BC}}{\mathrm{AB}}$
$=\frac{k}{\sqrt{5} k}+\frac{k}{2 k}$
$=\frac{1}{\sqrt{5}}+\frac{1}{2}=\frac{2+\sqrt{5}}{2 \sqrt{5}}$
96. (B) $x=11$
$\therefore x^{5}-12 x^{4}+12 x^{3}-12 x^{2}+12 x-1$
$=x^{5}-(11+1) x^{4}+(11+1) x^{3}-(11+1) x^{2}+$
$(11+1) x-1$
$=x^{5}-11 x^{4}-x^{4}+11 x^{3}+x^{3}-11 x^{2}-x^{2}+$
$11 x+x-1$
When $x=11$,
$=11^{5}-11^{5}-11^{4}+11^{4}+11^{3}-11^{3}-11^{2}$
$+11^{2}+11-1=10$
97. (A) $\tan ^{2} \alpha=1+2 \tan ^{2} \beta$
$\Rightarrow \sec ^{2} \alpha-1=1+2\left(\sec ^{2} \beta-1\right)$
$\Rightarrow \sec ^{2} \alpha-1=2 \sec ^{2} \beta-1$
$\Rightarrow \frac{1}{\cos ^{2} \alpha}=\frac{1}{2 \cos ^{2} \beta}$
$\Rightarrow \sqrt{2} \cos \alpha=\cos \beta$
$\therefore \sqrt{2} \cos \alpha-\cos \beta=0$
98. (A) $\sin 3 \mathrm{~A}=\cos \left(\mathrm{A}-26^{\circ}\right)$
$\Rightarrow \cos \left(90^{\circ}-3 \mathrm{~A}\right)=\cos \left(\mathrm{A}-26^{\circ}\right)$
$\Rightarrow 90^{\circ}-3 \mathrm{~A}=\mathrm{A}-26^{\circ}$
$\Rightarrow 90^{\circ}+26^{\circ}=3 \mathrm{~A}+\mathrm{A}$
$\Rightarrow 4 \mathrm{~A}=116^{\circ}$
$\Rightarrow A=\frac{116}{4}=29^{\circ}$

99. (B) Are length $=40 \mathrm{~cm}$

Subtend angle $=22 \frac{1^{\circ}}{2}$
Radius $=\frac{40 \times 180}{22 \frac{1}{2} \times 3.14}=102 \mathrm{~cm}$
100. (A) First discount
$=320 \times \frac{10}{100}=₹ 32$
\therefore Price after first discount
= 320-32 = ₹ 288
If the second discount be $x \%$, then
$\therefore \frac{288 \times x}{100}=288-244.80=43.2$
$\Rightarrow x=\frac{43.2 \times 100}{288}=15 \%$
101. (B) Let the minimum score be x

Maximum score $=x+100$
$\therefore 28 \times 38+x+x+100=30 \times 40$
$\Rightarrow 1064+2 x+100=1200$
$\Rightarrow 2 x=1200-1164=36$
$x=18$
102. (D) $\mathrm{A} \rightarrow 12$ days
$B \rightarrow 16$ days

Total work
C $\rightarrow 24$ days
D $\rightarrow 36$ days
4 units/day
Work done on first day $=12$ units
On second day $=12+9=21$ units
On third day $=21+6=27$ units
On fourth day $=27+4=31$ units
On fifth day $=31$ units and so on.
\therefore Work done in five days $=91+31$
= 122 units
Remaining work $=144-122=22$ units
Total time $=5 \frac{22}{31}$ days
103. (D) Required no. of students
\Rightarrow L.C.M of $6,8,12$ and 16
$=96$
104. (B) S.I. $=\frac{6000 \times 5 \times 2}{100}=₹ 600$
C.I. $=5000\left[\left(1+\frac{8}{100}\right)^{2}-1\right]$
$=5000\left[\left(\frac{27}{25}\right)^{2}-1\right]$
$=5000\left[\left(\frac{729-625}{625}\right)\right]$
$=5000 \times \frac{104}{625}=₹ 832$
Difference $=832-600=₹ 232$
105. (D) Second square root $=\sqrt{24010000}$

$$
=4900
$$

Fourth square root $=\sqrt{4900}$

$$
=70
$$

106. (B) Let x be amount husk to added Applying away which husk

107. (D) $\mathrm{SP}=₹ 27692$
$\operatorname{Loss} \%=14 \%=\frac{7}{50}$
$\mathrm{CP}=₹ 27692 \times \frac{50}{43}=32200$
SP new = ₹ 37352
Profit \% = $\frac{37352-32200}{32200}=16 \%$
108. (D) \because Sum of opposite angles of a cyclic quadrilateral are equal.

$\therefore \angle \mathrm{ACQ}+\angle \mathrm{APQ}=180^{\circ}$
$\Rightarrow 75^{\circ}+\angle \mathrm{APQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{APQ}=105^{\circ}$
$\because \angle \mathrm{APQ}+\angle \mathrm{BPQ}=180^{\circ}$
$\therefore 105^{\circ}+\angle \mathrm{BPQ}=180^{\circ}$
or, $\angle \mathrm{BPQ}=180^{\circ}-105^{\circ}=75^{\circ}$
$\because \angle \mathrm{ACQ}$ is an exterior angle of $\triangle \mathrm{RCQ}$

$K D$
 Campus

KD Campus Pvt. Ltd

$\therefore \angle \mathrm{ACQ}=\angle \mathrm{CRQ}+\angle \mathrm{COR}$
$\Rightarrow 75^{\circ}=30^{\circ}+\angle \mathrm{COR}$
$\Rightarrow \angle \mathrm{COR}=45^{\circ}$
In $\triangle \mathrm{BPQ}, \angle \mathrm{B}=180^{\circ}-75^{\circ}-45^{\circ}=60^{\circ}$
109. (B) $\because a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right)$
$\therefore 56=2\left(a^{2}+b^{2}+a b\right)$
$\Rightarrow 28=a^{2}+b^{2}+a b=(a-b)^{2}+3 a b$
$\Rightarrow 28=4+3 a b$
$\Rightarrow a b=8$
Now, $a^{2}+b^{2}=(a-b)^{2}+2 a b=2^{2}+2 \times 8=20$
110. (A) Expression $=\frac{8 \sin \theta+5 \cos \theta}{\sin ^{3} \theta+2 \cos ^{3} \theta+3 \cos \theta}$

Dividing numerator and denominator by $\cos \theta$,
$=\frac{8 \tan \theta+5}{\tan \theta \cdot \sin ^{2} \theta+2 \cos ^{2} \theta+3}$
$=\frac{8 \tan \theta+5}{2 \sin ^{2} \theta+2 \cos ^{2} \theta+3} \quad(\because \tan \theta=2)$
$=\frac{8 \times 2+5}{2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+3}=\frac{21}{5}$
111. (C) Volume of solid cylinder $=\pi r^{2} h$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Difference $=\pi r^{2} h-\frac{1}{3} \pi r^{2} h$
$=\frac{2}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{2}{3} \times \frac{22}{7} \times 5 \times 5 \times 12$
$=628.57 \mathrm{cu} . \mathrm{cm}$.
112. (A) $x+\frac{1}{x}=5$

On squaring both sides,
$x^{2}+\frac{1}{x^{2}}+2=25$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=25-2=23$
Expression
$=\frac{x^{4}+3 x^{3}+5 x^{2}+3 x+1}{x^{4}+1}$
$=\frac{x^{4}+1+3 x^{3}+3 x+5 x^{2}}{x^{4}+1}$
$=\frac{x^{2}\left(x^{2}+\frac{1}{x^{2}}\right)+3 x^{2}\left(x+\frac{1}{x}\right)+5 x^{2}}{x^{2}\left(x^{2}+\frac{1}{x^{2}}\right)}$
$=\frac{\left(x^{2}+\frac{1}{x^{2}}\right)+3\left(x+\frac{1}{x}\right)+5}{x^{2}+\frac{1}{x^{2}}}$
$=\frac{23+3 \times 5+5}{23}=\frac{43}{23}$
113. (C) $x=\sqrt[3]{a+\sqrt{a^{2}+b^{3}}}+\sqrt[3]{a-\sqrt{a^{2}+b^{3}}}$

Cubing both sides,

$$
\begin{aligned}
& x^{3}=\left(\sqrt[3]{a+\sqrt{a^{2}+b^{3}}}\right)^{3}+\left(\sqrt[3]{a-\sqrt{a^{2}+b^{3}}}\right)^{3} \\
& +3\left(\sqrt[3]{a+\sqrt{a^{2}+b^{3}}}\right) 3\left(\sqrt[3]{a-\sqrt{a^{2}+b^{3}}}\right)
\end{aligned}
$$

$$
\left(\sqrt[3]{a+\sqrt{a^{2}+b^{3}}}+\sqrt[3]{a-\sqrt{a^{2}+b^{3}}}\right)
$$

$\Rightarrow x^{3}=a+\sqrt{a^{2}+b^{3}}+a-\sqrt{a^{2}+b^{3}}+$

$$
+3\binom{\left.\left(a+\sqrt{a^{2}+b^{3}}\right) \times\right)^{\frac{1}{3}} x}{\left(a-\sqrt{a^{2}+b^{3}}\right)}^{x}
$$

$\Rightarrow x^{3}=2 a+3\left(a^{2}-a^{2}-b^{3}\right)^{\frac{1}{3}} x$
$\Rightarrow x^{3}=2 a+(-3 b x)$
$\therefore x^{3}+3 b x=2 a$
114. (C) Since, point of intersection of medians is "centroid".
\therefore co-ordinates of centroid
$=\left(\frac{0+5+7}{3}, \frac{6+3+3}{3}\right)$
$=\left(\frac{12}{3}, \frac{12}{3 .}\right)=(4,4)$
115. (D) $\frac{\sin 12^{\circ}}{\sin 48^{\circ}}-\frac{\cos 78^{\circ}}{\cos 42^{\circ}}$
$=\frac{\sin 12^{\circ}}{\sin 48^{\circ}}-\frac{\cos \left(90^{\circ}-12^{\circ}\right)}{\cos \left(90^{\circ}-48^{\circ}\right)}$
$=\frac{\sin 12^{\circ}}{\sin 48^{\circ}}-\frac{\sin 12^{\circ}}{\sin 48^{\circ}}=0$
116. (A) Students enrolled in NCC activities
$=\frac{1200 \times 15}{100}=180$
117. (C) Total students in HRD \& Debating club
$=1200 \times \frac{(13+11)}{100}=288$
118. (D) Required percent
$=\frac{22}{21} \times 100=104.76 \%$
119. (A) Required ratio
$=(18+21): 13$
$=39: 13=3: 1$
120.(A) Eco-club : Human resource development club
= $22: 11=2: 1$
121. (D) Devotion is the characteristic of a monk whereas wanderlust is the characteristic of a Nomad.
122. (C)

123. (C) As, $23^{2}+23=552$ Similarly, $30^{2}+30=$ 930
124. (C) Generally, shoes is made by leather. Similarly, highway is made by gravel.
125. (D) In all the numbers, the middle digit is sum of digits of the product of two other digits.
Now, $9 \times 2=18,1+8=9$ (middle digit in 992)
$7 \times 3=21,2+1=3$ (middle digit in 733)
$8 \times 5=40,4+0=4$ (middle digit in 845)

But, $9 \times 7=63,6+3=9 \neq 4$. Hence 947 is different from others.
126. (B)

127. (A) Except Iron box, all need some type of energy to function.
128. (D) $12 \times 8-7=96-7=89$, $15 \times 4-12=60-12=48$, $25 \times 3-13=75-13=62$
129. (C) $\sqrt{25 \times 9}=5 \times 3=15$
and $\sqrt{36 \times 81}=6 \times 9=54$
Therefore $\sqrt{16 \times 169}=4 \times 13=52$
130. (B) $14+23+48=19+15+51=12+37+$ 36
The sum in each case $=85$.
131. (C)

132. (A)
133. (C)

134. (A) $714=51 \times 14$ $915=61 \times 15$ $1136=71 \times 16$ $\mathbf{1 3 7 7}=81 \times 17$
135. (D)
136. (A)

[Take ' \therefore ' (3) points as common and move in a clockwise direction.]
We can observer that " $\because:$ " (4) points is missing. So, four (4) points will be top when three (3) points are at bottom.
137. (A) Anupam's son-in-law is the brother of the lady who was sitting in the car. Hence, the husband is also the son-in-law of Anupam.
138. (A) From options

$$
\begin{aligned}
& \mathrm{A} \rightarrow 13: 170 \rightarrow 13: 13^{2}+1 \\
& \mathrm{~B} \rightarrow 11: 120 \rightarrow 11: 11^{2}-1 \\
& \mathrm{C} \rightarrow 5: 24 \rightarrow 5: 5^{2}-1 \\
& \mathrm{D} \rightarrow 7: 48 \rightarrow 7: 7^{2}-1
\end{aligned}
$$

139. (B)

140. (B) $5 \div 20-4+10 \times 8$

After interchanging the sign as per given details,
$5 \times 20 \div 4-10+8$
$=25-10+8=23$
141. (C) Shyam's position from left
$=9-(4-2)$
$=9-2=7^{\text {th }}$
142. (A)

Rasagulla is one of the sweets, while apple is different from these.
143. (B)

1. Doubt 2. True
2. (C) The series is abccab/bcaabc/abccab.
3. (B) ATQ,

Arun : Bablu $=4: 7$
Bablu : Ram = $1: 2$
Ram : Deep = $4: 1$
Deep : Ankit = $1: 9$
So,
Arun : Bablu: Ram : Deep : Ankit
16 : 28 : 56 : 14 : 126
\therefore Deep < Arun < Bablu
146. (C)
147.(D)
148. (C)

Required distance $=\mathrm{AE}=\mathrm{AB}+\mathrm{BE}$
$(\because \mathrm{BE}=\mathrm{CD})$
$=10+18$
$=28 \mathrm{kms}$.
149. (D) Angle between clock hands when opposite in direction $=180^{\circ}$
We have
Angle $=\frac{11}{2} m-30 \times 4$
or, $\quad 180=\frac{11}{2} \times \mathrm{m}-30 \times 4$
$\Rightarrow 180+120=\frac{11}{2} \mathrm{~m}$
$\Rightarrow \mathrm{m}=\frac{600}{11}=54 \frac{6}{11} \mathrm{~min}$
\therefore Required time $=4: 54 \frac{6}{11}$
150. (C) As,

151. (A)
152. (A) There are 130 employees.

21 employees drink only the.
15 employees do not drink any beverage.
153. (D) Clearly, while counting the numbers associated to the thumb will be 1,9 , 17, 25, ...
Here, Numbers are in the form of $(8 n+1)$. Since $1994=249 \times 8+2$, so 1993 shall correspond to the thumb and 1994 is the index finger while counting.
154. (B)
 Reena
(Δ) \mid (o)
Deepak - Sushant
(Δ)
(Δ)

\qquad KD Campus Pvt. Ltd 1997, OUTRAM LINE, KINGSWAY CAMP, DELHI-110009	
155.(A) 15th August, $2010=2009$ years + from 1.1.2010 to 15.8 .2010) odd days in 2000 years $=0$ Remaining 9 years $=2$ leap years +9 odd days $=11$ odd days $=4$ odd days Now from 1.1.2010 to $15 \cdot 8 \cdot 2010=227$ days $=32$ weeks +3 days $=\mathbf{3}$ odd days Total odd days $=4+3=7$ odd days. $=0$ odd days. So, Given day is Sunday.	156. (C) The order is: $\text { Literary } \rightarrow \text { Literature } \rightarrow \text { Litter } \rightarrow \text { Little }$ \rightarrow Littoral 157. (B) 158. (C) $\begin{aligned} & 4 \times 5-24 \div 12+8=14 \\ & \Rightarrow 4 \times 5+24 \div 12-8 \\ & \Rightarrow 20+2-8 \\ & \Rightarrow 14 \end{aligned}$ Hence, option (C) satisfies the given equation. 159. (D) 160. (A) Idea \rightarrow Writing \rightarrow Book \rightarrow Seller \rightarrow Reader \rightarrow Feedback.

UP SI ANSWER KEY - 47

(B)	21. (C)	41. (B)	61. (D)	81. (C)	101. (B)	121. (D)	141. (C)
2. (B)	22. (C)	42. (C)	62. (C)	82. (D)	102. (D)	122. (C)	142. (A)
3. (D)	23. (B)	43. (D)	63. (A)	83. (B)	103. (D)	123. (C)	143. (B)
4. (D)	24. (C)	44. (A)	64. (B)	84. (B)	104. (B)	124. (C)	144. (C)
5. (C)	25. (A)	45. (C)	65. (D)	85. (A)	105. (D)	125. (D)	145. (B)
6. (B)	26. (B)	46. (B)	66. (C)	86. (A)	106. (B)	126. (B)	146. (C)
7. (C)	27. (C)	47. (D)	67. (C)	87. (D)	107. (C)	127. (A)	147. (D)
8. (C)	28. (A)	48. (B)	68. (D)	88. (D)	108. (D)	128. (D)	148. (C)
9. (D)	29. (B)	49. (B)	69. (B)	89. (C)	109. (B)	129. (C)	149. (D)
10. (C)	30. (C)	50. (C)	70. (B)	90. (C)	110. (A)	130. (B)	150. (C)
11. (C)	31. (C)	51. (A)	71. (C)	91. (A)	111. (C)	131. (C)	151. (A)
12. (D)	32. (C)	52. (B)	72. (A)	92. (B)	112. (A)	132. (A)	152. (A)
13. (D)	33. (D)	53. (B)	73. (D)	93. (A)	113. (C)	133. (C)	153. (D)
(D)	34. (A)	54. (D)	74. (B)	94. (A)	114. (C)	134. (A)	154. (B)
15. (D)	35. (D)	55. (A)	75. (D)	95. (B)	115. (D)	135. (D)	155. (A)
16. (B)	36. (C)	56. (C)	76. (C)	96. (B)	116. (A)	136. (A)	156. (C)
17. (C)	37. (A)	57. (D)	77. (D)	97. (A)	117. (C)	137. (A)	157. (B)
18. (C)	38. (C)	58. (A)	78. (B)	98. (A)	118. (D)	138. (A)	158. (C)
19. (D)	39. (C)	59. (B)	79. (A)	99. (B)	119. (A)	139. (B)	159. (D)
20. (D)	40. (B)	60. (D)	80. (D)	100. (A)	120. (A)	140. (B)	160. (A)

