UP SI MOCK TEST - 56 (SOLUTION)

81. (C) M.R.P = 720, two successive

Discount $=259.20$
Discount $=\frac{259.20}{720} \times 100=36 \%$
Two successive Discount
$=-20-20+\frac{20 \times 20}{100}$
$=-40 \%+4 \%=-36 \%$
Two sucessive discount $=20 \%$
82. (B) Let side of the original cube be ' a '.

ATQ.,
Volume of the cube $=a^{3}$
$\Rightarrow a=\sqrt[3]{13824} \Rightarrow a=24 \mathrm{~cm}$
Now, Let side of the smaller cube be ' a_{1} '
Volume of the smaller cube $=a_{1}^{3}$
$\Rightarrow 8 a^{3}=13824$
$\Rightarrow a_{1}=\sqrt[3]{1728} \Rightarrow a_{1}=12 \mathrm{~cm}$
The ratio of the surface area of the original cube to the sum of the surface area of the three of the smaller cube
$=\frac{6 a^{2}}{3\left(6 a_{1}^{2}\right)}=\frac{6 \times 24 \times 24}{3(6) \times 12 \times 12}=\frac{4}{3}$
= $4: 3$
83. (A) Let $\mathrm{CP}=100$ units

24 units $\longrightarrow ₹ 30.60$
For 10\% profit
110 units $\longrightarrow \frac{30.60}{24} \times 110$
= ₹ 140.25
84. (A)

By theorem,
$\angle B O C=90^{\circ}+\frac{\angle A}{2}$ (By property)
$\Rightarrow 122^{\circ}-90^{\circ}=\frac{\angle A}{2} \Rightarrow \angle A=64^{\circ}$
85. (D) $x^{4}+x^{-4}=194$
$\Rightarrow x^{4}+\frac{1}{x^{4}}=194$
$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)^{2}-2 x^{2} \cdot \frac{1}{x^{2}}=194$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=\sqrt{196}=14$
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}-2=14 \Rightarrow x+\frac{1}{x}=4$
$\Rightarrow \frac{x^{2}+1}{x}=4 \Rightarrow x^{2}-4 x+1=0$
$\Rightarrow x^{2}-4 x+1+3=0+3$
$\Rightarrow(x-2)^{2}=3$
86. (B) $4-2 \sin ^{2} \theta-5 \cos \theta=0$
$\Rightarrow 4-2\left(1-\cos ^{2} \theta\right)-5 \cos \theta=0$
$\Rightarrow 4-2+2 \cos ^{2} \theta-5 \cos \theta=0$
$\Rightarrow 2 \cos ^{2} \theta-5 \cos \theta+2=0$
$\Rightarrow(2 \cos \theta-1)(\cos \theta-2)=0$
$\Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
Then, $\sin 60^{\circ}+\tan 60^{\circ}$
$\Rightarrow \frac{\sqrt{3}}{2}+\sqrt{3}=\frac{3 \sqrt{3}}{2}$
87. (B)

$\triangle \mathrm{ABC}$ and $\triangle \mathrm{AFE}$ are similar,
then $\frac{\operatorname{ar}(\triangle A E F)}{\operatorname{ar}(\triangle A B C)}=\left(\frac{A G}{A D}\right)^{2}$
$\Rightarrow \frac{1}{2}=\left(\frac{A G}{A D}\right)^{2} \Rightarrow \frac{A G}{A D}=\frac{1}{\sqrt{2}}$
Now, GD = AD - AG
$\Rightarrow \mathrm{GD}=\sqrt{2}-1$
$\Rightarrow \frac{G D}{A G}=\frac{\sqrt{2}-1}{1}$
Hence, GD : $\mathrm{AG}=(\sqrt{2}-1): 1$
88. (B) Let the number $=x$

ATQ,
$x+\frac{1}{x}=2$
$\therefore x=1$

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

89. (B) Average Salary
$=16000+\frac{(20,000-16,000)}{20}$
$=16000+\frac{4000}{20}=₹ 16200$
90. (A) A.T.Q.,

Putting $x=2$ and $y=1$ then, it is divisible by 72 .
Hence, $4 x-3 y=4 \times 2-1 \times 3$

$$
=5
$$

91. (B)

92. (A)

A.T.Q.,
$\sqrt{3}$ units $=1500 \mathrm{~m}$
$(3-1)=2$ units $=\frac{1500}{\sqrt{3}} \times 2$

$$
=1000 \sqrt{3}
$$

\therefore The distance between ships
$=1000 \sqrt{3} \mathrm{~m}$
93. (A) Present age of baby
$=(17 \times 6)-(17 \times 5+15)$
$=102-100$
$=2 \mathrm{yrs}$.
94. (D)

ATQ,
$\Rightarrow a+a+2 x-2 y+4 z=4 x-2 y+6 z$
$\Rightarrow 2 a=4 x-2 y+6 z-2 x+2 y-4 z$
$\Rightarrow 2 a=2 x+2 z$
$\Rightarrow a=x+z$
95. (B) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$

$$
\begin{aligned}
& \Rightarrow \frac{x y+y z+z x}{x y z}=1 \\
& \Rightarrow x y+y z+z x=x y z \\
& \Rightarrow x y+y z+z x=-1[\because x y z=-1] \\
& x+y+z=1 \\
& \text { Squaring both sides, } \\
& \Rightarrow x^{2}+y^{2}+z^{2}+2(x y+y z+z x)=1 \\
& \Rightarrow x^{2}+y^{2}+z^{2}=1+2=3 \\
& \text { Now, } x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left[x^{2}+y^{2}\right. \\
& \left.+z^{2}-(x y+y z+z x)\right] \\
& \Rightarrow x^{3}+y^{3}+z^{3}+3=1(3+1) \\
& \Rightarrow x^{3}+y^{3}+z^{3}=4-3=1
\end{aligned}
$$

96. (C) New Speed $=\frac{60 \times 15}{12}=75 \mathrm{~km} / \mathrm{hr}$
97. (C) Let M.P. $=100$
then, S.P. $=100 \times \frac{85}{100} \times \frac{85}{100} \times \frac{75}{100}$

$$
=51
$$

\therefore Equivalent discount $=100-51$

$$
=49 \%
$$

98. (A) $x=\sqrt{a}+\frac{1}{\sqrt{a}}$
$\Rightarrow x^{2}=a+\frac{1}{a}+2$
$y=\sqrt{a}-\frac{1}{\sqrt{a}}$
$\Rightarrow y^{2}=a+\frac{1}{a}-2$
$x^{2}-y^{2}=4$
$\Rightarrow\left(x^{2}-y^{2}\right)^{2}=16$
$\Rightarrow x^{4}+y^{4}-2 x^{2} y^{2}=16$
99. (B) $\tan \left(5 x-10^{\circ}\right)=\cot \left(5 y+20^{\circ}\right)$
$\Rightarrow \tan \left(5 x-10^{\circ}\right)=\tan \left(90^{\circ}-5 x-20^{\circ}\right)$
$\Rightarrow 5 x-10^{\circ}=90^{\circ}-5 y-20^{\circ}$
$\Rightarrow 5 x+5 y=80^{\circ}$
$\Rightarrow x+y=16^{\circ}$
100. (C)

\mathbf{A}	$\mathbf{:}$	\mathbf{B}
2	$:$	3
3	$:$	2

101. (C)

$l=\sqrt{(14)^{2}+\left(\frac{21}{2}\right)^{2}}$
$=\sqrt{196+\frac{441}{4}}=\sqrt{\frac{1225}{4}}=\frac{35}{2} \mathrm{~m}$
Total cost $=\mathrm{CSA} \times$ cost of $1 \mathrm{~m}^{2}$
$=\frac{22}{7} \times \frac{35}{2} \times \frac{21}{2} \times 6=₹ 3465$
102. (A)

$\mathrm{W}=\pi y^{2} \quad \mathrm{~A}=\pi x^{2}$
ATQ,
$\pi y^{2}-\pi x^{2}=w^{\prime}$
$\Rightarrow \mathrm{w}-\pi x^{2}=w^{\prime} \quad$ (putting $\pi y^{2}=\mathrm{w}$)
$\Rightarrow \pi x^{2}=w-w^{\prime}$
$\frac{\pi x^{2}}{\pi y^{2}}=\frac{w-w^{\prime}}{w}$
$\Rightarrow \frac{x}{y}=\sqrt{1-\frac{w^{\prime}}{w}}$
103. (A) Speed of man $=8 \mathrm{~km} / \mathrm{h}$

Speed of stream $=x \mathrm{~km} / \mathrm{h}$
Then,
$x+8=\frac{44}{4}=11$
$x=3 \mathrm{~km} / \mathrm{h}$
speed upstream $=8-3=5 \mathrm{~km} / \mathrm{h}$
\therefore Required time $=\frac{25}{5}=5$ hours.
104. (B) Pankaj $\rightarrow 20$ days

Let the total work $=20$ units
Then, $25 \%=\frac{1}{4}$
Remaining work $=20 \times \frac{3}{4}=15$ units
15 units done by Neha in 10 days
20 units (Total work) done by Neha
$=\frac{10}{15} \times 20=\frac{40}{3}$ days
Pankaj $\rightarrow 20$ days >2
Neha $\rightarrow \frac{40}{3}$ days 3 Total work
Time required for Pankaj and Neha to
complete the work $=\frac{40}{5}=8$ days
105. (C) Relative speed $=45-40=5 \mathrm{~km} / \mathrm{hr}$
\therefore Required distance $=\left(5 \times \frac{45}{60}\right) \mathrm{km}$
$=\frac{15}{4} \mathrm{~km}$
$=3 \mathrm{~km} 750$ metre .
106. (A) C.P. $=₹ 1800$
S.P. $=1800 \times \frac{11}{10}=₹ 1980$

Increase in profit $=\frac{2070-1980}{1800}$

$$
=\frac{90}{1800} \times 100=5 \%
$$

107. (C) Product of numbers $=\mathrm{LCM} \times \mathrm{HCF}$

Let other number be x
Then,
$x \times 32=160 \times 16$
\therefore Required sum $=80+16=96$
108. (B) Let the speed of boat in still water and the speed of current be $x \mathrm{~km} / \mathrm{h}$ and y km / h.
$x+y=20$
$\Rightarrow x=20-5=15 \mathrm{~km} / \mathrm{h}$
Upstream speed,
$x-y=15-5=10 \mathrm{~km} / \mathrm{h}$
Upstream time $=\frac{20}{10}=2 \mathrm{hrs}$
109. (D) Time taken by all the three pipes to fill the
$=\frac{1}{10}+\frac{1}{12}-\frac{1}{6}=60 \mathrm{~min}$
Time taken to fill the two-third part of tank
$=\frac{60}{1}=\frac{x}{\frac{2}{3}}=40$ minute
110. (D) Let the quantity of acid be added be x gm.
A.T.Q.,
$\frac{600 \times \frac{2}{5}+x}{600+x}=\frac{1}{2}$
$\Rightarrow 480+2 x=600+x$
\therefore Required quantity $x=600-480$

$$
=120 \mathrm{gm}
$$

111. (B) $\cos ^{2} \alpha+\cos ^{2} \beta=2$
$=1-\sin ^{2} \alpha+1-\sin ^{2} \beta=2$
$=\sin ^{2} \alpha+\sin ^{2} \beta=0$
$=\sin \alpha=\sin \beta=0$
$=\alpha=\beta=0$
$\therefore \tan ^{3} \alpha+\sin ^{5} \beta=0$
112. (A)

When we open it

The base circumference
$=2 \pi r=2 \times \frac{22}{7} \times \frac{56}{11} \times \frac{1}{2}=16 \mathrm{~cm}$
$\therefore \mathrm{AM}=$ length of one complete turn
$=\sqrt{16^{2}+12^{2}}$
$=20 \mathrm{~cm}$
\therefore total length $=4 \times 20=80 \mathrm{~cm}$
113. (B) $a^{2}+b^{2}+c^{2}=a b+b c+c a$
$\Rightarrow a^{2}+b^{2}+c^{2}-a b-b c-c a=0$
Multiply by " 2 " on both sides,
$2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 c a=0$
$\Rightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$
$\therefore a=b=c$
\therefore The triangle is equilateral
114. (A) $\sqrt{8}+2 \sqrt{32}-3 \sqrt{128}+4 \sqrt{50}$
$=2 \sqrt{2}+8 \sqrt{2}-3 \times 8 \sqrt{2}+4 \times 5 \sqrt{2}$
$=2 \sqrt{2}+8 \sqrt{2}-24 \sqrt{2}+20 \sqrt{2}$
$=(2+8-24+20) \sqrt{2}$
$=6 \sqrt{2}=6 \times 1.414=8.484$
115. (C) Suppose a container contains x units of liquid from which y units are taken out and replaced by water. After n operations, the quantity of pure liquid
$=x\left(1-\frac{y}{x}\right)^{n}$ units
Remaining water $=\left(1-\frac{3}{30}\right)^{2}=30$
$=\frac{30 \times 9 \times 9}{100}=24.3$ litres
116. (B) Let the total profit $=100$ units

Remaining profit after donation
\therefore Share of $X=\frac{95}{(3+2)} \times 3=57$ units
A.T.Q.,

57 units ₹8550
1 unit $=\frac{8550}{57}$
100 units $=\frac{8550}{57} \times 100=₹ 15000$
117. (A) Required angle
$=\frac{60}{39+45+54+60+72} \times 360^{\circ}=80^{\circ}$
118. (D) Total production of B type of cars in 2013, 2014, 2015 and 2017
$=39+45+54+72=210$
Production of all types of cars in $2017=$
$36+72+45+47+55=255$
\therefore Required $\%=\frac{255-210}{255} \times 100$
$=17.64$
119. (A) Total production of C and E type cars in the years 2013
$=52+36=88$
Total production of D in 2014 and 2016 and E in 2017
$=42+46+55=143$
\therefore Required ratio $=88: 143=8: 13$
120. (C) Total production of A type cars in year 2015 and C type cars in $2013=48+$ $52=100$
Total production of D type cars in five years
$=50+42+45+46+47=230$
\therefore Required $\%=\frac{100}{230} \times 100$
$=\frac{1000}{23} \approx 43.5 \%$
121. (B) $12=3 \times 4, \quad \mathbf{1 4}=\mathbf{2} \times \mathbf{7}$
$56=7 \times 8, \quad 30=5 \times 6$
122. (B)

123. (A)
125. (D) As,

Similarly,

126. (D)
127. (B)

128. (C)

129. (D)
130. (D)
131. (C)

Similarly,

132. (C)

133. (D) The required ratio $=\frac{\frac{2}{3}+\frac{4}{9}}{\frac{1}{3}+\frac{5}{9}}$

$$
=\frac{10 / 9}{8 / 9}=5: 4
$$

134. (C)
135. (D)
136. (A) As, FLOWER $=($ Total alphabet +1$) \times 2$
$\Rightarrow(6+1) \times 2=14$
And, DISTASTE $=(8+1) \times 2=18$
Similarly,
BUREAUCRAT $=(10+1) \times 2=22$
137. (A) $\mathrm{ac} \underline{\mathbf{b}} / \mathrm{d} \underline{\mathbf{d} b} / \underline{\mathbf{a} c b / d d \underline{\mathbf{b}} / \mathrm{a} \underline{\mathbf{c}} \mathrm{b} / \mathrm{ddb} \text { b }}$
138. (C)

139. (B) Except (B), in all others options the
country name and its currency name are given.
140. (C)
141. (C)
 Conclusion:
I. (\times)
II. (\times)
III. (V)
\therefore Only conclusion III follows.
142. (D)
143. (D)

144. (B)

145. (B) 10 years ago,

Let, Son's age $=x$ years
his father's age $=\frac{7}{2} x$ years
ATQ.,
$\left(\frac{7 x}{2}+20\right)=\frac{9}{4}(x+20)$
$\Rightarrow \frac{7 x+40}{2}=\frac{9 x+180}{4}$
$\Rightarrow 14 x+80=9 x+180$
$\Rightarrow 5 x=100 \Rightarrow x=20$
At present
Son's age $=20+10=30$ years
His father's age $=\frac{7}{2} \times 20+10$

$$
=80 \text { years }
$$

The required sum $=80+30$
$=110$ years
146. (D)

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009
147. (C) ATQ,

Before

\div	\longrightarrow	+
+	\longrightarrow	-
-	\longrightarrow	\times
\times	\longrightarrow	

$54 \times 6-7 \div 8+2$
After changing the signs,
$=54 \div 6 \times 7+8-2$
$=63+8-2=69$
148. (A) Illness \rightarrow Doctor \rightarrow Diagnosis

Prescription \rightarrow medicine \rightarrow Recovery
149. (A) cbadbccbadbccebadbe
150. (B) ATQ.,
$15-9 \div 6 \times 10+5=25$
Form option (B)
$\Rightarrow 15+9 \div 6 \times 10-5$
$\Rightarrow 15+\frac{3}{2} \times 10-5$
$\Rightarrow 15+15-5$
$\Rightarrow 25$
151. (D)

Similarly,
152. (A)
153. (D)
154.
(C) $\mathrm{A}=\frac{1}{2}(\mathrm{~B}+\mathrm{C}) \Rightarrow \frac{\mathrm{A}}{\mathrm{B}+\mathrm{C}}=\frac{1}{2}$
$\Rightarrow \frac{A}{A+B+C}=\frac{1}{3} \times \frac{5}{5}=\frac{5}{15}$
and $B=\frac{1}{4}(A+C) \Rightarrow \frac{B}{A+C}=\frac{1}{4}$
$\Rightarrow \frac{\mathrm{B}}{\mathrm{A}+\mathrm{B}+\mathrm{C}}=\frac{1}{5} \times \frac{3}{3}=\frac{3}{15}$
$\therefore \mathrm{A}: \mathrm{B}: \mathrm{C}=5,3,7$
C's share more than that of
$\mathrm{A}=\frac{75}{15} \times 1875=\frac{2}{15} \times 1875$
$=2 \times 125=₹ 250$
155. (D)
156. (B) $9+3^{2}=9+9=18$
$18+3^{2}=18+9=27$
$27+3^{2}=27+9=36$
157. (B)

In half part of circle digit are increasing in ascending order i.e. 2, 3, 4, 5

In the half part of circle digits are increasing in ascending order in odd number if,
$5,7,9,11$
158. (C) In figure I
$(15 \times 6 \times 4) \div 36$
$=360 \div 36=10$
In figure II
$(6 \times 7 \times 5) \div 21$
$=210 \div 21=10$
In figure III
$(50 \times 10 \times 10) \div x=10$
$\mathrm{x}=5000 \div 10$
$\mathrm{x}=500$
159. (B) In row I
$14+19+12=45$
In row II
$13+15+17=45$
So, In row III
$18+11+x=45$
$29+x=45$
$x=45-29$
$\mathrm{x}=16$
160. (D) In these question
in row \rightarrow YDR
in column \rightarrow EDO
Then complete word is REDOUBT and HYDRANT.

UP SI ANSWER KEY - 56

1.	(D)	21.	(C)	41.	(B)	61.	(A)	81.	(C)	101. (C)	121. (B)	141. (C)
2.	(B)	22.	(B)	42.	(A)	62.	(A)	82	(B)	102. (A)	122. (B)	142. (D)
3.	(B)	23.	(D)	43.	(A)	63.	(B)	83	(A)	103. (A)	123. (A)	143. (D)
4.	(C)	24.	(A)	44.	(D)	64.	(B)	84	(A)	104. (B)	124. (A)	144. (B)
5.	(D)	25.	(B)	45.	(C)	65.	(C)	85.	(D)	105. (C)	125. (D)	145. (B)
6.	(A)	26.	(D)	46.	(C)	66.	(B)	86.	(B)	106. (A)	126. (D)	146. (D)
7	(D)	27.	(B)	47.	(A)	67.	(A)	87.	(B)	107. (C)	127. (B)	147. (C)
8.	(B)	28.	(A)	48.	(D)	68.	(A)	88.	(B)	108. (B)	128. (C)	148. (A)
9.	(A)	29.	(C)	49.	(B)	69.	(A)	89		109. (D)	129. (D)	149. (A)
10.	(D)	30.	(A)	50.	(B)	70.	(A)	90	(A)	110. (D)	130. (D)	150. (B)
11.	(D)	31	(B)	51.	(A)	71	(A)	91		111. (B)	131. (C)	151. (D)
12.	(A)	32.	(B)	52.	(A)	72.	(A)	92.	(A)	112. (A)	132. (C)	152. (A)
13.	(C)	33.	(A)	53.	(B)	73.	(A)	93.	(A)	113. (B)	133. (D)	153. (D)
14.	(A)	34	(B)	54.	(C)	74.	(B)	94		114. (A)	134. (C)	154. (C)
15.	(A)	35.	(B)	55.	(B)	75.	(B)	95.		115. (C)	135. (D)	155. (D)
16.	(C)	36.	(A)	56.	(C)	76.	(A)	96.		116. (B)	136. (A)	156. (B)
17.	(A)	37.	(C)	57.	(D)	77.	(D)	97.		117. (A)	137. (A)	157. (B)
18.	(A)	38.	(D)	58.	(A)	78.	(C)	98.		118. (D)	138. (C)	158. (C)
19.	(D)	39.	(A)	59.	(D)	79.	(A)	99.		119. (A)	139. (B)	159. (B)
20.	(A)	40.	(D)	60.	(D)	80.	(A)	100	(C)	120. (C)	140. (C)	160. (D)

