UP SI MOCK TEST - 58 (SOLUTION)

81. (A) Let ₹ x be lent at 10% per annum.
$\therefore ₹(1500-x)$ is lent at 7% per annum
Now, $\frac{x \times 10 \times 3}{100}+\frac{(1500-x) \times 7 \times 3}{100}=396$
$\Rightarrow 30 x+31500-21 x=39600$
$\Rightarrow 9 x=39600-31500$
$\Rightarrow x=\frac{8100}{9}=₹ 900$
82. (D)

Total B + D = ₹ 3060
83. (A) ATQ,

Work done by A in 1 day = Work done
by B in 3 days

	A	$:$	B
Time	1	$:$	3
Efficiency	3	$:$	1

Now total work $=3 \times 2+9 \times 1=15$ units
Required time for A to complete the work
$=\frac{15}{3}=5$ days
Required time for B to complete the work
$=\frac{15}{1}=15$ days
84. (A)

CP		SP
$(100-$ Discount $)$	$:$	$\left(\begin{array}{c}100+\text { Pr } \\ (100-4)\end{array}\right.$
Total number of article $\longleftarrow \frac{96}{16}$	$:$	$\frac{135}{15}$
Ratio of cost of 1 article $\longleftarrow 2$	$:$	9

85. (A) Le the rate $=r$

ATQ,
$\frac{400 \times 3 \times r}{100}+\frac{500 \times 4 \times r}{100}=160$
$\Rightarrow 32 r=160$
$\Rightarrow r=5 \%$
86. (A) $\mathrm{P}+\mathrm{Q} \rightarrow 90$ Minutes
$\mathrm{Q}+\mathrm{R} \rightarrow 60$ Minutes $\xrightarrow{3} 180$ Total capacity
$\mathrm{P}+\mathrm{R} \rightarrow 45$ Minutes $\begin{aligned} & \text { units } / \mathrm{min} \\ & \text { (in units) }\end{aligned}$
Efficiency of $(P+Q+R)=\frac{2+3+4}{2}$
$=4.5$ units $/ \mathrm{min}$
Efficiency of $P=(4.5-3)=1.5$ units $/ \mathrm{min}$
Efficiency of $Q=(4.5-4)=0.5$ units $/ \mathrm{min}$
Efficiency of $R=(4.5-2)=2.5$ units $/ \mathrm{min}$
Required time for $\mathrm{P}=\frac{180}{1.5}=120 \mathrm{~min}$
Required time for $\mathrm{Q}=\frac{180}{0.5}=360 \mathrm{~min}$
Required time for $R=\frac{180}{2.5}=72 \mathrm{~min}$
87. (D) Simple interest of 2 years $=20 \%$

Compound interest of 2 years $=21 \%$
Diff. between simple and compound interest
$=1 \%$
$\downarrow \times 130$
130
\therefore Principal $=130 \times 100$
= ₹13000
88. (B) S.I. $=\frac{6000 \times 5 \times 2}{100}=₹ 600$
C.I. $=5000\left[\left(1+\frac{8}{100}\right)^{2}-1\right]$
$=5000\left[\left(\frac{27}{25}\right)^{2}-1\right]$
$=5000\left[\left(\frac{729-625}{625}\right)\right]$
$=5000 \times \frac{104}{625}=₹ 832$
Difference $=832-600=₹ 232$
89. (D)

[^0]1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

Total work in 4 days
$=12+21+27+31$
$=33+58$
$=91$ units
In 4 days total
Work done $\mathrm{A}(\mathrm{B}, \mathrm{A}),(\mathrm{A}+\mathrm{B})$ and $(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D})$
Remaining work $=144-91=53$
Remaining work done by $(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D})$ in $\frac{53}{31}$
Total time taken 144 units
Work $=5 \frac{22}{31}$ days.
90. (B) \because Distance between 21 posts
$=(21-1) \times 50=1000 \mathrm{~m}$
\therefore Speed of train $=1 \mathrm{~km} / \mathrm{min}=60 \mathrm{~km} / \mathrm{h}$
91. (B) $\mathrm{SI}=\frac{15000 \times 9 \times 2}{100}=₹ 2700$
$C I=12000\left[\left(1+\frac{8}{100}\right)^{2}-1\right]$
$=12000\left[\left(\frac{27}{25}\right)^{2}-1\right]$
$=12000\left[\frac{729-625}{625}\right]$
$=12000 \times \frac{104}{625}=₹ 1996.8$
\therefore Total interest earned
$=₹(2700+1996.8)=₹ 4696.8$
92. (C) Suppose a container contains x units of liquid from which y units are taken out and replaced by water. After n operations, the quantity of pure liquid
$=x\left(1-\frac{y}{x}\right)^{n}$ units
Remaining water $=\left(1-\frac{3}{30}\right)^{2}=30$
$=\frac{30 \times 9 \times 9}{100}=24.3$ litres
93. (B) Let the number of boys be x and that of girls be y.
Then, total score of boys $=71 x$ and total score of girls $=73 y$
$\therefore \frac{71 x+73 y}{(x+y)}=71.8$
$\Rightarrow 71 x+73 y=71.8 x+71.8 y$
$\Rightarrow 0.8 x=1.2 y \Rightarrow \frac{x}{y}=\frac{1.2}{0.8}=\frac{3}{2}$
\therefore Percentage of girls in the class
$=\frac{2}{5} \times 100=40 \%$
94. (C) Let the work is completed in x days.

Work done by $(P+Q)$ in 1 day $=\frac{1}{10}$ work
Work done by $(Q+R)$ in 1 day $=\frac{1}{18}$ work
P's 5 day's work + Q's 10 day's work +
R's 15 day's work $=1$
(P + Q)'s 5 day's work + $(\mathrm{Q}+\mathrm{R})$'s 5 day's work + R's 10 day's work $=1$
$\frac{5}{10}+\frac{5}{18}-\frac{10}{x}=1$
$\Rightarrow x=45$
95. (D)

$\angle a=36^{\circ}$
$\angle b=54^{\circ}$
\therefore value of $\angle c=180^{\circ}-\angle 54$
$\angle c=126^{\circ}$
96. (C) $\mathrm{AB}\|\mathrm{CD}\| \mathrm{PQ}$ (Given)

Let $\mathrm{AB}=a, \mathrm{PQ}=b, \mathrm{CD}=c$
$\therefore \frac{1}{b}=\frac{1}{a}+\frac{1}{c}$
$\Rightarrow \frac{1}{b}=\frac{1}{12}+\frac{1}{18}$
$\Rightarrow \frac{1}{b}=\frac{3+2}{36}$
$\Rightarrow \frac{1}{b}=\frac{5}{36} \Rightarrow b=\frac{36}{5} \mathrm{~cm}$
97. (C) $5 \tan \theta=4$

$$
\tan \theta=\frac{4}{5}
$$

$\therefore \frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+3 \cos \theta}=\frac{\frac{5 \sin \theta-3 \cos \theta}{\frac{\cos \theta}{5 \sin \theta+3 \cos \theta}} \frac{\cos \theta}{}}{\frac{1}{2}}$

Campus

KD Campus Pvt. Ltd

$=\frac{5 \tan \theta-3}{5 \tan \theta+3}=\frac{5 \times \frac{4}{5}-3}{5 \times \frac{4}{5}+3}$
$=\frac{4-3}{4+3}=\frac{1}{7}$
98. (A)

$$
\begin{aligned}
& \angle \mathrm{CAT}=44^{\circ} \\
& \angle \mathrm{BTA}=40^{\circ} \\
& \angle \mathrm{ACT}=180^{\circ}-44^{\circ}-40^{\circ}=96^{\circ} \\
& \angle \mathrm{CAT}=\angle \mathrm{CBA}=44^{\circ} \\
& \angle \mathrm{BAC}=180^{\circ}-84^{\circ}-44^{\circ}=52^{\circ} \\
& \therefore \text { Angle on } \mathrm{Arc}=\mathrm{BC}=2 \times 52^{\circ}=104^{\circ}
\end{aligned}
$$

99. (B)

Let $\mathrm{AB}=\mathrm{BC}=x$
then $\mathrm{AC}=\sqrt{2} x$
But AC $=\sqrt{128}=8 \sqrt{2} \mathrm{~cm}$
$\sqrt{2} x=8 \sqrt{2}$
$\Rightarrow x=8 \mathrm{~cm}$
Areas of semicircles
$=\frac{1}{2} \pi\left(\frac{x}{2}\right)^{2}+\frac{1}{2} \pi\left(\frac{x}{2}\right)^{2}$
$=\frac{1}{2} \pi(2 \times 16)$
$=16 \pi \mathrm{~cm}^{2}$
100. (B) Let $a=b=c=2$, then $2 s=6$
$s=3$
$\therefore(s-a)^{3}+(s-b)^{3}+3(s-a)(s-b) c$
$=(3-2)^{3}+(3-2)^{3}+3(3-2)(3-2) \times 2$
$=1+1+3 \times 2=8$
$=c^{3}$
101. (D) Assume $\theta=45^{\circ}$
then $4 \mathrm{~m}=1 \times\left(1+\frac{1}{\sqrt{2}}\right)$
$m=\frac{\sqrt{2}+1}{4 \sqrt{2}}$ and $n=\frac{\sqrt{2}-1}{4 \sqrt{2}}$
$\therefore m^{2}-n^{2}=\frac{1}{32}\left[(\sqrt{2}+1)^{2}-(\sqrt{2}-1)^{2}\right]$
$=\left[\frac{1}{32}(4 \sqrt{2})\right]=\left(m^{2}-n^{2}\right)=\frac{1}{32}$
from options-
$m n=\frac{\sqrt{2}+1}{4 \sqrt{2}} \cdot \frac{\sqrt{2}-1}{4 \sqrt{2}}=\frac{1}{32}$
$\therefore\left(m^{2}-n^{2}\right)=m n$
102. (B) Let the length of train be L ATQ,
$\frac{L}{40 \times \frac{5}{18}}=9$
$\Rightarrow \mathrm{L}=\frac{9 \times 40 \times 5}{18} m$
$\Rightarrow \mathrm{L}=100 \mathrm{~m}$
103. (B) $\mathrm{N}=270 \times 126 \times 324 \times 55$
$=2^{4} \times 3^{9} \times 5^{2} \times 7 \times 11$
\therefore maximum value of $\mathrm{m}=9$
104. (B)

ATQ,
1 unit $=2.5 \mathrm{~m}$
$(\sqrt{3}+1)$ units $=2.5(\sqrt{3}+1)$
$=2.5 \times 2.73$
$=6.825 \mathrm{~m}$
\therefore Width of the river $=6.83 \mathrm{~m}$
105. (C) Let Speed of the boat $=x \mathrm{~km} / \mathrm{h}$ and, Speed of stream $=y \mathrm{~km} / \mathrm{h}$
$x+y=8$

$x-y=4$
$2 x=12$

$\Rightarrow x=6 \mathrm{~km} / \mathrm{h}$
106. (B) $\sin \mathrm{A}=1-\sin ^{2} \mathrm{~A}=\cos ^{2} \mathrm{~A}$
$\Rightarrow \sin ^{2} \mathrm{~A}=\cos ^{4} \mathrm{~A}$
and $\cos ^{2} \mathrm{~A}+\cos ^{4} \mathrm{~A}$
$\cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}=1$
107. (C) Let the speed $=x \mathrm{~km} / \mathrm{hr}$
A.T.Q.,
$\frac{11}{2} \times x=(x+6) \times 5$
$\frac{1}{2} \times x=30$
$x=60 \mathrm{~km} / \mathrm{hr}$
108. (A)

In $\triangle \mathrm{ABM}$,
$\angle \mathrm{ABM}+\angle \mathrm{BMA}+\angle \mathrm{MAB}=180^{\circ}$
$\Rightarrow 55+90+\angle \mathrm{MAB}=180^{\circ}$
$\Rightarrow \angle \mathrm{MAB}=35^{\circ}$
In $\triangle \mathrm{ABC}$,
$55+35+\angle \mathrm{BAC}=180^{\circ}$
$\Rightarrow \angle \mathrm{BAC}=90^{\circ}$
AN bisects of $\angle \mathrm{A}$, then
$\angle \mathrm{BAN}=\angle \mathrm{CAN}=45^{\circ}$
Now, $\angle \mathrm{BAM}+\angle \mathrm{MAN}=45^{\circ}$
$\Rightarrow 35+\angle \mathrm{MAN}=45^{\circ} \Rightarrow \angle \mathrm{MAN}=10^{\circ}$
109. (C) Let the speed of boat along the current and against the current be $x \mathrm{~km} / \mathrm{hr}$ and $y \mathrm{~km} / \mathrm{hr}$ respectively.
A.T.Q.,
$x+y-16$
$x-y=10$
$2 x=26$
$x=13, y=3$.
\therefore Speed of current $=3 \mathrm{~km} / \mathrm{hr}$.
110. (B) Let the age of mother and son be x and y respectively.
A.T.Q.,
$\frac{x-10}{y-10}=\frac{5}{3} \Rightarrow 3 x-5 y=20$
and, $\frac{x-10}{y-10}=\frac{3}{1} \Rightarrow x-3 y=-20$
From eq(i) and eq (ii)
$x=40$ and $y=20$.
\therefore Required ratio $=y: x=20: 40$
= $1: 2$
111. (D) Let the quantity of acid be added be x gm.
A.T.Q.,
$\frac{600 \times \frac{2}{5}+x}{600+x}=\frac{1}{2}$
$\Rightarrow 480+2 x=600+x$
\therefore Required quantity $x=600-480$
112. (B) $\frac{6 x}{2 x^{2}+5 x-2}=1$

On dividing by x in numerator and denominator,
$\Rightarrow \frac{6}{2 x+5-\frac{2}{x}}=1$
$\Rightarrow 2 x+5-\frac{2}{x}=6 \Rightarrow 2\left(x-\frac{1}{x}\right)=1$
$\Rightarrow x-\frac{1}{x}=\frac{1}{2}$
Now, $x^{2}+\frac{1}{x^{2}}=\left(\frac{1}{2}\right)^{2}+2$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=\frac{1}{4}+2$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=\frac{9}{4}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}+2=\frac{9}{4}+2$
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}=\frac{17}{4} \Rightarrow x+\frac{1}{x}=\frac{\sqrt{17}}{2}$
Now, $x^{3}+\frac{1}{x^{3}} \Rightarrow\left(\frac{\sqrt{17}}{2}\right)^{3}-3 \times \frac{\sqrt{17}}{2}$
$\Rightarrow \frac{17 \sqrt{17}}{8}-\frac{3 \sqrt{17}}{2}=\frac{5 \sqrt{17}}{8}$
113. (C) Cost of 1 kg of mangoes $=\frac{456}{19}=₹ 24$

Cost of 1 kg of apples $=2 \times 48=₹ 96$
Cost of 1 kg of almonds $=\frac{50 \times 96}{8}=₹ 600$
Cost of 3 kg of almonds and 4 kg of apples $=3 \times 600+4 \times 96=₹ 2184$
114. (B) Putting $x=3, y=7$, number $67127 y 76 x 2$ is divisible by 88.
Now, $7 x-7 y=7 \times 3-2 \times 7$
$\Rightarrow 7 x-7 y=21-14=7$
115. (B) A.T.Q,
$=\sqrt{-\sqrt{3}+\sqrt{3+8 \sqrt{4+3 \sqrt{3}}}}$
$=\sqrt{-\sqrt{3}+\sqrt{3+8(2+\sqrt{3})}}$
$=\sqrt{-\sqrt{3}+\sqrt{3+16+24 \sqrt{3}}}$
$=\sqrt{-\sqrt{3}+4+\sqrt{3}}$
$=2$
116. (A) Volume of sphere $=\frac{4}{3} \pi(6)^{3}$
$=288 \pi \mathrm{~cm}^{3}$
Let the radius of wire be r
volume of wire $=\pi r^{2} .144 \times 100$
ATQ, $288 \pi=144 \times 100 \times \pi r^{2}$
$\Rightarrow \frac{2}{100}=r^{2}$
$\Rightarrow r=0.2 \mathrm{~cm}$
117. (A) The required average
$=\frac{2250}{5}=450$
118. (A) The required Percent $=\frac{340}{2010} \times 100$

$$
=16.9 \%
$$

119. (A) The required ratio $=\frac{370+250}{420+430}$

$$
=\frac{620}{850}=\frac{62}{85}=62: 85
$$

120. (C) The required percent
$=\frac{430}{(310+370+420)} \times 100$
$=\frac{430}{1100} \times 100=39.1 \%$
121. (D) As, grain store in warehouse similarly, water store in dam.
122. (A)

Similarly,

123. (C) $18 \Rightarrow(18 \times 2)-6=30$
$36 \Rightarrow(36 \times 2)-6=66$
124. (B) Being erudite is a trait of a professor and being imaginative is a trait of an inventor.
125. (B)

126. (D) $1629 \Rightarrow 1+6+2=9$
$3418 \Rightarrow 3+4+1=8$
$2349 \Rightarrow 2+3+4=9$
$\mathbf{1 8 3 4} \Rightarrow \mathbf{1}+\mathbf{8 + 3} \mathbf{3}=\mathbf{4}$
127. (A) Except "High-up", others are antonym of each other.
128. (B)

129. (A)

130. (B) As, $(17+19) \div 6=6$
and, $(42+36) \div 6=13$
Similarly, $(64+50) \div 6=19$
131. (C) $7 \times 2-1 \rightarrow 13$
$13 \times 2-1 \rightarrow 25$
$25 \times 2-1 \rightarrow 49$
$49 \times 2-1 \rightarrow 97$
$97 \times 2-1 \rightarrow 193$
132. (C) Total number of triangle is 28.
133. (D)
$\begin{array}{llllll}\vdash & \perp & 1 & 1 & 1 & \prime \\ C & \text { E } & \text { A } & \text { B } & \text { D } & \text { F }\end{array}$
Hence, D is sitting left of F .
134. (C) $w x y / w x \mathbf{x} / \mathbf{y w x} / \mathrm{xxy}$
135. (B) $(24+20)-2(24-20)=44-8=36$
$(15+11)-2(15-11)=26-8=18$
$(55+40)-2(55-40)=95-30=65$
136. (A) Total number of odd days since 25 June to 15 August.
$=5+31+15=51$
Remaining $=\frac{51}{7}=2$
Hence, Manoj birth day will be Friday.
137. (B)

Hence, In place of 9 at K.
138. (D) Neither conclusion I nor II follow.
139. (C)

140. (A)

141. (C) Rodents

Living beings
142. (A) Let peacocks y and x deers
$x+y=120$
$\Rightarrow y=120-x$
and,
$4 x+2 y=320$
From eq. (i) and (ii)
$4 x+2(120-x)=320$
$\Rightarrow 4 x+240-2 x=320$
$\Rightarrow 2 x=80$
$\Rightarrow x=40$
and, $y=80$
Hence, total number peacocks $=80$
143. (D)
144. (B) "2" Represents those teachers who are social workers.
145. (A)
146. (A) Opposite faces are

Option (A) and be formed by folding.
147. (D) $672 \div 12+17 \times 21-400=13$
$\Rightarrow 56+357-400=13$
$\Rightarrow 13=13$
148. (C) As, AMO UNT $\underset{\uparrow}{\text { BNP }} \underset{\uparrow}{\text { TMS }}$ Similarly,

149. (C)
150. (B)
151. (D) Happy birth day either 12 or 13 .
152. (D) Let the age of the wife $=x$

Then, the age of the man $=x+3$
Age of the son $=\frac{x+3}{4}$
A.T.Q,
$\frac{x+3}{4}+3=15$
$x=45$
\therefore Age of his wife $=45$ years
153. (C)

154. (D)
155. (A) Required angle $=\left|30 \times 3-\frac{24 \times 11}{2}\right|$

$$
\begin{aligned}
& =|90-132| \\
& =42^{\circ}
\end{aligned}
$$

Hence, required angle $=42^{\circ}$
156. (A) $\mathrm{S} . \mathrm{P}=₹ 4140$,
$\mathrm{P} \%=15$

$$
\begin{aligned}
& \mathrm{CP}=4140 \times \frac{100}{115}=₹ 3600 \\
& \text { New } \\
& \begin{array}{l}
\text { ₹ } 4500
\end{array}
\end{aligned}
$$

157. (B) $\mathrm{c} d \mathbf{d} \mathrm{ab} \mathbf{b} / \mathrm{cd} \mathbf{d} \mathrm{abb} / \mathbf{c}$ dda $\mathbf{b} \mathrm{d}$
158. (B)

159. (A)

UP SI ANSWER KEY - 58

1.	(D)	21.	(A)	41.	(C)	61.	(C)	81.	(A)	101. (D)	121. (D)	141. (C)
2.	(B)	22.	(A)	42.	(B)	62.	(C)	82.	(D)	102. (B)	122. (A)	142. (A)
3.	(A)	23.	(B)	43.	(A)	63.	(A)	83.	(A)	103. (B)	123. (C)	143. (D)
4.	(C)	24.	(A)	44.	(B)	64.	(D)	84.	(A)	104. (B)	124. (B)	144. (B)
5.	(C)	25.	(D)	45.	(C)	65.	(A)	85.	(A)	105. (C)	125. (B)	145. (A)
6.	(A)	26.	(B)	46.	(B)	66.	(B)	86.	(A)	106. (B)	126. (D)	146. (A)
7.	(D)	27.	(A)	47.	(A)	67.	(C)	87.	(D)	107. (C)	127. (A)	147. (D)
8.	(B)	28.	(D)	48.	(D)	68.	(B)	88.	(B)	108. (A)	128. (B)	148. (C)
9.	(C)	29.	(D)	49.	(D)	69.	(B)	89.	(D)	109. (C)	129. (A)	149. (C)
10.	(A)	30.	(C)	50.	(D)	70.	(D)	90.	(B)	110. (B)	130. (B)	150. (B)
11.	(A)	31.	(A)	51.	(C)	71.	(C)	91.	(B)	111. (D)	131. (C)	151. (D)
12.	(B)	32.	(C)	52.	(D)	72.	(A)	92.	(C)	112. (B)	132. (C)	152. (D)
13.	(D)	33.	(D)	53.	(B)	73.	(A)	93.	(B)	113. (C)	133. (D)	153. (C)
14.	(C)	34.	(C)	54.	(C)	74.	(C)	94.	(C)	114. (B)	134. (C)	154. (D)
15.	(A)	35.	(A)	55.	(B)	75.	(A)	95.	(D)	115. (B)	135. (B)	155. (A)
16.	(A)	36.	(B)	56.	(B)	76.	(B)	96.	(C)	116. (A)	136. (A)	156. (A)
17.	(D)	37.	(A)	57.	(B)	77.	(D)	97.	(C)	117. (A)	137. (B)	157. (B)
18.	(B)	38.	(A)	58.	(A)	78.	(B)	98.	(A)	118. (A)	138. (D)	158. (B)
19.	(A)	39.	(D)	59.	(D)	79.	(C)	99.		119. (A)	139. (C)	159. (A)
20.	(B)	40.	(A)	60.	(B)	80.	(D)	100	(B)	120. (C)	140. (A)	160. (A)

[^0]: $1^{\text {st }}$ day $2^{\text {nd }}$ day $3^{\text {rd }}$ day $4^{\text {th }}$ day
 (12) $2+9 \quad 12+9+6 \quad 12+9+6+4$

