1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

## 53 SSC Mains (Maths) Answer with Explanation

1. (C) $t_{1}+t_{2}=10$

Total distance $=x$
$\mathrm{T}=\frac{\mathrm{D}}{\mathrm{S}} \Rightarrow \frac{\frac{x}{2}}{30}+\frac{\frac{x}{2}}{70}=10$

$$
\Rightarrow \quad x=420 \mathrm{~km}
$$

2. (D) $a^{2}+b^{2}+c^{2}=-(a b+b c+c a)$
$a^{2}+b^{2}+c^{2}+a b+b c+c a=0$
$\Rightarrow \frac{1}{2}\left[(a+b)^{2}+(b+c)^{2}+(c+a)^{2}\right]=0$
$\mathrm{a}=-\mathrm{b}, \mathrm{b}=-\mathrm{c}, \mathrm{c}=-\mathrm{a}$
Its possible only when $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$
$\therefore \quad 3 \mathrm{a}-2 \mathrm{~b}+5 \mathrm{c}=0$
3. (C) L.C.M. of $(240,144,112)=5040$

He save ₹40
Then total money he should take

$$
=5040+40=₹ 5080
$$

4. (A) ATQ.,


Area of $\triangle \mathrm{ABG}=\frac{1}{3} \times$ Area of $\triangle \mathrm{ABC}$
$=\frac{1}{3} \times 24=8 \mathrm{~cm}^{2}$
$E$ is mid point of $A D$
$\mathrm{DE}: \mathrm{EG}=3: 1$
Then area of $\triangle \mathrm{BEG}=\frac{8}{4} \times 1=2 \mathrm{~cm}^{2}$
5. (B) Let the average expenditure per student $=₹ x$
$\Rightarrow$ Total expenses $=₹ 35 x$
Now total expenses $=₹(35 x+42)$
and New average expenditure per student
$=₹(x-1)$
$\therefore \frac{35 x+42}{35+7}=\frac{35 x+42}{42}=(x-1)$
$\Rightarrow 35 x+42=42 x-42$
$x=12$,
$\therefore$ The original expenditure $=35 \times 12=₹ 420$
6. (D) By option (D) $\Rightarrow x=3$

$$
\begin{aligned}
& \sqrt{x+2 \sqrt{x+2 \sqrt{x+2 \sqrt{3 x}}}}=x \\
\Rightarrow & \sqrt{3+2 \sqrt{3+2 \sqrt{3+2 \sqrt{3 \times 3}}}}=3
\end{aligned}
$$

7. (C)


$$
\begin{aligned}
& \mathrm{AD}^{2}=\mathrm{BD} \cdot \mathrm{DC} \\
& \angle \mathrm{~A}>45^{\circ} \\
& \text { or } \angle \mathrm{B} \geq 45^{\circ} \\
& \text { or } \angle \mathrm{C} \geq 45^{\circ}
\end{aligned}
$$

8. (A)


Area of Triangle
$=\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC} \times \sin 30^{\circ}$
$=\frac{1}{2} \times 10 \times 10 \times \frac{1}{2}=\frac{100}{4}=25 \mathrm{~cm}$
Area of $\Delta=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC} \times \sin 75$
$\Rightarrow \quad 25=\frac{1}{2} \times 10 \times \mathrm{BC} \times\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right)$
$\Rightarrow \quad 100 \sqrt{2}=10 \mathrm{BC} \times(\sqrt{3}+1)$
$\Rightarrow \quad \mathrm{BC}=\left(\frac{10 \sqrt{2}}{\sqrt{3}+1}\right) \times\left(\frac{\sqrt{3}-1}{\sqrt{3}-1}\right)$
$\Rightarrow \mathrm{BC}=\frac{10 \sqrt{2}(\sqrt{3}-1)}{2}=\frac{10(\sqrt{3}-1)}{\sqrt{2}}$
9. (A) $\mathrm{R}=14, \mathrm{r}=10 \mathrm{~cm}$
$\mathrm{CSA}=2 \pi \mathrm{R}^{2}+2 \pi \mathrm{r}^{2}+\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$
$\Rightarrow 2 \pi(14)^{2}+2 \pi(10)^{2}+\pi\left(14^{2}-10^{2}\right)$
$\Rightarrow 392 \pi+200 \pi+96 \pi$
$\Rightarrow 688 \pi \mathrm{~cm}^{2}$
10. (D) Age of man $=50$ years
$\therefore$ Age of his elder brother

$$
=50+7=57 \text { years }
$$

Age of his sister $=57-12=45$ years
$\Rightarrow$ Difference in the age of the man and his sister $=(50-45)$ yrs. $=5$ years
Thus when the age of his sister was 15 years, then the age of the man was $=15$ $+5=20$ years.
11. (A) Let the four parts into which 3150 divided are $a, b, c$ and $d$.
$\Rightarrow \frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{12}=k$
Then, $a=2 k, b=3 k, c=4 k$ and $d=12 k$
As, $a+b+c+d=3150$
$\Rightarrow(2 k+3 k+4 k+12 k)=3150$
$\Rightarrow 21 k=3150$
$\Rightarrow k=150$
Hence, the four parts are 300, 450, 600, 1800
So, the largest part is 1800
12. (D) Let each day's salary $=₹ x$

Given, $18 x+8 \times \frac{x}{2}-15 \times 4=1700$
$\Rightarrow 22 x=1760$
$\Rightarrow$ Monthly Salary $=\frac{1750}{22} \times 30=₹ 2400$
13. (B) Area of circle = Area of square
$\pi r^{2}=a^{2}$
$\Rightarrow \quad \frac{r}{a}=\frac{1}{\sqrt{\pi}}$
$\Rightarrow \mathrm{r}=\frac{a}{\sqrt{\pi}}$
Perimeter of eq. $\Delta=$ Perimeter of square
$3 \mathrm{~b}=4 \mathrm{a} \Rightarrow \frac{a}{b}=\frac{3}{4} \Rightarrow \mathrm{~b}=\frac{4}{3} a$
Area of circle: Area of equilateral triangle
$=\mathrm{p} r^{2}: \frac{\sqrt{3}}{4} \mathrm{~b}^{2}$
$=\pi\left(\frac{a}{\sqrt{\pi}}\right)^{2}: \frac{\sqrt{3}}{4}\left(\frac{4}{3} a\right)^{2}$
$=1: \frac{\sqrt{3}}{4} \times \frac{16}{9}$
$=9: 4 \sqrt{3}$
14. (D) $\underline{\cot 5^{\circ} \cdot \cot 10^{\circ} \cdot \cot 15^{\circ} \cdot \cot 60^{\circ} \cdot \cot 75^{\circ} \cdot \cot 80^{\circ} \cdot \cot 85^{\circ}}$
$\left(\cos ^{2} 20^{\circ}+\cos ^{2} 70^{\circ}\right)+2$
$=\frac{\tan 85^{\circ} \cdot \tan 80^{\circ} \cdot \tan 75^{\circ} \cdot \cot 60^{\circ} \cdot \cot 75^{\circ} \cdot \cot 80^{\circ} \cdot \cot 85^{\circ}}{\left(\sin ^{2} 70^{\circ}+\cos ^{2} 70^{\circ}\right)+2}$

$$
=\frac{\frac{1}{\sqrt{3}}}{1+2}=\frac{1}{3 \sqrt{3}}=\frac{\sqrt{3}}{9}
$$

15. (D) ATQ.,

$$
\begin{aligned}
& x+\frac{1}{x}=99 \Rightarrow x^{2}+1=99 x \\
& \frac{100 x}{2 x^{2}+102 x+2}=\frac{50 x}{x^{2}+51 x+1} \\
& =\frac{50}{\left(x+\frac{1}{x}\right)+51} \\
& =\frac{50}{99+51}=\frac{50}{150}=\frac{1}{3}
\end{aligned}
$$

16. (D) $\mathrm{AB}=8, \mathrm{BC}=6, \mathrm{AD}=5, \mathrm{CD}=2$


$$
\begin{aligned}
& \because A B+C D=B C+A D \\
& \Rightarrow 8+x=6+5 \\
& \Rightarrow x=11-8=3 \mathrm{~cm} .
\end{aligned}
$$

17. (D) Let the person invest amount $x$ and $y$ into two different rates of interest.
$=\frac{x \times 10 \times 1}{100}+\frac{y \times 12 \times 1}{100}=130$
$\Rightarrow 10 x+12 y=13000$
and $\frac{y \times 10 \times 1}{100}+\frac{x \times 12 \times 1}{100}=134$
$\Rightarrow 10 y+12 x=13400$
On solving eqs. (i) and (ii), we get $x=₹ 700$ and $y=₹ 500$
18. (D) Total weight of stone $=35 \mathrm{gm}$

Cost of stone $=12250$
Cost of stone $\times\left(\right.$ weight of stone) ${ }^{2}$
C.S. $=\mathrm{k}(\mathrm{w} . \mathrm{s} .)^{2}$
$\Rightarrow 12250=\mathrm{k}(35)^{2}$
$\Rightarrow k=10$
Divided into parts $=2: 5$
$=\frac{2}{7} \times 35: \frac{5}{7} \times 35=10: 25 \mathrm{gm}$
Cost of stone $=k(10)^{2}+k(25)^{2}$
$=10[100+625]=₹ 7250$
Loss $=12250-7250=₹ 5000$

## $K D$ <br> Campus <br> K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
19. (A) $\mathrm{H} \quad \mathrm{M}$
$4: 30$
Angle $=\frac{11}{2} \times \mathrm{M}-30 \times \mathrm{H}$
$=\frac{11}{2} \times 30-30 \times 4$
= 165 - 120
$=45^{\circ}=\frac{\pi}{4}$
20. (D) A in one day $=\frac{1}{12}$ parts
$B$ in one day $=\frac{1}{8}$ parts
$(A+B)$ in one day $=\frac{1}{12}+\frac{1}{8}=\frac{5}{24}$ parts
$(A+B)$ take $=\frac{24}{5}$ days
C takes $=\frac{4}{5} \times \frac{24}{5}=\frac{96}{25}$ days
$(A+B)$ in 3 days $=\frac{5}{24} \times 3=\frac{5}{8}$ parts
Remaining work $=1-\frac{5}{8}=\frac{3}{8}$ parts
$\mathrm{C} \rightarrow 1$ work $\rightarrow \frac{96}{25}$ days
C $\rightarrow \frac{3}{8}$ parts $\rightarrow \frac{3}{8} \times \frac{96}{25}$ days $=1 \frac{11}{25}$ days
21. (B)


Area of $\triangle \mathrm{BDE}=\frac{1}{2} \times 2 x \times 2 y$
$=20=\frac{1}{2} \times 2 x \times 2 y$
$\Rightarrow x y=10$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 5 x \times 7 y$
$\Rightarrow \frac{35}{2} \times 10=175 \mathrm{~cm}^{2}$
22. (A) Side of square $=a$

Length of rectangle $=a+5$
Breadth of rectangle $=a-3$
Area of square $=$ Area of rectangle
$\Rightarrow a^{2}=(a+5)(a-3)$
$\Rightarrow a^{2}=a^{2}+5 a-3 a-15$
$\Rightarrow a^{2}=a^{2}+2 a-15$
$\Rightarrow 2 a=15, a=\frac{15}{2}$
Perimeter of Rectangle $=2(a+5+a-3)$

$$
=2(2 a+2)=2[15+2]=34 \mathrm{~cm}
$$

23. (D) Volume of sphere $=\frac{4}{3} \pi r^{3}$
$\mathrm{V} \propto r^{3}($ Let $r=1), \mathrm{V}=1$
New $\mathrm{V} \propto(0.7)^{3}$
Decrease $\%=\frac{\text { Decrease }}{\text { original }} \times 100$
$\frac{1^{3}-(0.7)^{3}}{1} \times 100=\frac{1-0.343}{1} \times 100$
$=0.657 \times 100=65.7 \%$
24. (C) Let, $y=4 x^{2}+4 x+9$
$\Rightarrow \frac{d y}{d x}=8 x+4$
For maxima and minima
$\frac{d y}{d x}=0 \Rightarrow 8 x+4=0 \Rightarrow x=\frac{-1}{2}$
Minimum value $=4 x^{2}+4 x+9$
$=4\left(-\frac{1}{2}\right)^{2}+4\left(-\frac{1}{2}\right)+9$
$=1-2+9=8$
25. (B) Ratio of total capital of $A$ and $B$
$=20000 \times 12: 35000 \times 12$
$=240000: 420000$
Now C gives 220000 to both to make the capital equal.
$\therefore$ A's captial : B's captial
$=240000: 420000$
$-\frac{220000: 220000}{20000: 200000}$
$\therefore$ Required ratio of divided amount $=1: 10$
26. (D) Side of square $=4 \times 25=100 \mathrm{~m}$ Area of square $=(100)^{2}=1$ hectare
27. (D)

h + r = 30
T.S.A. $=2640$
$\Rightarrow 2 \pi r(r+h)=2640$
$\Rightarrow 2 \pi r \times 30=2640$
$\Rightarrow \mathrm{r}=\frac{2640 \times 7}{2 \times 22 \times 30}=14, \mathrm{~h}=16$
Now, $\mathrm{h}: \mathrm{r}=16: 14=8: 7$
28. (D) Let the numbers of men, women and children are $3 y, 2 y$ and $y$ and their wages are $5 x, 3 x$ and $2 x$ respectively.
Given, $3 y=90 \Rightarrow y=30$
Number of women $=60$ and
Number of children $=30$
$\therefore$ Now, ATQ.,
Total daily wages $=₹ 10350$
$\Rightarrow 90 \times 5 x+60 \times 3 x+30 \times 2 x=10350$
$\Rightarrow x(450+180+60)=10350$
$\Rightarrow x=\frac{10350}{690}=15$
$\therefore$ Daily wage of a man $=15 \times 5=₹ 75$
29. (B) $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}} \ldots$
$+\frac{1}{\sqrt{8}+\sqrt{9}}$
On rationalising
$=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\ldots \ldots+\sqrt{9}-\sqrt{8}$
$=\sqrt{9}-1=2$
30. (B) $\alpha+\beta=135^{\circ}$
$\alpha-\beta=15^{\circ}$
$\Rightarrow \alpha=75, \beta=60^{\circ}$
31. (D) ATQ.,

$\mathrm{AC}=40$ By pythagoras theorem
$\triangle \mathrm{ADC}$ is isosceles
$\mathrm{CE}=20, \mathrm{DE}=15$
Area of $\mathrm{ABCD}=$ Area of $\triangle \mathrm{ABC}+$ Area of $\triangle \mathrm{ADC}$
$=\frac{1}{2} \times 32 \times 24+\frac{1}{2} \times 40 \times 15$
$=384+300=684 \mathrm{~m}^{2}$
32. (A) $3 \sin \alpha-4 \sin \beta=\frac{1}{5}$
$7 \sin \beta+3 \sin \gamma=\frac{3}{5}$
Eq. (i) + eq. (ii)
$3 \sin \alpha+3 \sin \beta+3 \sin \gamma=\frac{4}{5}$
$\Rightarrow 3(\sin \alpha+\sin \beta+\sin \gamma)=\frac{4}{5}$
$\Rightarrow \sin \alpha+\sin \beta+\sin \gamma=\frac{4}{15}$
33. (B) $a=999$

Now, $a\left(a^{2}+3 a+3\right)$
$=a^{3}+3 a^{2}+3 a+1-1$
$=(a+1)^{3}-1=(999+1)^{3}-1$
$=(1000)^{3}-1$
$=1000000000-1=999999999$
34. (C)

$4 x+x+x=180$
$\Rightarrow 6 x=180$
$\Rightarrow x=30^{\circ}$
Now, $2 x=60^{\circ}$
35. (C)


TSA of Pyramid $=\frac{1}{2} \times$ Perimeter of Base $\times$
$l+$ Area of Base
$=270 \sqrt{3}=\frac{1}{2} \times 30 \sqrt{3} \times l+\frac{\sqrt{3}}{4} \times 10 \times 10 \times 3$

## $K D$ <br> Campus <br> K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$\Rightarrow 270 \sqrt{3}=\frac{30 \sqrt{3}}{2}(l+5)$
$\Rightarrow l=13$
Inradius of eq. triangle $=\frac{a}{2 \sqrt{3}}=\frac{10 \sqrt{3}}{2 \sqrt{3}}=5$
Now, $h^{2}=l^{2}-\mathrm{OB}^{2}$
$\Rightarrow h^{2}=169-25=144$
$\Rightarrow h=12 \mathrm{~cm}$
36. (B) From option (B)

Thickness $=1 \mathrm{~cm}$
The inner dimension of box are
$l=10-2=8$
$b=9-2=7$
$h=7-2=5$
$\mathrm{TSA}=2(\mathrm{lb}+\mathrm{bh}+\mathrm{h})$
$=2[56+35+40]$
$=262 \mathrm{~cm}^{2}$
37. (D) $\cos 12^{\circ} \cdot \cos 24^{\circ} \cdot \cos 48^{\circ} \cdot \cos 60^{\circ} \cdot \cos 84^{\circ}$

(multipling and dividing by $\cos 72 \times \cos 36$ )

$$
=\frac{\frac{1}{4} \times \cos (3 \times 12) \times \frac{1}{4} \cos (24 \times 3) \times \frac{1}{2}}{\cos 36 \times \cos 72}=\frac{1}{32}
$$

38. (D) $\left(a^{2}+2 a\right)^{2}+12\left(a^{2}+2 a\right)-45$

Let $\left(a^{2}+2 a\right)=x$
$=x^{2}+12 x-45$
$=(x+15)(x-3)$
$=\left(a^{2}+2 a+15\right)\left(a^{2}+2 a-3\right)$
$=\left(a^{2}+2 a+15\right)(a+3)(a-1)$
39. (B)

$\mathrm{AC}=\sqrt{8^{2}+6^{2}}=10$
In $\triangle A B C E \& F$ are mid points of $A B$ and BC
Hence, EF is half of AC and parallel to it.
$\mathrm{EF}=\frac{10}{2}=5 \mathrm{~cm}$
40. (B) $\mathrm{V}_{1}=\mathrm{V}_{2}$ and $h_{1}=h_{2}=h$

Volume of prism with equilateral base
$=$ Volume of prism with hexagonal base
$\frac{\sqrt{3}}{4} \times a^{2} \times h=6 \times \frac{\sqrt{3}}{4} \times b^{2} \times h$
$\Rightarrow \frac{a^{2}}{b^{2}}=\frac{6}{1} \Rightarrow \frac{a}{b}=\frac{\sqrt{6}}{1}$
$\Rightarrow a: b=\sqrt{6}: 1$
41. (B) $\left(a^{2}-b^{2}\right) \sin \theta+2 a b \cos \theta=\left(a^{2}+b^{2}\right)$
$\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \sin \theta+\frac{2 a b}{a^{2}+b^{2}} \cos \theta=1$
On comparing with $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\sin \theta=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
$\cos \theta=\frac{2 a b}{a^{2}+b^{2}}$
$\tan \theta=\frac{a^{2}-b^{2}}{2 a b}$
42. (C) $a=\frac{x y}{x+y}, b=\frac{x z}{x+z}, c=\frac{y z}{y+z}$
$\frac{1}{a}=\frac{x+y}{x y}, \frac{1}{b}=\frac{x+z}{x z}, \frac{1}{c}=\frac{y+z}{y z}$
$\frac{1}{a}=\frac{1}{x}+\frac{1}{y}, \frac{1}{b}=\frac{1}{z}+\frac{1}{x}, \frac{1}{c}=\frac{1}{y}+\frac{1}{z}$
Now, $\frac{2}{x}=\frac{1}{a}+\frac{1}{b}-\frac{1}{c}$
$\Rightarrow \quad x=\frac{2 a b c}{b c+c a-a b}$
43. (A)


$$
\angle x+\angle y=180
$$

$\Rightarrow \quad \angle y=180-\angle x$
$\Rightarrow \sin \angle y=\sin (180-\angle x)$
$\Rightarrow \sin \angle y=\sin \angle x$
$\Rightarrow \quad \sin \angle y=\frac{3}{4} \quad\left[\because x=\sin ^{-1}\left(\frac{3}{4}\right)\right]$
$\Rightarrow \angle y=\sin ^{-1}\left(\frac{3}{4}\right)$

## Campus

## K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
44. (C) $\frac{2}{3} \pi r^{3}=19404 \mathrm{~cm}^{3}$
$\Rightarrow \quad r^{3}=\frac{19404 \times 3 \times 7}{22 \times 2}$
$\Rightarrow r^{3}=441 \times 3 \times 7$
$\Rightarrow r=21 \mathrm{~cm}$
$\Rightarrow$ T.S.A. $=3 \pi r^{2}=3 \times \frac{22}{7} \times 21 \times 21$
$=4158 \mathrm{~cm}^{2}$
45. (B) $\frac{6}{234} \times 100=2.56 \%$
46. (C) Wheat $=\frac{120}{560} \times 100=21.43 \%$

Rice $=\frac{60}{240} \times 100=25 \%$
Maize $=\frac{152}{228} \times 100=66.67 \%$
Other $=\frac{40}{420} \times 100=9.52 \%$
47. (B) $1989=\frac{50}{350} \times 100=14 \frac{2}{7} \%$
$1990=\frac{20}{400} \times 100=5 \%$
$1991=\frac{40}{420} \times 100=9.52 \%$
$1992=\frac{40}{420} \times 100=\frac{200}{23}=8.69 \%$
48. (A) $\frac{1200}{100} \times 15=180$
49. (C) $\frac{1200}{100} \times(13+11)=288$
50. (D) $\frac{22}{21} \times 100=104.76 \%$
51. (C) ATQ.,
$\begin{aligned} & \mathrm{A} \rightarrow 20 \text { days } \\ & \mathrm{B} \rightarrow 15 \text { days } 4^{3} \\ & \mathrm{C} \rightarrow 12 \text { days }\end{aligned}{ }^{3} 60$ units.
$\mathrm{A}+\mathrm{B} \rightarrow 1$ day $-\frac{1}{20}+\frac{1}{15}=\frac{3+4}{60}=\frac{7}{60}$ parts
$\mathrm{A}+\mathrm{C} \rightarrow 1$ day $-\frac{1}{20}+\frac{1}{12}=\frac{3+5}{60}=\frac{8}{60}$ parts

Hence in 2 days $\rightarrow \frac{15}{60}$ parts over
Total work $=60$
Days needed $=8$
52. (C)
 .9) $+\underbrace{(888 .}$
$\underbrace{. . . . .8)}_{n}$
$(\underbrace{111 \ldots \ldots 1}_{n})[8+6]=14 \times \frac{[999 \ldots .9]}{9}$
$=\frac{14}{9} \times\left[10^{n}-1\right]$
53. (C) Total sell $=200+400+9(600)+2400$

$$
=8400
$$

Bonus $=\frac{8400}{100}-1=83$
Salary $=60 \times 12=720$
Total Income $=720+83=803$
Monthly Income $=\frac{803}{12}=66.92$
54. (B) Let first fashion house $x$ dress per day Then second fashion house production
$=(x+21)$ dress $/$ day
$\left(\frac{3 x+(900-810}{21}\right)(x+21)=900$
So, $x=54$
So, First house production $=54$
2nd house Production $=54+21=75$
55. (D)


## In $\Delta \mathrm{C}_{2}$ NA:-

$36=4+\mathrm{AN}^{2}$
$\mathrm{AN}=\sqrt{32}$
$\mathrm{AN}=4 \sqrt{2}$
Max Chord $=\mathrm{AB}=2 \mathrm{AN}$
$=2 \times 4 \sqrt{2}=8 \sqrt{2}$

## $K D$ <br> Campus <br> K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
56. (B) $\left[20\left(1+\frac{20}{100}\right)^{3}-32\left(1-\frac{25}{100}\right)^{3}\right]$ lakh $=2106000$ lakhs
57. (B)

$\mathrm{AB}=9$ (Pythagoras theorem)
$r=\frac{9+12-15}{2}=3$
$R=\frac{15}{2}=7.5$
Distance between incentre and circumcentre
$\mathrm{d}=\sqrt{12^{2}-2 \mathrm{Rr}}$
$=\sqrt{(7.5)^{2}-2 \times(7.5)(3)}$
$=\sqrt{56.25-45}$
$=3.35$
58. (C) $\underline{1}+\underline{1+3}+\underline{1+3+5}+\underline{1+3+5+7}+\ldots \ldots$ $1+4+9+16 \ldots$.
$1^{2}+2^{2}+3^{2}+4^{2}$ $n$
$\frac{n(n+1)(2 n+1)}{6}$
59. (B) $\frac{d}{d x}\left(x^{2}+16 x+20\right)=0$
$2 x+16=0$
$x=-8$
Put the value of $x=-8$ for min . value
$(-8)^{2}+16(-8)+20=0$
$=-44$
60. (D) $x+y+z=0$
$x+y=-z$
$x^{2}+y^{2}+2 x y=(-z)^{2}$
$x^{2}+y^{2}-z^{2}=-2 x y$
Similarly,
$y^{2}+z^{2}-x^{2}=-2 y z$
$x^{2}+z^{2}-y^{2}=-2 x z$
Now, $\frac{1}{x^{2}+y^{2}-z^{2}}+\frac{1}{y^{2}+z^{2}-x^{2}}+\frac{1}{z^{2}-x^{2}-y^{2}}$
$\Rightarrow \frac{-1}{2 x y}-\frac{1}{2 y x}-\frac{1}{2 x z}$
$\Rightarrow-\frac{1}{2}\left[\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}\right]$
$\Rightarrow \frac{-1}{2}\left[\frac{x+y+z}{x y z}\right]=0$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
C.P of $100 \mathrm{gm}=\frac{100 \times 100}{110} /-$
C.P $=\frac{1000}{11} /-$
S.P of 90 gms = 108/-
S.P of $100 \mathrm{gm}=\frac{108 \times 100}{90}$
$S . P=\frac{1080}{90}$
$P \%=\frac{\frac{1080}{90}-\frac{1000}{11}}{\frac{1000}{11}} \times 100 \%$
$=\frac{1080 \times 11-9000}{11 \times 9} \times \frac{11}{1000} \times 100$
$=\frac{1080 \times 11-9000}{90} \times 32 \%$
Short Cut:
$₹ 1000 \rightarrow$ ₹ 1100
While purchasing
$\mathrm{P}=10 \%$
While selling
$₹ 900=1000 \times \frac{120}{100} \times \frac{90}{100}$
$900=1080 /-$
$P \%=\frac{180}{900} \times 100=20 \%$
Eff \% $=10+20+\frac{10 \times 20}{100}=32 \%$
67. (C)


Volume of cone formed on rotating around BC

$$
=\frac{1}{3} \pi \times 3 \times 3 \times 4=12 \pi
$$

Volume of rotating around $A B$

$$
=\frac{1}{3} \pi \times 4 \times 4 \times 3=16 \pi
$$

$\%$ increase $=\frac{\text { Income }}{\text { Original }} \times 100$
Now, $x=\frac{4 \pi}{12 \pi} \times 100=\frac{100}{3}=33 \frac{1}{3}$
68. (D)

SP
$\begin{array}{llll}\% P & 8 y & 7 y & 14 y\end{array}$
$=\quad \frac{1}{7} \quad \frac{1}{8} \quad \frac{1}{4}$
$8 y \Rightarrow 14.28 \%=\frac{1}{7}$
$y=\frac{1}{7} \times 8 \Rightarrow 7 y=\frac{1}{8}$
$C P$ of $B=400$
$S P$ of $B=400 \times \frac{9}{8}=450$
$9 x+450$
$x=50$
SP of $A=400$
$C P$ of $A=\frac{400}{8} \times 7=350$
SP of $\mathrm{C}=250$
CP of $\mathrm{C}=\frac{250}{5} \times 4=200$
\% Net Profit $=\frac{\text { Net profit }}{\text { Total } \mathrm{CP}} \times 100$
$=\frac{50+50+50}{350+400+200} \times 100$
$=\frac{150}{950} \times 100=15.78 \%$
69. (D) ATQ,
$10 \mathrm{CP}=6 \mathrm{SP}$ and $10 \mathrm{D}=5 \mathrm{P}$
$\Rightarrow \frac{C P}{S P}=\frac{6}{10} \Rightarrow \frac{3}{5} \quad \frac{D}{P}=\frac{5}{10}=\frac{1}{2}$
Profit percentage $=\frac{2}{3} \times 100=66 \frac{2}{3} \%$
Percentage of $D=\frac{1}{6} \times 100=16 \frac{2}{3} \%$
Difference between P\% and D\%

$$
=66 \frac{2}{3} \%-16 \frac{2}{3} \%=50 \%
$$

## $K>$ <br> Campus <br> K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
70. (A) Given that,
$x^{2}-k x-21=0$
$x^{2}-3 \mathrm{k} x-35=0$
From eq (ii) - eq (i), we get
$\mathrm{k} x^{2}=28$
$x^{2}=49$
$x= \pm 7$
Put the value of $x$ in $\mathrm{eq}^{\mathrm{n}}$ (3)
$k \times( \pm 7)=28$
$k= \pm 4$
71. (A) $x^{3}+3 x^{2} y+2 x y^{2}$
$x^{3}+2 x^{2} y+x^{2} y+2 x y^{2}$
$x^{2}(x+2 y)+x y(x+2 y)$
$\left(x^{2}+x y\right)(x+2 y)$
$\mathrm{x}(\mathrm{x}+\mathrm{y})(\mathrm{x}+2 \mathrm{y})$
$x^{4}+6 x^{3} y+8 x^{2} y^{2}$
$x^{4}+4 x^{3} y+2 x^{3} y=8 x^{2} y^{2}$
$x^{3}(x+4 y)+2 x^{2} y+8 x^{2} y^{2}$
$\left(x^{3}+2 x^{2} y\right)(x+4 y)$
$x^{2}(x+2 y)(x+4 y)$
H.C.F of (1 \& 2)
$H C F=x(x+2 y)$
72. (A)

$\tan \theta=2, \sin \theta=\frac{2}{\sqrt{5}}$ and $\cos \theta=\frac{1}{\sqrt{5}}$
Now, $\frac{8 \sin \theta+5 \cos \theta}{\sin ^{3} \theta+2 \cos ^{3} \theta+3 \cos \theta}$

$$
=\frac{8 \times \frac{2}{\sqrt{5}}+5 \times \frac{1}{\sqrt{5}}}{\frac{8}{5 \sqrt{5}}+\frac{2}{5 \sqrt{5}}+\frac{3}{\sqrt{5}}}=\frac{\frac{21}{\sqrt{5}}}{\frac{25}{5 \sqrt{5}}}=\frac{21}{5}
$$

73. (A)

$\tan 60^{\circ}=\frac{h}{200}$
$h=200 \sqrt{3}$ meter

Speed of the ballon $=\frac{200 \sqrt{3}}{90}$
$=3.87$ meter $/ \mathrm{sec}$
74. (C) $\frac{1}{x}+\frac{1}{7}=\frac{1}{x+7} \Rightarrow \frac{70+x}{7 x}=\frac{1}{(x+7)}$
$\Rightarrow(x+7)^{2}=7 x$
$\Rightarrow x^{2}+49+14 x=7 x$
$\Rightarrow x^{2}+7 x+49=0$
Multiplying both side $(x-7)$
$\Rightarrow(x-7)\left(x^{2}+7 x+49\right)=0$
$\Rightarrow x^{3}-7^{3}=0 \Rightarrow x^{3}-343=0$
Now, $x^{49}-343 x^{46}+x^{3}+17$
$\Rightarrow x^{46}\left(x^{3}-343\right)+x^{3}+17$
$\Rightarrow 346 \times 0+343+17 \Rightarrow 360$
75. (B)


It will take 12 years
76. (C)

| CP | SP | MP |
| :--- | :--- | :--- |
| 100 | 126 | 140 |

Tax $10 \%$ on profit $=26 \times \frac{10}{100}=2.6$
Net Profit $=26-2.6=23.4$
$C P-\frac{468}{23.4} \times 100=2000$
77. (D) CP SP MP Profit $25 \%$
$60 \quad 75 \quad 100 \quad \mathrm{CP}=\frac{75}{125} \times 100$
If Discount is $10 \%$

| CP | D | SP | MP |
| :--- | :--- | :--- | :--- |
| 60 | $10 \%$ | 90 | 100 |

$\%$ Profit $=\frac{30}{60} \times 100=50 \%$
78. (D) Age of Father $=x$ yr

Age of Son $=y \mathrm{yr}$
After 6 yr
$(x+6)=3(y+6)$
$x-3 y=12$
Before 3 yr
$(x-3)=9(y-3)$
$x-9 y=-24$
From eq. (i) and (ii)
Age of father $x=30 \mathrm{yr}$
79. (D) Unit digit of $(2457)^{754}$
$7^{2}=9$ Unit digit
80. (B) $x(y-z)(y+z)+y(z+x)(z-x)+z(x-y)(x+y)$ Put, $x=1$

$$
y=2
$$

$$
z=3
$$

$1(-1)(5)+2(2)(4)+3(-1)(3)=2$
By option (B)
$(x-y)(x-z)(z-y)=(-1)(-2)(1)=2$
81. (A) $(x+3)^{3}+\frac{1}{(x+3)^{3}}=$ ?
$x^{2}+x=5$
$x+3=k$
$x=k-3$
Put the value of $x$ en eq.(i)
$(\mathrm{k}-3)^{2}+(k-3)=5$
$k^{2}-6 k+9+k-3=5$
$k^{2}-5 k+6=5$
$k+\frac{1}{\mathrm{k}}=5$
So, $K^{3}+\frac{1}{k^{3}}=(5)^{3}-3(5)$
$=110$
82. (D) Let x can complete the work in t days Eff.
$(\mathrm{t}+3) \rightarrow \quad \mathrm{t}$ days
(t) $\rightarrow \quad \mathrm{t}+3$ days

Total work $=t(t+3)$
$4 \times(\mathrm{t}+3)+10(\mathrm{t})=\mathrm{t}(\mathrm{t}+3)$
$\Rightarrow \mathrm{t}=12,-1$
So, $\mathrm{t}=12$ days
$\Rightarrow y=12+3=15$ days
83. (D) $x=\frac{3+\sqrt{5}}{2}$
$\frac{1}{x}=\frac{2}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}=\frac{3-\sqrt{5}}{2}$
$x+\frac{1}{x}=\frac{3+\sqrt{5}}{2}+\frac{3-\sqrt{5}}{2}$
$x+\frac{1}{x}=\frac{6}{2}=3$
Now, $x^{3}+\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right)$
$=27-3 \times 3$
$=18$
84. (C) Let the number of workers be $x$.
A.T.Q.,
$x \times 8500=7 \times 10000+(x-7) 78000$
$\Rightarrow 85 x=700+78(x-7)$
$\Rightarrow 85 x-78 x=700-546$
$\Rightarrow 7 x=154$
$\Rightarrow x=\frac{154}{7}=22$
85. (C) 1. $\operatorname{cosec}^{2} x+\sec ^{2} x=\operatorname{cosec}^{2} x \cdot \sec ^{2} x$
L.H.S. $\frac{1}{\sin ^{2} x}+\frac{1}{\cos ^{2} x}$
$=\frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x \cdot \cos ^{2} x}$
$=\operatorname{cosec}^{2} x \cdot \sec ^{2} x$
2. $\sec ^{2} x+\tan ^{2} x=\sec ^{2} x \cdot \tan ^{2} x$
L.H.S.
$=\frac{1}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x}=\frac{1+\sin ^{2} x}{\cos ^{2} x}$
$\neq$ R.H.S.
3. $\operatorname{cosec}^{2} x+\tan ^{2} x=\cot ^{2} x+\sec ^{2} x$
L.H.S.
$=1+\cot ^{2} \mathrm{x}+\tan ^{2} \mathrm{x}$
$=\cot ^{2} x+\sec ^{2} x=$ R.H.S.
1 and 3 are correct.
86.
(D) $\sqrt{3} \sin \theta+\cos \theta=2$
$\Rightarrow \frac{\sqrt{3}}{2} \sin \theta+\frac{1}{2} \cos \theta=1$
$\Rightarrow \cos 30 \cdot \sin \theta+\sin 30 \cdot \cos \theta=\cos 0$
$\Rightarrow \cos (30-\theta)=\cos 0$
$\Rightarrow 30-\theta=0 \Rightarrow \theta=30$
Now, $\sqrt{3} \cos \theta-\sin \theta \Rightarrow \sqrt{3} \cos 30-\sin 30$
$\sqrt{3} \times \frac{\sqrt{3}}{2}-\frac{1}{2}=1$
87. (C) Suppose the cost prize of each TV $=₹ x$ Then, $(x-9400)=2(10600-x)$
$\Rightarrow x-9400=21200-2 x$
$\Rightarrow 3 x=21200+9400$
$\Rightarrow 3 x=30600$
$\Rightarrow \mathrm{x}=\frac{39600}{3}=₹ 10200$
88. (A) The difference between C.I. and S.I. for the interest as the first year's interest
S.I. for the first year $=\frac{100}{2}=₹ 50$
C.I. - S.I. $=105-100=₹ 5$

Interest on ₹50 for 1 years = ₹ 5
or, $5=\frac{50 \times 1 \times \mathrm{R}}{100}$
or, $r=10 \%$
Again S.I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}$
$\Rightarrow 100=\frac{\mathrm{P} \times 10 \times 2}{100}$
or, $\mathrm{P}=₹ 500$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
89. (B) Let the weight of Mr. Gupta and Mrs. Gupta be $7 x \mathrm{~kg}$ and $8 x \mathrm{~kg}$ respectively. Then, $7 x+8 x=120$
$\Rightarrow x=\frac{120}{15}=8 \mathrm{~kg}$
Mr Gupts $=7 \times 8=56 \mathrm{~kg}$
After taking dieting, weight of Mr. Gupta
$=56-6=50 \mathrm{~kg}$ and ratio of their weight
$=\frac{50}{x}=5: 6, x=60 \mathrm{~kg}$
So, Mrs. Gupta reduced weight

$$
=64-60=4 \mathrm{~kg}
$$

90. (D) $\mathrm{A} \times 1.2 \times 0.75=\mathrm{B} \times 1.25 \times 0.8$
$\Rightarrow A \times 0.9=B \times 1$
$\Rightarrow \frac{\mathrm{B}}{\mathrm{A}}=\frac{0.9}{1}=\frac{9}{10}$
$\therefore B: A=9: 10$
91. (A) $a=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}, b=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
$a+b=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
$=\frac{3+2-2 \sqrt{6}+3+2+2 \sqrt{6}}{(3-2)}$
$a+b=10, a b=1$
Now, $\frac{a^{2}}{b}+\frac{b^{2}}{a} \Rightarrow \frac{a^{3}+b^{3}}{a b}$
$=\frac{(a+b)^{3}-3 a b(a+b)}{a b}=\frac{1000-3(10)}{1}$
$=970$
92. (D) Total quantity of milk
$=2 \times 0.9+5 \times 0.8+9 \times 0.7=12.1$ litre
Milk concentration in the resultant mixture
$=\frac{12.1}{2+5+9} \times 100=75.625 \%$
Water concentration in the resultant mixture
$=100-75.625 \%=24.735 \%$
$\Rightarrow$ Milk: Water $=\frac{75625}{24735}=121: 39$
93. (D)

$\mathrm{PY}^{2}=4 y^{2}+x^{2}$
$\mathrm{RX}^{2}=4 x^{2}+y^{2}$
$R X^{2}+\mathrm{PY}^{2}=5 x^{2}+5 y^{2}$
$\Rightarrow \mathrm{RX}^{2}+\mathrm{PY}^{2}=5\left[x^{2}+y^{2}\right]$
$\Rightarrow R^{2}+\mathrm{PY}^{2}=5 \mathrm{XY}^{2}$
....option (A)
$\Rightarrow R X^{2}+P Y^{2}=X Y^{2}+4 X Y^{2}$
$\Rightarrow \mathrm{RX}^{2}+\mathrm{PY}^{2}=X \mathrm{Y}^{2}+4\left[x^{2}+y^{2}\right]$
$\Rightarrow R X^{2}+P Y^{2}=X Y^{2}+P R^{2}$
....option (B)
$\left[\because \mathrm{PR}^{2}=4 x^{2}+4 y^{2}\right)$
$\Rightarrow \mathrm{RX}^{2}+\mathrm{PY}^{2}=5\left[x^{2}+y^{2}\right]$
$\Rightarrow R X^{2}+P Y^{2}=5 \frac{P R^{2}}{4}$
$4\left(R^{2}+P Y^{2}\right)=5 P^{2}$
....option (C)
Option D is incorrect.
94. (A)

$\mathrm{A}=60^{\circ}, \mathrm{B}=30^{\circ}, \mathrm{C}=90^{\circ}$
Now, $3 x+\sqrt{3} x=6+2 \sqrt{3}$
$\Rightarrow x=2$
$\therefore \quad$ Area $=\frac{1}{2} \times x \times \sqrt{3}=\sqrt{3}$
95. (C) $\because$ (llgm ABCD) and (llgm ABMN) are on the same base and between the same parallels.
$\therefore \operatorname{ar}(\operatorname{llgm} \mathrm{ABCD})=\operatorname{ar}(\operatorname{llgm} \mathrm{ABMN})$
$\therefore \operatorname{ar}(\operatorname{llgm} \mathrm{ABCD})=80$ sq. unit
Again, DAPN and llgm (ABMN) ar on the same base and between the same parallesl.
$\therefore \operatorname{ar}(\triangle \mathrm{APN})=\frac{1}{2} \operatorname{ar}(\operatorname{llgm} \mathrm{ABMN})$
$=\frac{1}{2} \times 80$ sq. units
$=40$ sq. units.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
96.(C) Required answer

$$
\begin{aligned}
& =\frac{35 \times 30}{100}+\frac{35 \times 15}{100}+\frac{35 \times 15}{100} \\
& =\frac{35}{100}(30+15+15) \\
& =\frac{35 \times 60}{100}=21 \text { lakhs }
\end{aligned}
$$

97.(D) Percentage variation in

Model $\mathrm{A}=\frac{40-30}{30} \times 100=33 \frac{1}{3} \%$
Model B $=\frac{20-15}{15} \times 100=33 \frac{1}{3} \%$
Model C $=\frac{15-20}{20} \times 100=-25 \%$
98.(A) Required difference
$=\frac{44 \times 20}{100}-\frac{35 \times 15}{100}$
$=\frac{880-525}{100}=\frac{355}{100}$ lakhs
$=355000$
99.(B) Required production

$$
=\frac{44 \times 30}{100} \text { lakhs }=13,20,000
$$

100. (C)Required answer
$=35 \times \frac{10}{100} \times \frac{15}{100}+44 \times \frac{10}{100} \times \frac{15}{100}$
$=\frac{150}{10000} \times 79=1.1850$ lakhs
= ₹ $1,18,500$

SSC TIER II (MATHS) MOCK TEST - 53 (ANSWER KEY)

| 1. (C) | 11. (A) | 21. (B) | 31. | 41. (B) | (C) | 61. (B) | 71. (A) | 81. (A) | 91. (A) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. (D) | 12. (D) | 22. (A) | 32. | 42. | 52. (C) | 62. (D) | 72. (A) | 82. (D) | 92. (D) |
| 3. (C) | 13. (B) | 23. (D) | 33. (B) | 43. | 53. (C) | 63. (B) | 73. (A) | 83. (D) | 93. (D) |
| 4. (A) | 14. (D) | 24. (C) | 34. (C) |  | 54. (B) | 64. (A) | 74. (C) | 84. (C) | 94. (A) |
| 5. (B) | 15. (D) | 25. (B) | 35. (C) | 45 | 55. (D) | 65. (C) | 75. (B) | 85. (C) | 95. (C) |
| 6. (D) | 16. (D) | 26. (D) | 36. (B) | 46. | 56. (B) | 66. (C) | 76. (C) | 86. (D) | 96. (C) |
| 7. (C) | 17. (D) | (D) | 37. (D) | 47. (B) | 57. (B) | 67. (C) | 77. (D) | 87. (C) | 97. (D) |
| 8. (A) | 18. (D) | 28. (D) | 38. (D) | 48. | 58. (C) | 68. (D) | 78. (D) | 88. (A) | 98. (A) |
| 9. (A) | (A) | 29. (B) | 3. (B) | 49. (C) | 59. (B) | 69. (D) | 79. (D) | 89. (B) | 99. (B) |
| 10. (D) | 20. (D) | 30. (B) | 40. (B) | 50. (D) | 0. (D) | 70. (A) | 80. (B) | 90. (D) | 100.(C) |

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

