UP SI MOCK TEST - 49 (SOLUTION)

81. (B) Efficiency of father = Efficiency of two sons \therefore Time taken by father $=$ time taken by two sons
$\left.\stackrel{\mathrm{S}_{1} \longrightarrow 3}{\mathrm{~S}_{2} \longrightarrow 6}\right\rangle^{6}\left\langle\begin{array}{l}2 \text { efficiency of } \mathrm{S}_{1} \\ 1 \text { efficiency of } \mathrm{S}_{2}\end{array}\right.$
Efficiency of father $=3$
Time taken by father $=\frac{6}{3}=2 \mathrm{hr}$
82. (B) Side $=\frac{240}{4}=60 \mathrm{~m}$

Height $=20 \mathrm{~m}$
Area $=60 \times 20=1200 \mathrm{~m}^{2}$
83. (D) Marked price $=\frac{450 \times 100}{\left(100-\frac{50}{3}\right)}$
$=\frac{450 \times 100 \times 3}{250}=₹ 540$
84. (A) $2(B+C)=9 A$
$\Rightarrow \frac{A}{B+C}=\frac{2}{9}$
A's Share $=\frac{A}{A+B+C} \times 770$
$=\frac{2}{11} \times 770=₹ 140$
85. (C) C.P. of 4 dozen eggs $=24 \times 4=₹ 96$
C.P. of 2 dozen eggs $=32 \times 2=₹ 64$
C.P. of 6 dozen eggs $=₹ 160$
C.P. of one dozen egg $=₹ \frac{160}{6}$

Profit $=20 \%$
Selling price $=\frac{160}{6} \times \frac{120}{100}=$ ₹ 32
86. (B) L.C.M for 4, 6, 10 and $15=60$

N will be in form of $\mathrm{N}=60 \mathrm{n}+2$
Now,
least six digit number of form 60n
(i.e divisible by 60) $=100020$

So,
\Rightarrow least six digit number of form N
$=100020+2=100022$
\Rightarrow Sum of digits of $\mathrm{N}=1+0+0+0+2+2=5$
87. (A)

$\mathrm{AO}: \mathrm{OD}=2: 1$
ATQ,
2 units $=10 \mathrm{~cm}$
1 unit $=5 \mathrm{~cm}$
$\therefore \mathrm{OD}=5 \mathrm{~cm}$
88. (B) $\sin A=\cos B$
$\Rightarrow \sin \mathrm{A}=\sin \left(90^{\circ}-\mathrm{B}\right)$
$\Rightarrow A=90^{\circ}-B$
$\Rightarrow A+B=90$
$\because \mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$
$\therefore \mathrm{C}=90^{\circ}$
Then, $\cos 90^{\circ}=0$
89. (C)

$\angle \mathrm{AIC}=90^{\circ}+\frac{\angle \mathrm{ABC}}{2}=90+\frac{40^{\circ}}{2}=110^{\circ}$
90. (B) Radius of circle $=\frac{\sqrt{144+25}}{2}$

$$
=\frac{13}{2}=6.5 \mathrm{~cm}
$$

91. (A) $\sin \theta \cos \theta=\frac{1}{2}$
$\Rightarrow 2 \sin \theta \cos \theta=1$
$\Rightarrow \sin 2 \theta=1$
$\Rightarrow \sin 2 \theta=\sin 90^{\circ}$
$\Rightarrow \theta=45^{\circ}$
Now, $\sin 45^{\circ}-\cos 45^{\circ}$
$=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=0$
92. (C) Difference $=₹ 86520-₹ 20568$

$$
=\text { ₹ } 65952
$$

93. (B) M.P. $=\frac{119}{85} \times 100=₹ 140$
94. (B) Percentage profit against S.P.
$=\frac{25}{125} \times 100=20$
95. (A) A.T.Q,

Internal side $=8 \mathrm{~cm}$

$K D$
 Campus
 KD Campus Pvt. Ltd

$\therefore \triangle \mathrm{OMN}$ is an equilateral triangle
$A B=\frac{\sqrt{3}}{2} \times 8=4 \sqrt{3}$
$\mathrm{OA}=4 \sqrt{3}$
$\mathrm{OB}=6 \sqrt{3}$
OB is become height of the larger hexagon
$\frac{\sqrt{3}}{2} a=6 \sqrt{3}$
$\mathrm{a}=12$
side $=12 \mathrm{~cm}$
Area of shaded region
$=\frac{\sqrt{3}}{4}(12)^{2} \times 6-\frac{\sqrt{3}}{4} \times(8)^{2} \times 6$
$=\frac{\sqrt{3}}{4} \times 6[144-64]=120 \sqrt{3}$
96. (D) Speed of Sound $=\frac{1700}{25}=68 \mathrm{~m} / \mathrm{s}$
97. (B) ATQ, $\frac{3000 \times 12 \times \mathrm{T}}{100}=1080$
$\Rightarrow 12 \mathrm{~T}=36$
$\Rightarrow \mathrm{T}=3 \mathrm{yrs}$.
98. (B) $x^{2}=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta+2 a b \cos \theta \sin \theta$
$y^{2}=b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta-2 a b \cos \theta \sin \theta$...(ii)
By adding equation (i) \& (ii),
$x^{2}+y^{2}=a^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+b^{2}\left(\sin ^{2} \theta+\right.$ $\cos ^{2} \theta$)
$\Rightarrow x^{2}+y^{2}=a^{2}+b^{2}$
99. (B)

\mathbf{A}	$:$	\mathbf{B}
12	$:$	15
15	$:$	12
5	$:$	4

Share of $A=\frac{A}{A+B} \times 450$

$$
\begin{equation*}
=\frac{5}{9} \times 450=₹ 250 \tag{i}
\end{equation*}
$$

100. (D) $x=\sqrt{2}+1$
$\frac{1}{x}=\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}=\sqrt{2}-1$
By adding and subtracting (i) \& (ii),
$x+\frac{1}{x}=2 \sqrt{2}$
$x-\frac{1}{x}=2$

Now, $\left(x-\frac{1}{x}\right)^{2}=2^{2}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=4+2=6$
$x^{4}-\frac{1}{x^{4}}=\left(x^{2}+\frac{1}{x^{2}}\right)\left(x^{2}-\frac{1}{x^{2}}\right)$
$=\left(x^{2}+\frac{1}{x^{2}}\right)\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}\right)$
$=6 \times 2 \sqrt{2} \times 2$
$=24 \sqrt{2}$
101.(A) $3 x+4 y=6$

Squaring both sides,
$\Rightarrow 9 x^{2}+16 y^{2}+24 x y=36$
$\Rightarrow 60+24 x y=36$
$\Rightarrow 24 x y=-24$
$\Rightarrow x y=-1$
102. (C)

In $\triangle \mathrm{ABC}$,
$\mathrm{DE} \| \mathrm{BC}$ (given)
$\therefore \frac{A D}{A B}=\frac{D E}{B C}$
$\frac{1.5}{7.5}=\frac{2}{B C}$
$\Rightarrow B C=10 \mathrm{~cm}$
103. (B) Initial Present 100 103
40 41
20 21
80,000
$\downarrow \times 2$ 88683

1,60,000
1,77,366
Hence, Present population $=1,77,366$
104. (D)

Total B + D = ₹ 3060
105. (A) ATQ,

Work done by A in 1 day = Work done by B in 3 days

	A	$:$	B
Time	1	$:$	3
Efficiency	3	$:$	1

Campus

KD Campus Pvt. Ltd

Now total work $=3 \times 2+9 \times 1=15$ units Required time for A to complete the work $=\frac{15}{3}=5$ days
Required time for B to complete the work
$=\frac{15}{1}=15$ days
106. (A) A + B + C earns in one day $=\frac{2700}{18}$

$$
\text { = ₹ } 150
$$

A + C earns in one day $=₹ 94$
$B+C$ earns in one day $=₹ 76$
\therefore earning of $A=150-76$

$$
=₹ 74
$$

\therefore earning of $C=94-74$

$$
=₹ 20
$$

107. (C) Let the initial price $=₹ 1000$ the price of 1 gm weight is ₹ 1
ATQ,

Percent profit $=\frac{180}{900} \times 100=20 \%$
108. (A) Area of kite $=$ Area of square + Area of equilateral triangle
$=\frac{1}{2}(\text { diagonal })^{2}+\frac{\sqrt{3}}{4} \times(\text { side })^{2}$
$=\frac{1}{2} \times 32 \times 32+\frac{\sqrt{3}}{4} \times 8 \times 8$
$=512+16 \times 1.732$
$=512+27.712=539.712 \mathrm{~cm}^{2}$
109. (C) BO is bisector of $\angle \mathrm{B}$

$\angle \mathrm{ODB}=90^{\circ}$
$\angle \mathrm{BOD}=15^{\circ}$
$\angle \mathrm{OBD}=180^{\circ}-90^{\circ}-15^{\circ}=75^{\circ}$
$\angle \mathrm{ABC}=2 \times 75^{\circ}=150^{\circ}$
110. (B) ATQ,
$\pi r^{2}+\pi(14-r)^{2}=130 \pi$
$\Rightarrow \pi\left[\left(r^{2}+\left(14-r^{2}\right)\right]=130 \pi\right.$
$\Rightarrow\left[r^{2}+196+r^{2}-28 r\right]=130$
$\Rightarrow 2 r^{2}-28 r-66=0$
$\Rightarrow r^{2}-14 r-33=0$
$\Rightarrow r^{2}-11 r-3 r-33=0$
$\Rightarrow r=3,11$
111. (D) $\tan (\alpha-\beta)=1$
$\Rightarrow \tan (\alpha-\beta)=\tan 45^{\circ}$
$\Rightarrow \alpha-\beta=45^{\circ}$.
$\sec (\alpha+\beta)=\frac{2}{\sqrt{3}}$
$\Rightarrow \sec (\alpha+\beta)=\sec 30^{\circ}$
$\Rightarrow \alpha+\beta=30^{\circ}$.
From (i) \& (ii),
$\alpha=37.5^{\circ}$
112. (C) $4 r=h+\sqrt{r^{2}+h^{2}}$
$\Rightarrow 4 r-h=\sqrt{r^{2}+h^{2}}$
$\Rightarrow 16 r^{2}+h^{2}-8 r h=r^{2}+h^{2}$
$\Rightarrow 15 r^{2}=8 r h$
$\Rightarrow \frac{r}{h}=\frac{8}{15}$
$\therefore r: h=8: 15$
113. (A) For every $n \geq 4$;
n ! will be divisible by 8
\Rightarrow remainder will be zero
[becomes for $n \geq 4,8$ will be a factor of n !] So, remainder of $1!+2!+3!+4!\ldots \ldots+100$! will be equal to the remainder of $1!+$ $2!+3$! only
$1!+2!+3!=1+2+3$
and $\frac{9}{8} ; \mathrm{R}=1$
114. (C)

In $\triangle \mathrm{ABC}$,
$\tan 60^{\circ}=\frac{\mathrm{AC}}{B C}$
$\Rightarrow \frac{60}{B C}=\sqrt{3}$
$B C=20 \sqrt{3}$
In $\triangle \mathrm{ADE}$,
$\tan 45^{\circ}=\frac{\mathrm{AD}}{D E}$
$\Rightarrow 1=\frac{\mathrm{AD}}{20 \sqrt{3}}$
$\Rightarrow \mathrm{AD}=20 \sqrt{3}$
$\therefore \mathrm{BD}=\mathrm{CE}=60-20 \sqrt{3}$
$=20(3-\sqrt{3}) \mathrm{m}$
\therefore Height of Pole $=20(3-\sqrt{3}) \mathrm{m}$
115. (C) $\left(1+\frac{R}{100}\right)^{2}=\frac{11664}{10,000}$
$\Rightarrow\left(1+\frac{R}{100}\right)^{2}=\left(\frac{54}{50}\right)^{2}$
$\Rightarrow 1+\frac{R}{100}=\frac{54}{50}$
$\Rightarrow \frac{R}{100}=\frac{4}{50}$
$\Rightarrow R=8 \%$
116. (B) I

3 units $=12$
1 unit $=\frac{12}{3}=4$
4 units $=4 \times 4=16$
\therefore Larger number $=16$
117. (A) Female percentage in 1991
$=\frac{41}{85} \times 100=48.23$
118. (C) No. of males in 1971 per thousand females $=\frac{28}{26} \times 1000=1077$
119.(D) Ratio of the no. of female in 1961 per thousand male to in 1991 per thousand females
$=\frac{21}{23} \times 1000: \frac{44}{41} \times 1000$
= 913 : 1073
120. (B) Percentage increased from 1981-1991 is -
$=\frac{17}{68} \times 100=25 \%$
\therefore Population of India in 2001
$=85 \times \frac{125}{100}=106.25 \mathrm{cr}$.
121. (D) Students are in college and patients are in hospital.
122. (A)

123. (C) \qquad
124. (B) Ampere is the unit of electric current and Kilogram is the unit of weight.
125. (D)

126. (D)

${ }_{4}^{\mathrm{Q}}$

$\stackrel{L}{X} \underbrace{S}_{-5}$
127. (C) Except diameter, others are instrument.
128. (C)

129. (C)
$(20-9)^{2}=121$
$(24-11)^{2}=169$
$(32-17)^{2}=225$
130. (B)

131. (B)

132. (C) Total numbers of triangles $=18$
133. (C) Wednesday
134. (C) From figure (iii) and (iv), we have,

Y B 0
$\mathrm{Y} \mathrm{W} \mathbf{G}$
\therefore "Orange" color is opposite to the green color in the given cubes.
The correct order is :
135. (C) Advertisement \rightarrow Application \rightarrow Interview \rightarrow Selection \rightarrow Appointment \rightarrow Probation
136. (D)

137. (D) Let x and y be the number of deer and peacocks in the Zoo respectively. Then,
$x+y=80 \ldots$ (i) and
$4 x+2 y=200$ or $2 x+y=100 \ldots$ (ii)
Solving (i) and (ii), we get) $x=20, y=60$.
So, the number of peacocks in a Zoo is 60 .
138. (D) According to the statement, 80% of the total runs were made by spinners. So, I does not follow. Nothing about the opening batsmen is mentioned in the statement. So, II also does not follow.
139. (C) 28 D 6 S 34 M 2 A 8 D 6

After changing the signs as per the given details,
$28 \times 6+34 \div 2-8 \times 6$
$=168+17-48=185-48=137$

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009
140. (A)
$\mathrm{A} \xrightarrow{20 \mathrm{~m}} \mathrm{C} \xrightarrow{30 \mathrm{~m}} \mathrm{E} \xrightarrow{20 \mathrm{~m}} \mathrm{D} \xrightarrow{20 \mathrm{~m}} \mathrm{~B}$
\therefore Required Distance $=20 \mathrm{~m}$ right.
141. (C)

142. (A)

I. \times
II. V

Only conclusion I follows.
143. (C) pqrs/srqp/pqrs/srqp
144. (B)

145. (D)

146. (C)

147. (B)

Hour hand point towards the NorthWest.
148. (B) As,

Similarly,

149. (D)

150. (C) Let ascent of the monkey in 1 hour $=(30-20)=10$ feet .

So, the monkey ascends 90 feet in 9 hours i.e., 5 p.m.
Clearly, in the next 1 hour i.e., till 6 p.m. the monkey ascends remaining 30 feet to touch the flag.
151. (A) Let the age of son before two years $=x$ Then, Age of Aadhya $=3 x$ ATO,
$2(3 x+4)=5(x+4) \Rightarrow x=12$
The Present age of Aadhya
$=(12 \times 3)+2=38$ years
152.(A) $107-3 \oplus 64 \alpha 8 \oplus 2-9$

After changing the signs as per the given details,
$=107 \times 3-64 \div 8-2 \times 9$
$=321-8-18=321-26=295$
153. (B) "B" represents the "Men who are healthy but not old".
154. (C) $48 * 4 * 6 * 3 * 30$

After changing the signs as per the given details,
$48 \div 4+6 \times 3=30$
$\Rightarrow 12+18=30 \Rightarrow 30=30$
155. (B)
156. (C) The correct order is : Mercury \rightarrow Venus
\rightarrow Earth \rightarrow Mars \rightarrow Jupiter
Direction (157-160): Answer

157. (C)
158.
159. (D)
160.
(A)
(B)

UP SI ANSWER KEY - 49

