UP SI MOCK TEST - 60 (SOLUTION)

81. (C)
82. (C) Here, area $\triangle \mathrm{AMN}=\frac{1}{2}($ area $\triangle \mathrm{ABC})$
or, $\frac{\text { area of } \triangle A M N}{\text { area of } \triangle A B C}=\frac{1}{2}$
or, $\left(\frac{A M}{A B}\right)^{2}=\frac{1}{2}$
or, $\sqrt{2} \quad \mathrm{AM}=\mathrm{AB}$
or, $\sqrt{2} \mathrm{AM}=(\mathrm{AM}+\mathrm{MB})$
or, $(\sqrt{2}-1) \mathrm{AM}=\mathrm{MB}$
or, $\frac{A M}{B M}=\frac{1}{\sqrt{2}-1}$
or, $\frac{A M}{B M}=\frac{1}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$
$\therefore \mathrm{AM}: \mathrm{BM}=(\sqrt{2}+1): 1$
83. (D)

2 days remaining work of T and 5 days remaining work of U done by 5 .
Total remaining $=2 \times 5+4 \times 5$
$=30$ units
Now let, total units work $=270$ units
$=\frac{270}{15}=18$ days
Total work done by S
$=18 \times 6$
240 units $\rightarrow ₹ 10800$
18×6 units $\rightarrow ₹ \frac{10800 \times 18 \times 6}{240}$
$\rightarrow 4860$
84. (B)

	A	$:$	C
efficiency	3	$:$	1

Total work $=4 \times 22.5$
Efficiency of $\mathrm{C}=\frac{90}{15}=6$ units day
Efficiency \rightarrow A: B : C

$$
3: 1: 4
$$

Total work done in 15 days
$\Rightarrow 15 \times 4=60$ units
Remaining work $=\frac{30 \text { units }}{10}=3$ days.
85. (*) $\mathrm{P}+\mathrm{Q}+\mathrm{R} \rightarrow 50 \%$ work in 2 days
$\mathrm{P}+\mathrm{Q}+\mathrm{R} \rightarrow 100 \%$ work in 4 days
$\frac{P+Q+R}{\frac{1}{2}} \quad \frac{P+R}{\frac{1}{6} \times \frac{1}{2}}$
Remaining work done by R in 8 days 5/12
$\frac{5}{12}$ unit $\rightarrow 8$ days
1 unit $\rightarrow \frac{96}{5}$ days
One day's work done by R is $\frac{5}{96}$
Efficiency is $P=\frac{1}{12}-\frac{5}{96}$

$$
=\frac{8-5}{96}=\frac{3}{96}
$$

P does the whole work is 32 days.
86. (B) $a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$
$a^{2}+b^{2}=(a+b)^{2}-2 a b$
$99=(a+b)^{2}-2 \times 11$
$(a+b)^{2}=121$
$\Rightarrow a+b=11$
$\Rightarrow a^{3}+b^{3}=(11)^{3}-3 \times 11 \times 11$
$\Rightarrow 1331-363=968$
87. (D) $\mathrm{A} \rightarrow 36$ hours 4 units/hour

144 units
$B \rightarrow 48$ hour 3 units/hour
In 9 days total work done $=7 \times 9$
$=63$ units
Remaining work $=144-63$

$$
=81 \text { units }
$$

Remaining work done by B in $=\frac{81}{3}$

$$
=27 \text { days } .
$$

88. (A) Let the amount given at 4% per annum be ₹ x
\therefore Amount given at 5% per annum
$=₹(1200-x)$
$\therefore \frac{x \times 4 \times 2}{100}+\frac{(1200-x) \times 5 \times 2}{100}=110$
$\Rightarrow \frac{-2 x+12000}{100}=110$
$\Rightarrow x=₹ 500$
Also, $(1200-x)=1200-500=₹ 700$
89. (C) $2 \mathrm{kmph}=\left(\frac{2 \times 5}{18}\right) \mathrm{m} / \mathrm{s}=\frac{5}{9} \mathrm{~m} / \mathrm{s}$.
and $4 \mathrm{kmph}=\frac{4 \times 5}{18} \mathrm{~m} / \mathrm{s}=\frac{10}{9} \mathrm{~m} / \mathrm{s}$
Let the length of the train be $x \mathrm{~m}$ and its speed be $y \mathrm{~m} / \mathrm{s}$. Then,
$\frac{x}{y-\frac{5}{9}}=9$
$\Rightarrow 9 y-5=x$
$\therefore 9 y-x=5$
and $=\frac{x}{y-\frac{10}{9}}=10$
$\Rightarrow 10(9 y-10)=9 x$
$\Rightarrow 90 y-9 x=100$
By equation (i) $\times 10-$ equation (ii), we have
$90 y-10 x=50$
$90 y-9 x=100$
$\frac{-\quad+\quad-}{-x=-50}$
$\Rightarrow x=50 \mathrm{~m}$
90. (A) Let the amount invested by A and B is $3 x$ and $5 x$ respectively and after 6 month C joined amount equal to B . Then, Ratio of A, B and C in profit
$=3 x \times 12: 5 x \times 12: 5 x \times 6=6: 10: 5$
91. (B) ATQ,

Side of first square $=\sqrt{81}=9 \mathrm{~cm}$
Side of second square $=\sqrt{64}=8 \mathrm{~cm}$
Sum of perimeter of both squares
$=[(4 \times 9)+(8 \times 4)]=68 \mathrm{~cm}$
\therefore Side of third square $=\frac{68}{4}=17 \mathrm{~cm}$
\therefore Required area $=17^{2}=289 \mathrm{~cm}^{2}$
92. (D) ATQ,

Required Rate $=\frac{32}{4}=8 \%$ (Quarter)
Required time $=9$ month $=3$ Quarter
$C I=P\left[\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}-1\right]$
$=15625\left[\left(1+\frac{8}{100}\right)^{3}-1\right]$
$=\left[15625 \times \frac{27}{25} \times \frac{27}{25} \times \frac{27}{25}\right]-15625$
= $19683-15625=₹ 4058$
93. (D) A.T.Q.,

Their HCF is 9
\therefore Their LCM must be multiple of 9 $\therefore 64$ cannot be their LCM
94. (B) $x=\sqrt{3}-\sqrt{2}$
$\frac{1}{x}=\sqrt{3}+\sqrt{2}=x-\frac{1}{x}=-2 \sqrt{2}$
$=x^{3}-\frac{1}{x^{3}}=16 \sqrt{2}+3(-2 \sqrt{2})$
$=-16 \sqrt{2}-6 \sqrt{2}=-22 \sqrt{2}$
95. (C)

$\angle \mathrm{BOC}=90^{\circ}-\frac{\angle A}{2}$
$=90^{\circ}-\frac{44^{\circ}}{2}=68$
$\frac{1}{2} \angle \mathrm{BOC}=34^{\circ}$
96. (B) A.T.Q.,

$$
\begin{aligned}
& \frac{6\left(\frac{2 x-3}{7}\right)}{4}+\frac{9}{2}=\frac{37}{7} \\
& \Rightarrow \frac{12 x-18}{28}=\frac{37}{7}-\frac{9}{2} \\
& \Rightarrow 12 x-18=28\left(\frac{74-63}{14}\right) \\
& \Rightarrow 12 x=22+18 \\
& \Rightarrow x=\frac{40}{12}=\frac{10}{3}
\end{aligned}
$$

97. (D)

$\frac{\operatorname{ar}(\triangle \mathrm{ABG})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{3}=1: 3$

$K>$
 Campus
 KD Campus Pvt. Ltd

98. (A) $(2(x+y))^{3}-(x-y)^{3}$
$=(2 x+2 y-x+y)[2(x+y)]^{2}+(x-y)$ $+2\left(x+y^{2}\right)$
$=(x+3 y)\left[4 x^{2}+4 y^{2}+8 x y+x^{2}+y^{2}-2 x y\right.$
$\left.+2 x^{2}-2 y^{2}\right]$
$=(x+3 y)\left(7 x^{2}+3 y^{2}+6 x y\right)$
Comparing with original equation
$\mathrm{A}=7, \mathrm{~B}=6, \mathrm{C}=3$
$\mathrm{A}-\mathrm{B}-\mathrm{C}=-2$
99. (C) diameter of Ist shere
diameter of 2 nd shere $=2 R$
A.T.Q.,
$2 \mathrm{r}=2 \times 2 \mathrm{R}$
$r=2 R$
and $4 \pi r^{2}=\frac{4}{3} \pi p^{3}$
$\Rightarrow 3 r^{2}=\mathrm{R}^{3}$
$\Rightarrow 3 r^{2}=\left(\frac{r}{2}\right)^{3}$
$=3 r^{2}=\frac{r^{3}}{8}$
$\Rightarrow r^{2}=24$
100. (A)

In $\triangle A O B$
$\mathrm{AD}^{2}=\mathrm{BO}^{2}+\mathrm{OA}^{2}$
$=144+25$
$\mathrm{AB}=13$
ABCD is a rhombus so opposite sides arc equal
$\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{DA}$
Perimeter $=13+13+13+13$
$=52 \mathrm{~cm}$
101. (A) A.T.Q.,

$\tan 60^{\circ}=\frac{h}{4.2}$
$h=4.2 \tan 60^{\circ}$
$=4.2 \times \sqrt{3}$
$=7.3$ meters
102. (A) $40 \times$ S.P. $=50 \times$ C.P.
$\Rightarrow \frac{C . P}{S . P .}=\frac{40}{50}$
Profit $=\frac{(50-40)}{40} \times 100=25 \%$
103. (A) Total age of 4 children $=12 \times 4=48$ years
$\frac{\text { Children }+ \text { father }}{5}=20$
48 years + father $=100$
Father = 52 years.
104. (A) $\sin ^{2} 60^{\circ}-\cos ^{2} 45^{\circ}+\sec 60^{\circ}+\cos ^{2} 40^{\circ}$
$+\cos ^{2} 50^{\circ}$
$\Rightarrow\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}+2+\sin ^{2} 50^{\circ}+\cos ^{2} 50^{\circ}$
$\Rightarrow \frac{3}{4}-\frac{1}{2}+2+1=\frac{13}{4}$
105. (A) Required percentage
$=50-50-\frac{50 \times 50}{100}=-25 \%$
106. (D)

In $\triangle \mathrm{AQB}$
$\tan \beta=\frac{\mathrm{AB}}{b+x}$
$b+x=\mathrm{AB} \cot \beta$
In $\triangle \mathrm{APB}$
$\tan \alpha=\frac{\mathrm{AB}}{x}$
$x=\cot \alpha \mathrm{AB}$
Now, from eqn (i) and (ii)
$b+\mathrm{AB} \cot \alpha=\mathrm{AB} \cot \beta$
$\mathrm{AB}=\frac{b}{\cot \beta-\cot \alpha}$
107. (C)

In $\triangle \mathrm{AEC}$
$\angle \mathrm{C}=x+x$
$=2 x$
(by external angle theorem)

In $\triangle \mathrm{DEF}$
$\angle \mathrm{F}=180-x-40$
$=140-x$
$\angle \mathrm{B}=140-x \quad(\because \mathrm{FC}=\mathrm{BC})$
In $\triangle \mathrm{FBC}$
$\angle \mathrm{C}=180-(280-2 x)$
$=2 x-100$
Now eqn (i) and (ii)
$\Delta \mathrm{ACB}=2 x-2 x+100$
$=100^{\circ}$
108. (A)

$\triangle \mathrm{ABC}$ is right-angled triangle and AM is circumradius.
$\therefore \mathrm{AM}=\frac{65}{2}=32.5 \mathrm{~cm}$
109. (D) $\mathrm{M} \rightarrow$ Men

B \rightarrow Boys
$18 \mathrm{M}=36 \mathrm{~B}$
$1 \mathrm{M}=2 \mathrm{~B}$
$12 \mathrm{M}=24 \mathrm{~B}$
Now,
$18 \mathrm{M} \times 6 \times 24=(24 \mathrm{M}+24 \mathrm{~B}) \times 9 \times \mathrm{D}$
$\Rightarrow 18 \mathrm{M} \times 6 \times 24=(24 \mathrm{M}+12 \mathrm{M}) \times 9 \times \mathrm{D}$
$\Rightarrow 18 \mathrm{M} \times 6 \times 24=36 \mathrm{M} \times 9 \times \mathrm{D}$
$\Rightarrow \mathrm{D}=8$ days
110. (B) $6 \times$ S.P. $=8 \times$ C.P
$\Rightarrow \frac{C P}{S P}=\frac{6}{8}=\frac{3}{4}$
Profit $=\frac{(4-3)}{3} \times 100=33 \frac{1}{3} \%$
111. (A)

In $\triangle \mathrm{ABE}$
$\angle \mathrm{C}=180-(x+\theta)$
and In $\triangle \mathrm{AEC}$
$\angle \mathrm{E}=\mathrm{x}+\theta$
In \quad EOCM
$\angle \mathrm{E}=180^{\circ}-(x+\theta)$
$\angle \mathrm{C}$ is exterior angle is

$\triangle \mathrm{ABC}$

$$
\begin{aligned}
& \angle \mathrm{C}=2 x+\theta \\
& =x+\frac{\theta}{2}
\end{aligned}
$$

In \quad EDCM
$180-\theta+60+x+\frac{\theta}{2}+180-(x+\theta)$
$=360^{\circ}$
$\Rightarrow \frac{3 \theta}{2}=60^{\circ}$
$\theta=40^{\circ}$
112. (D) $x=16 \mathrm{~km} / \mathrm{h}$
$y=$?
Average speed $=\frac{2 x y}{x+y}=\frac{64}{10}$
$\Rightarrow \frac{2 \times 16 \times y}{16+y}=\frac{64}{10}$
$\Rightarrow y=4 \mathrm{~km} / \mathrm{hr}$
113. (D) $\sin ^{2} 42^{\circ}+\sin ^{2} 48^{\circ}+\tan ^{2} 60^{\circ}-\operatorname{cosec}$ 30°
$\sin ^{2}\left(90^{\circ}-48^{\circ}\right)+\sin ^{2} 48^{\circ}+(\sqrt{3})^{2}-(2)$
$\cos ^{2} 48^{\circ}+\sin ^{2} 48+3-2$
$1+1=2$
114. (C) Factor of $72=9 \times 8$

If 55350×2 divisible by 72 then
55350×2 is also divided by $9 \& 8$ both If $0 x 2$ is divisible by 8 the possible value of x is 3 or 7
Now divisible of 9
$\frac{5+5+3+5+0+x+2}{9}=\frac{20+x}{9}$
\Rightarrow Possible value of x is 7
$\Rightarrow x=7$
115. (A) $3.8-(4.2 \div 0.7 \times 3)+5 \times 2 \div 0.5$

$$
\begin{aligned}
& \Rightarrow 3.8-\left(\frac{4.2}{0.7} \times 3\right)+\frac{5 \times 2}{0.5} \\
& \Rightarrow 3.8-18+20=5.8
\end{aligned}
$$

116. (B) Given that $\mathrm{a}+\mathrm{b}+\mathrm{c}=11$ and $\mathrm{ab}+\mathrm{bc}+\mathrm{ca}$ = 38
$\mathrm{Now},(a+b+c)^{2}=\left(a^{2}+b^{2}+c^{2}\right)+2(a b$
$+b c+c a)$
$\Rightarrow 11^{2}=a^{2}+b^{2}+c^{2}+2 \times 38$
$\Rightarrow a^{2}+b^{2}+c^{2}=121-76=45$
Now, $a^{3}+b^{3}+c^{3}-a b c$
$\Rightarrow(a+b+c)\left[a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right]$
$\Rightarrow 11(45-38) \Rightarrow 11 \times 7=77$
117. (D) Required Percentage $=\frac{9.5}{26.6} \times 100$

$$
=\frac{96}{266} \times 100=36
$$

118. (C) Minimum change of inflation in world $=$

$$
\frac{1.4}{14.6} \times 100=9 \%
$$

119. (A) USA had better control on inflation
120. (B) Required percentage

$$
=\frac{(36.2-16)}{16} \times 100=126.25
$$

121. (C)
122. (C) As, $\frac{\text { ACEG }}{L_{+8}} \frac{\mathrm{IKMO}}{\uparrow}$

Similarly, $\frac{\text { QSUW }}{L^{2}} \frac{\text { YACE }}{\uparrow}$
123. (A) $12 \Rightarrow(12+1) \times 3=39$ $15 \Rightarrow(15+1) \times 3=48$
124. (B) The unit of pressure is pascal whereas the unit of resistance is ohm.
125. (D) Except EUROT in all other option are 2 vowels.
126. (B) Except 133 all numbers are divisible by 11 .
127. (C) Except solar energy all are nonrenevelable source of energy.
128. (D)

129. (B) ${ }^{6} \times 3+1 \stackrel{19}{\mathbb{T}} \times 3+3{ }^{\frac{60}{T}} \times 3+5{ }^{\frac{185}{N} \times 3+7} \frac{\mathbf{5 6 2}}{7}$
130. (A) As, $\left(3^{3}+9^{3}\right)-\left(5^{3}+4^{3}\right)=569$ and $\left(8^{3}+6^{3}\right)-\left(2^{3}+7^{3}\right)=377$ Similarly,
$\left(11^{3}+5^{3}\right)-\left(4^{3}+6^{3}\right)=\mathbf{1 1 7 6}$
131. (B) As, $\frac{10688}{4}=2672$
and $\frac{2672}{4}=668$
Similarly, $\frac{668}{4}=\mathbf{1 6 7}$
132. (C) Total number of triangle is 28.
133. (C) $128+9-16 \times 4$

After changing the signs as per the given details,
$128 \times 9+16 \div 4$
$=128 \times 9+4$
$=1152+4$
= 1156
134. (B) Required age $=(36+14+1)$ years
$=51$ years
135. (B)

136. (D)

B and F are the neighbours of A.
137. (D) CENTRAL
138. (B)

I. x
II. \checkmark
\therefore Only conclusion II follows.
139. (A) Let number of deer $=x$

Number of peacocks $=y$
A.T.Q.,
$x+y=120$
$\Rightarrow y=120-x$
and,
$4 x+2 y=320$
Solving eqn (i) and (ii),
$4 x+2(120-x)=320$
$\Rightarrow 4 x+240-2 x=320$
$\Rightarrow 2 x=80$
$\Rightarrow x=40$
and $y=80$
\therefore Number of peacocks $=80$
140. (A)
141. (C)

142. (C)
143. (C) According to the statement. The campaign did not get any response from citizens. This means that people are not interested in keeping the city clean and the campaign has failed.
\therefore Both I and II are implicit
144. (C) FEGH represents plumbers who are either bakers or jugglers.
145. (C)

$\therefore \quad$ with $=\mathrm{si}$

Campus
 KD Campus Pvt. Ltd

146. (B) Made by residents $=\mathbf{m x} \mathbf{p a} \mathbf{~ t r}$
147. (B)

148. (D) A.T.Q.,

Let uncle age is x

$$
\begin{aligned}
& \Rightarrow \frac{42+x}{3}=36 \\
& \Rightarrow 42+x=108 \\
& x=108-42 \\
&=66
\end{aligned}
$$

149. (D)

150. (D)
151. (C) THMDOBF
152. (C)

Similarly,

PROP = 16181516
153. (D) 'Harsh has only one sister'.
154. (B)

155. (A)

156. (C)

157. (A)

158. (B)
159. (B) $15 \times 26 \Rightarrow 6512$
ab cd dbac
$29 \times 36 \Rightarrow 6923$
ab cd d b a c
$46 \times 54 \Rightarrow 4645$
$\mathrm{ab} \mathrm{cd} \quad \mathbf{d} \mathbf{b} \mathbf{a} \mathbf{c}$
160. (B) Total number of smaller cubes $=12(n-2)=12(5-2)=36$

