QUANTITATIVE ABILITY - 70 (SOLUTION)

1. (A) \mathbf{A}

So,

	CP	SP
A	100	115
B	100	125
10 units $=4800$		
100 units $=48000$		
CP of each cycle $=₹ 48,000$		

2. (C) From question:
$\Delta \mathrm{s} \propto \sqrt{n}$
$\Delta \mathrm{s}=k \sqrt{n}$
.(i)
where $\Delta \mathrm{s} \rightarrow$ reduction in speed, $\mathrm{n} \rightarrow$ no. of wagons
$\Delta \mathrm{s}=(36-30)=6 \mathrm{~km} / \mathrm{h}, \mathrm{n}=9$
Put values in equation (i),
$6=k \sqrt{9}$
$k=2$
For maximum wagons $\Rightarrow \Delta \mathrm{s}=36 \mathrm{~km} / \mathrm{h}$
$36=2 \sqrt{n}$
$n=324$
Maximum wagons $(n)=324-1=323$
3. (D) Let the rate of interest allowed by the bank is R.

Interest after 3 years $=\frac{12000 \times R \times 3}{100}=₹ 360 R$
Interest after 5 years $=\frac{12000 \times 10 \times 5}{100}=₹ 6000$
ATQ,
$6000-360 \mathrm{R}=3320$
$R=\frac{2680}{360}=7 \frac{4}{9} \%$
4. (A) Total quantity of petrol consumed in 3 years $=\left(\frac{4000}{7.50}+\frac{4000}{8}+\frac{4000}{8.50}\right)$ litres
$=4000\left(\frac{2}{15}+\frac{1}{8}+\frac{2}{17}\right)$ litres $=\left(\frac{76700}{51}\right)$ litres
Total amount spent $=₹(3 \times 4000)=₹ 12000$
$\therefore \quad$ Average cost $=₹\left(\frac{12000 \times 51}{76700}\right)=₹ \frac{6120}{767}=₹ 7.98$
5. (A) If $a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$
$\therefore \quad \frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}=\frac{a^{3}+b^{3}+c^{3}}{a b c}=\frac{3 a b c}{a b c}=3$
6. (A)

$100 \%-56 \%=44 \%$
7. (C) $\frac{1}{\operatorname{cosec}^{2} 51^{\circ}}+\sin ^{2} 39^{\circ}+\tan ^{2} 51^{\circ}-\frac{1}{\sin ^{2} 51^{\circ} \cdot \sec ^{2} 39^{\circ}}$
$=\sin ^{2} 51^{\circ}+\sin ^{2} 39^{\circ}+\tan ^{2} 51^{\circ}-\frac{\cos ^{2} 39^{\circ}}{\sin ^{2} 51^{\circ}}$
$=\sin ^{2} 51^{\circ}+\cos ^{2} 51^{\circ}+\tan ^{2} 51^{\circ}-\frac{\sin ^{2} 51^{\circ}}{\sin ^{2} 51^{\circ}}$
$=1+\tan ^{2} 51^{\circ}-1=\tan ^{2} 51^{\circ}$
$=\cot ^{2} 39^{\circ}$
$=\operatorname{cosec}^{2} 35^{\circ}-1=x^{2}-1$
8. (B) $\left(x^{4}+x^{4}\right)=322$
$x^{4}+\frac{1}{x^{4}}=322$
$\therefore \quad x^{2}+\frac{1}{x^{2}}=18$
$x^{2}+\frac{1}{x^{2}}-2=16$
$\left(x-\frac{1}{x}\right)^{2}=4$
$x-x^{-1}=4$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
9. (C) $2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=1$
$\cos ^{2} \theta-\sin ^{2} \theta=\frac{1}{2}$
$\therefore \quad \cos 2 \theta=\cos 60^{\circ}$
$2 \theta=60^{\circ}$
$\theta=\frac{60^{\circ}}{2}=30^{\circ}$
10. (B) Let the time taken by the faster pipe $(A)=x$ hours

Then time taken by the slower pipe $\mathrm{B}=(x+5)$ hours ATQ,
$\frac{x(x+5)}{x+(x+5)}=6$
$x^{2}+5 x=12 x+30$
$x^{2}-7 x-30=0$
$x^{2}-10 x+3 x-30=0$
$x(x-10)+3(x-10)=0$
$(x-10)(x+3)=0$
$x=10$ hours
11. (A) TSA of the remaining solid $=2 \pi r h+\pi r^{2}+\pi r l$ $\left(\because l=\sqrt{h^{2}+r^{2}}\right)$
$=2 \times \pi \times 3 \times 4+\pi \times 9+\pi \times 3 \times 5$
$=\pi[24+9+15]=\pi[48] \mathrm{cm}^{2}$
12. (A) S.I for 1 year $=10 \%$
C.I for 1 year half yearly $=10.25 \%$
$\therefore \quad 0.25 \%=180$
$100 \%=₹ 72,000$
13. (A) $a=\frac{4}{3}$
$27 a^{3}-108 a^{2}+144 a-317$
$=27 \times \frac{64}{27}-108 \times \frac{16}{9}+144 \times \frac{4}{3}-317$
$=64-192+192-317=-253$
14. (B) $\cot 18^{\circ}\left[\cot 72 \cdot \cos ^{2} 22^{\circ}+\frac{1}{\tan 72^{\circ} \sec ^{2} 68^{\circ}}\right]$
$=\tan 72^{\circ}\left[\frac{\cos ^{2} 22^{\circ}}{\tan 72^{\circ}}+\frac{\cos ^{2} 68^{\circ}}{\tan 72^{\circ}}\right]$
$=\tan 72^{\circ} \times \frac{1}{\tan 72^{\circ}}\left[\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}\right]=1 \times 1=1$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
15. (B)

$\angle \mathrm{ADC}=85^{\circ}$
$\therefore \quad \mathrm{CDQ}=180^{\circ}-85=95^{\circ}$
$\angle \mathrm{PBC}=\angle \mathrm{ADC}=85^{\circ}$
In $\triangle \mathrm{BCD}$,
$\angle \mathrm{PBC}+\angle \mathrm{CPB}+\angle \mathrm{BCP}=180^{\circ}$
$85^{\circ}+40^{\circ}+\angle \mathrm{BCP}=180^{\circ}$
$\angle \mathrm{BCP}=180^{\circ}-125^{\circ}=55^{\circ}$
$\therefore \quad \angle \mathrm{DCQ}=\angle \mathrm{BCP}=55^{\circ}$
In $\triangle \mathrm{CDQ}$,
$\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{Q}=180^{\circ}$
$55^{\circ}+95^{\circ}+\mathrm{Q}=180$
$\angle \mathrm{Q}=180^{\circ}-150^{\circ}=30^{\circ}$
16. (C)

$\therefore \quad \mathrm{AO}: \mathrm{OG}=3: 1$
17. (D)

$$
\begin{aligned}
& (x+2)^{2}+x^{2}=(2 \sqrt{5})^{2} \\
& x^{2}+4+4 x+x^{2}=20 \\
& x^{2}+2 x=8 \\
& x^{2}+2 x-8=0
\end{aligned}
$$

Campus

K D Campus Pvt. Ltd

$x^{2}+4 x-2 x-8=0$
$(x+4)(x-2)=0$
$x=2$
Now, $\cos ^{2} \mathrm{~A}-\cos ^{2} \mathrm{C}$
$\left(\frac{4}{2 \sqrt{5}}\right)^{2}-\left(\frac{2}{2 \sqrt{5}}\right)^{2}$
$\frac{16}{20}-\frac{4}{20}=\frac{12}{20}=\frac{3}{5}$
18. (A) Let radius $=5 x \mathrm{~cm}$ and height $=12 x \mathrm{~cm}$
$\mathrm{V}=\frac{1}{3} \pi \times(5 x)^{2} \times 12 x$
$314=\frac{1}{3} \times 3.14 \times 25 \times 12 \times x^{3}$
$\frac{300}{25 \times 12}=x^{3}$
$x=1$
$l=\sqrt{h^{2}+r^{2}}=\sqrt{5^{2}+12^{2}}=13 \mathrm{~cm}$
19. (B) Let the cost price of 1 gm weight is ₹ 1 .

Profit $\%=\frac{200}{900} \times 100=22 \frac{2}{9} \%$
20. (A) Area of equilateral $\Delta=\frac{\sqrt{3}}{4}$ side 2
$\therefore \quad 121 \sqrt{3}=\frac{\sqrt{3}}{4}$ side $^{2}=121 \times 4$
Side ${ }^{2}=11^{2} \times 2^{2}$
Side $=22 \mathrm{~cm}$
$\because \quad$ Perimeter of equilateral $\Delta=$ Circumference of circle
$\therefore \quad 3 \times 22=2 \times \frac{22}{7} r$
$r=\frac{21}{2} \mathrm{~cm}=10.5 \mathrm{~cm}$
Area of circle $=\pi r^{2}=\frac{22}{7} \times 10.5 \times 10.5=346.5 \mathrm{~cm}^{2}$
21. (B) Right cylinder's volume = It's curved surface area
$\therefore \quad \pi r^{2} h=2 \pi r h$
$r=2$ units
22. (B) Let the age of father and son 10 years ago be $3 x$ and x years respectively.

ATQ,
$(3 x+10)+10=2[(x+10)+10]$
$3 x+20=2 x+40$
$x=20$
$\therefore \quad$ Required ratio $=(3 x+10):(x+10)=70: 30=7: 3$
23. (C) Let the cost price of the watch $=₹ 100$

ATQ,

Loss = ₹ 10
Profit = ₹ 5
Required $\%=\frac{10}{5} \times 100=200 \%$
24. (B)

$\mathrm{AC}=$ Distance covered by train starting from A in 3 hours $=50 \times 3=150 \mathrm{~km}$
$\mathrm{BC}=$ Distance covered by train starting from B in 2 hours $=60 \times 2=120 \mathrm{~km}$
$\therefore \quad \mathrm{AC}: \mathrm{BC}=150: 120=5: 4$
25. (A)

$₹ 15$	₹ 20
$\underset{+2}{ }$	$\underset{\downarrow}{ } \times 2$
30	60

$\frac{15 \times 2+20 \times 3}{2+3}=\frac{90}{5}=18$
Required rate $=₹ 18 / \mathrm{kg}$
26. (A)

ATQ,
Hound chases Hare after 1 min then distance covered by Hare in $1 \mathrm{~min}=\frac{9 \times 5 \times 60}{18}=150 \mathrm{~m}$
Total distance travelled by hound to catch rabbit $=(180+150)=330 \mathrm{~m}$
Now both are moving in same direction then relative speed $=(12-9) \mathrm{km} / \mathrm{h}=3 \mathrm{~km} / \mathrm{h}$
Time taken by hound to catch the Hare $=\frac{330 \times 18}{3 \times 5}=396 \mathrm{sec}$
Distance travelled by hound $=396 \times 12 \times \frac{5}{18}=1320 \mathrm{~m}$
27. (C) Difference in percentage of votes $=(54-46) \%=8 \%$
8% of total votes $=14400$
54% of total votes $=\frac{14400 \times 54}{8}=97200$
28. (B) Let his expenditure be ₹ $39 x$ and savings be $24 x$.

ATQ,
$39 x+24 x=14490$
$63 x=14490$
$x=\frac{14490}{63}=230$
His monthly expenditure $=39 x=39 \times 230=₹ 8970$
29. (B) Total increased weight $=\frac{1}{4} \times 44=11 \mathrm{~kg}$
$\therefore \quad$ Weight of the new man $=44+11=55 \mathrm{~kg}$
30. (A) $(A+B)$'s 1 day's work $=\frac{1}{16}$ \qquad
$(B+C)$'s 1 day's work $=\frac{1}{12}$ \qquad (ii)
$(C+A)$'s 1 day's work $=\frac{1}{24}$ \qquad (iii)

Adding equation (i), (ii) and (iii)
$2(\mathrm{~A}+\mathrm{B}+\mathrm{C})$'s 1 day's work $=\frac{1}{16}+\frac{1}{12}+\frac{1}{24}=\frac{3+4+2}{48}=\frac{9}{48}$
$(A+B+C)$'s 1 day's work $=\frac{9}{96}$
$\therefore \quad$ All three together will complete the work $=\frac{96}{9}=10 \frac{2}{3}$ days

Shortcut:-

All three together will complete the work in $=\frac{48}{9} \times 2=10 \frac{2}{3}$ days
31. (B) Pipe A fills the tank in 45 minutes.
$\therefore \quad$ Tank filled by A in $30 \mathrm{~min}=\frac{30}{45}=\frac{2}{3}$
Remaining part $=1-\frac{2}{3}=\frac{1}{3}$
1 part is filled by pipe B in 51 min .
$\frac{1}{3}$ part is filled in $=\frac{1}{3} \times 51=17 \mathrm{~min}$

K D Campus Pvt. Ltd

Shortcut:

A	45
B	51

Work done by A and B in 30 minutes $=32 \times 30=960$
Work not done by $\mathrm{B}=960-765=195$
Tab B was turned off $=30-\frac{195}{15}=17 \mathrm{~min}$
32. (C) Let ₹ x and ₹ y be the cost price of two goats.
64% of $x=144 \%$ of y
$\frac{x}{y}=\frac{144}{64}=\frac{9}{4}$
$x: y=9: 4$
$\therefore \quad$ Cost price of first goat $=₹\left(\frac{9}{13} \times 728\right)=₹ 504$
33. (B) Let the sum lent in each case be ₹ x.
$\frac{x \times 11 \times 2}{100}+\frac{x \times 12 \times 2}{100}=₹ 828$
$\frac{22 x+24 x}{100}=₹ 828$
$46 x=₹ 82800$
$x=₹ 1800$
34. (B) Let the total number of students $=100$
$\therefore \quad 18$ students speak none of the two languages.
$\therefore \quad 82$ students speak either Hindi or German.
Let x students speak both languages.
$100-65-x+x+35+x=100-82$
$x=18$
35.
(B) $\mathrm{S}=1-\frac{1}{10}+\frac{1}{10^{2}}-\frac{1}{10^{3}}+$ \qquad .∞

It is Geometric series to infinity
$a=1$ and common ratio $(r)=\frac{-1}{10}$
$\therefore \quad \mathrm{S}_{\infty}=\frac{a}{1-r}=\frac{1}{1-\left(\frac{-1}{10}\right)}=\frac{10}{11}=0 . \overline{90}$
$\therefore \quad$ The value correct up to 6 places of decimal $=0.909090$
36. (C) Distance $=\frac{7 \times 8}{8-7} \times \frac{6}{60}=\frac{56}{10}=5.6 \mathrm{~km}$

Shortcut:-

Speed	Time	Actual Time
7	8	+6 min late
$8 \stackrel{y}{\leq} 56$	7	0 min
	1 hour or 60 min	6 min

Actual distance $=\frac{6}{60} \times 56=5.6 \mathrm{~km}$
37. (B) $t=4, u=12, v=8$

Distance between A and B $=\frac{t\left(u^{2}-v^{2}\right)}{2 u}$
$=\frac{4(144-64)}{2 \times 12}=13.33 \mathrm{~km}$
38. (A) Number of teachers in Physics $=1800 \times \frac{17}{100}=306$

Number of female teachers in Physics $=\frac{2}{9} \times 306=2 \times 34=68$
Number of male teachers $=306-68=238$
Required percentage $=\frac{238}{23 \times 18} \times 100 \approx 57 \%$
39. (B) Required number of teachers $=62 \%$ of $1800=1116$
40. (B) Teachers who teach English + Physics $=44 \%$ of 1800

Teachers who teach Mathematics + Biology together $=25 \%$ of 1800
Required difference $=19 \%$ of $1800=342$
41. (D) Required ratio $=13: 8$
42. (C) New strength of Mathematics teachers $=234+\left(\frac{1}{2} \times 13 \%\right.$ of $\left.1800=117\right)=351$

New strength of Hindi teachers $=\frac{3}{4} \times 8 \%$ of $1800=108$
Collective strength of both subject teachers $=357+108=459$
43. (B)

K D Campus Pvt. Ltd

AB is a incomplete pillar and BC is a extended height.
$\angle \mathrm{ADB}=45^{\circ}$ and $\angle \mathrm{ADC}=60^{\circ}$
$\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{AD}}$
$1=\frac{\mathrm{AB}}{100}$
$\mathrm{AB}=100 \mathrm{~m}$
In $\triangle \mathrm{ACD}$,
$\tan 60^{\circ}=\frac{\mathrm{AC}}{\mathrm{AD}}$
$\therefore \quad \frac{\sqrt{3}}{1}=\frac{B C+100}{100}=B C+100=100 \sqrt{3}$
$\therefore \quad B C=100 \sqrt{3}-100=100(\sqrt{3}-1) \mathrm{m}$
44. (A) Let the larger number be x and smaller number bey.

ATQ,
$x-\frac{y}{2}=\left(y-\frac{y}{2}\right) \times 5$
$\frac{2 x-y}{2}=\frac{y}{2} \times 5$
$2 x-y=5 y$
$2 x=6 y \Rightarrow \frac{x}{y}=\frac{6}{2}$
$x: y=3: 1$
45. (A) From the question we have,
$\frac{\pi(r-n)^{2}}{\pi r^{2}}=\frac{1}{2}$
$\mathrm{r}^{2}=2(\mathrm{r}-\mathrm{n})^{2}$
$r^{2}-\{\sqrt{2}(r-n)\}^{2}=0$
$\{r-\sqrt{2}(r-n)\}\{r+\sqrt{2}(r-n)\}=0$
Since $r+\sqrt{2}(r-n) \neq 0$, we have
$r-\sqrt{2}(r-n)=0$
$r-\sqrt{2} r+r-\sqrt{2} n=0$
$r-\sqrt{2} r+\sqrt{2} n=0$
$\sqrt{2} n=\sqrt{2} r-1$
$\sqrt{2} n=r(\sqrt{2}-1)$
$n=\frac{\sqrt{2} n}{\sqrt{2}-1}$
46. (C) Area of square $=22 \mathrm{~cm}^{2}$

Perimeter of the square $=4 \sqrt{22} \mathrm{~cm}$
Now, this perimeter is the circumference of the circle.
Circumference of the circle $=2 \pi r=4 \sqrt{22}$
$\therefore \quad r=\frac{2 \sqrt{22}}{\pi}$

Area of the circle $=\pi r^{2}=\pi\left(\frac{2 \sqrt{22}}{\pi}\right)^{2}$
$=\frac{\pi \times 4 \times 22}{\pi^{2}}=\frac{4 \times 22}{\pi}=\frac{4 \times 22 \times 7}{22}=28 \mathrm{~cm}^{2}$
47. (D) Area of the quadrilateral $=\frac{1}{2} \times$ any diagonal \times (sum of perpendiculars drawn on diagonal
from two vertices $)=\frac{1}{2} \times D \times\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)$
$=\frac{1}{2} \times 23 \times(17+7)=2 \times 23=276 \mathrm{sq} \mathrm{cm}$
48. (B) $\cos \theta=\frac{15}{17} ; \sec \theta=\frac{17}{15}$
$\therefore \quad \cot \left(90^{\circ}-\theta\right)=\tan \theta=\sqrt{\sec ^{2} \theta-1}$
$=\sqrt{\left(\frac{17}{15}\right)^{2}-1}=\sqrt{\frac{289-225}{225}}=\frac{8}{15}$
49. (A) $\frac{2 \sin \theta-\cos \theta}{\cos \theta+\sin \theta}=1$

Dividing numerator and denominator by $\sin \theta$,

$$
\begin{aligned}
& \frac{2-\cot \theta}{\cot \theta+1}=1 \\
& 2-\cot \theta=\cot \theta+1 \\
& 2 \cot \theta=1 \\
& \cot \theta=\frac{1}{2}
\end{aligned}
$$

50. (B)

$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{2}{1}$
$\mathrm{AB}=2 \mathrm{k}, \mathrm{BC}=\mathrm{k}$
$\therefore \quad \mathrm{AC}=\sqrt{(2 k)^{2}+k^{2}}=\sqrt{5 k^{2}}=\sqrt{5} k$
$\sin \mathrm{A}+\cot \mathrm{C}=\frac{B C}{A C}+\frac{B C}{A B}=\frac{k}{\sqrt{5} k}+\frac{k}{2 k}$
$=\frac{1}{\sqrt{5}}+\frac{1}{2}=\frac{2+\sqrt{5}}{2 \sqrt{5}}$
51. (B)

Area of $(\triangle P R S+\triangle P Q R)=\frac{1}{2}($ area of $\| g m$ APRD $)+\frac{1}{2}($ area of $\|$ gm BPRC $)$
If a triangle and a \|gm are on the same base $\&$ between the same parallel, the area of triangle is half the area of $\| \mathrm{gm}=\frac{1}{2}$ (area are \|gm ABCD)
$=\frac{1}{2} \times 40=20 \mathrm{~cm}^{2}$
52. (D)

$$
\angle S P Q=180^{\circ}-120^{\circ}=60^{\circ}
$$

And $\angle P S Q=180^{\circ}-60^{\circ}-60^{\circ}=60^{\circ}$
$\therefore \quad \triangle P S Q$ is an equilateral triangle.
Hence, $\mathrm{SQ}=\mathrm{PQ}=\mathrm{QS}=36 \mathrm{~cm}$

K D Campus Pvt. Ltd

53. (D)

So, Area of parallelogram (P) and area of rhombus (R) are same because their base is same and are between same parallel lines. Also area of triangle is half of area of parallelogram (P) or area of rhombus (R).
Hence, $R=P=2 T$
54. (A)

$\because \quad \mathrm{AB}=\mathrm{AC} \Rightarrow \angle \mathrm{B}=\angle \mathrm{C}=x^{\circ}$ (Say)
Now, $\angle \mathrm{PAC}=\angle \mathrm{B}+\angle \mathrm{C}$ (Exterior angle sum property)
$2 \angle \mathrm{CAD}=x^{0}+x^{0}(\because \mathrm{AD}$ bisects $\angle \mathrm{PAC})$
$\angle \mathrm{CAD}=x^{\circ}=\angle \mathrm{ACB}$ (Which are alternate interior angles)
Hence AD || BC
Also AD || CD (given)
$\square \mathrm{ABCD}$ is a $\| \mathrm{gm}$.
55. (A)

$\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$ (Adjacent angles of a $\| \mathrm{gm}$ are supplementary)
$\frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{~B}=90^{\circ}(\because \mathrm{AP} \& \mathrm{BP}$ are bisector of $\angle \mathrm{A} \& \angle \mathrm{~B}$ respectively)
$\angle \mathrm{APB}=90^{\circ}$ or $\Rightarrow \angle \mathrm{QPS}=90^{\circ}$
Again $\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\frac{1}{2} \angle \mathrm{~B}+\frac{1}{2} \angle \mathrm{C}=90^{\circ}$
$\angle \mathrm{BQC}=90^{\circ}$
$\therefore \quad \angle \mathrm{PQR}=\angle \mathrm{BQC}=90^{\circ}$.
Similarly we can show that $\angle \mathrm{PSR}=\angle \mathrm{SRQ}=90^{\circ}$
Hence \square PQRS is a rectangle.
56. (B)

$\mathrm{BE}=\sqrt{15^{2}-10^{2}}=\sqrt{125}=5 \sqrt{5} \mathrm{~cm}$
Area $=\frac{1}{2}(25+45) 5 \sqrt{5}$
$=\frac{1}{2} \times 70 \times 5 \sqrt{5}=175 \sqrt{5} \mathrm{~cm}^{2}$
57. (D)

Height of the aeroplane at $C(B C)=3125 \mathrm{~m}$
ATQ,
$\mathrm{AB}=\mathrm{BC} \cot 30^{\circ}=3125 \times \sqrt{3}$
Distance of aeroplane at C from the ground $=3125 \sqrt{3}$
$\mathrm{BD}=\mathrm{AB} \tan 60^{\circ}$
$=3125 \sqrt{3} \times \sqrt{3}=9375 \mathrm{~m}$
Height of aeroplane at D from the ground $=9375 \mathrm{~m}$
Distance between both aeroplanes $=9375-3125=6250 \mathrm{~m}$
58. (C)

Let height of the monument $=x \mathrm{~m}$ ATQ,
$\frac{\mathrm{AB}}{\mathrm{BD}}=\tan (\angle \mathrm{ADB})=\frac{1}{5}$
$5 \mathrm{AB}=\mathrm{BD}$
$\frac{\mathrm{AB}}{\mathrm{BC}}=\tan (\angle \mathrm{ACB})=\sqrt{\sec ^{2}(\angle \mathrm{ACB})-1}$
$\mathrm{AB}=(\mathrm{BD}-138) \sqrt{\frac{193}{144}-1}$

K D Campus Pvt. Ltd

$\mathrm{AB}=(\mathrm{BD}-138)\left(\frac{7}{12}\right)$
Putting the value of BD in equation (ii),
$12 \mathrm{AB}=(5 \mathrm{AB}-138) \times 7$
$12 \mathrm{AB}=35 \mathrm{AB}-138 \times 7$
$23 \mathrm{AB}=138 \times 7$
$\mathrm{AB}=42 \mathrm{~m}$
59. (C) $(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
$a^{2}+b^{2}+c^{2}=(27 \sqrt{29})^{2}-2(a b+b c+c a)$
Also, $3 a=4 b=6 c$
$\frac{a}{12}=\frac{b}{9}=\frac{c}{6}=\mathrm{k}$
$a=12 k, b=9 k, c=6 k$
$a+b+c=27 k=27 \sqrt{29}$
$k=\sqrt{29}$
So, $a=12 \sqrt{29}, b=9 \sqrt{29}$ and $c=6 \sqrt{29}$
$a b+b c+c a=(108+54+72) 29$
$a b+b c+c a=234 \times 29$
Now, we have
$a^{2}+b^{2}+c^{2}=27^{2} \times 29-2(a b+b c+c a)$
$=27^{2} \times 29-2 \times 234 \times 29=29\left(27^{2}-468\right)$
$=29(729-468)=29 \times 261=7569$
60. (D) $x^{4}+\frac{1}{x^{4}}=322$
$\left(x^{2}+\frac{1}{x^{2}}\right)^{2}=322+2=324$
$x^{2}+\frac{1}{x^{2}}=18$
$\left(x-\frac{1}{x}\right)^{2}=18-2=16$
$x-\frac{1}{x}=4$
61. (B) We have the given expression as
$x^{2}+4 y^{2}+4 y-4 x y-2 x-8$
$=x^{2}-2 x y-4 x-2 x y+4 y^{2}+8 y+2 x-4 y-8$
$=x(x-2 y-4)-2 y(x-2 x-y)+2(x-2 y-4)$
$=(x-2 y-4)(x-2 y+2)$
So, we have $(x-2 y-4)(x-2 y+2)$ as two factors of the given polynomial.
62. (C) Given:
$x=(b-c)(a-d)$
$y=(c-a)(b-d)$
$z=(a-b)(c-d)$
$\therefore \quad x+y+z=(b-c)(a-d)+(c-a)(b-d)+(a-b)(c-d)=0$
So, $x^{3}+y^{3}+z^{3}=3 x y z$

Campus

K D Campus Pvt. Ltd

63. (C) We have,
$\because \quad(x-k)$, is a factor of $x^{2}-3 x-10$
$\therefore \quad k^{2}-3 x-10=0$
$(k+2)(k-5)$
$k=-5,-2$
64. (C) We have $m=n^{2}-n$
$m^{2}-2 m=\left(n^{2}-n\right)^{2}-2\left(n^{2}-n\right)=n(n-1)\left(n^{2}-n-2\right)=(n+1)(n)(n-1)(n-2)$
As, we can observe that it is the product of 4 consecutive number.
Hence, it is divisible by 24.
65. (D) (1) $\frac{1 .}{4} M^{2}+\frac{4}{9} N^{2}+\frac{2}{3} M N$
(2) $\frac{4}{9} N^{2}+\frac{1}{4} M^{2}+\frac{2}{3} M N$
(3) $\frac{M^{2}}{4}-\frac{4}{9} \mathrm{M}^{2}-\frac{2 \mathrm{MN}}{6}+\frac{2 \mathrm{MN}}{6}$
(4) $\frac{1}{4}\left[M^{2}+\frac{16}{9} N^{2}+\frac{8 M N}{3}\right]=\frac{M^{2}}{4}+\frac{4}{9} M^{2}+\frac{2 M N}{3}$

Therefore;
Only (1) ,(2) and (4) are equivalent.
66. (B) $\frac{n-1}{n^{\frac{3}{4}}+n^{\frac{1}{2}}} \cdot \frac{n^{\frac{1}{2}}+n^{\frac{1}{4}}}{n^{\frac{1}{2}}+1} \cdot n^{\frac{1}{4}}$
$n=16$
$n^{1 / 2}=4$
$n^{1 / 4}=2$
$n^{3 / 4}=8$
$\therefore \quad \frac{15}{8+4} \cdot \frac{4+2}{4+1} \cdot 2$

$$
\frac{15}{12} \times \frac{6}{5} \times 2=3
$$

67. (D) $\sqrt{b \sqrt[3]{b}}-\sqrt[3]{b \sqrt{b}}=\sqrt{b}$

$$
\begin{aligned}
& b^{\left(1+\frac{1}{3}\right)^{\frac{1}{2}}}-b^{\left(1+\frac{1}{2}\right)^{\frac{1}{3}}=}=(b)^{\frac{1}{2}} \\
& b^{\frac{4}{3} \times \frac{1}{2}-} b^{\frac{3}{2} \times \frac{1}{3}}=b^{\frac{1}{2}} \\
& b^{\frac{2}{3}}-b^{\frac{1}{2}}=b^{\frac{1}{2}} \\
& b^{\left(\frac{2}{3}-\frac{1}{2}\right)}=2 \\
& b^{\frac{1}{6}}=2 \\
& b=2^{6}=64
\end{aligned}
$$

68. (B) $\left(\frac{p^{2}}{q^{2}}\right)^{5 x+7}=\left(\frac{q^{3}}{p^{3}}\right)^{x-8}$

$$
\begin{aligned}
& \left(\frac{p^{2}}{q^{2}}\right)^{5 x+7}=\left(\frac{p^{3}}{q^{3}}\right)^{8-x} \\
& {\left[\left(\frac{p}{q}\right)^{2}\right]^{5 x+7}=\left[\left(\frac{p}{q}\right)^{3}\right]^{8-x}} \\
& 10 x+14=24-3 x \\
& 13 x=10 \\
& x=\frac{10}{13} \\
& 5 x+7=5 \times \frac{10}{13}+7=\frac{141}{13}=10 \frac{11}{13}
\end{aligned}
$$

69. (D)
D) $\frac{a^{2}+b^{2}}{c^{2}+d^{2}}=\frac{a b}{c d}=\frac{2 a b}{2 c d}$
[If $\frac{a}{c}=\frac{b}{d}$, then $\frac{a}{b}=\frac{c}{d}$]
$\frac{a^{2}+b^{2}}{2 a b}=\frac{c^{2}+d^{2}}{2 c d}$
On applying componendo and dividendo,
$\frac{a^{2}+b^{2}+2 a b}{a^{2}+b^{2}-2 a b}=\frac{c^{2}+d^{2}+2 c d}{c^{2}+d^{2}-2 c d}$
$\frac{(a+b)^{2}}{(a-b)^{2}}=\frac{(c+d)^{2}}{(c-d)^{2}}$
$\therefore \quad \frac{a+b}{a-b}= \pm \frac{c+d}{c-d}$
70. (A) $\frac{a^{\frac{1}{2}}+a^{-\frac{1}{2}}}{1-a}+\frac{1-a^{-\frac{1}{2}}}{1+\sqrt{a}}$

$=\frac{a^{\frac{1}{2}}+a^{-\frac{1}{2}}+1-a^{\frac{1}{2}}+a^{-\frac{1}{2}+\frac{1}{2}}}{\left(1+a^{\frac{1}{2}}\right)\left(1-a^{\frac{1}{2}}\right)}$
$=\frac{1+a^{\circ}}{1-a^{\circ}}=\frac{1+1}{1-a}=\frac{2}{1-a}\left(a^{\circ}=1\right.$ because any number raised to the power 0 is equal to 1$)$
71. (D) ATQ,

$P Q=\sqrt{3} Q R$
and, $\angle \mathrm{RQP}=90^{\circ}$
Then,
$\tan \angle \mathrm{QPR}=\frac{\mathrm{QR}}{\mathrm{QP}}=\tan 30^{\circ}$
$\angle \mathrm{QPR}=30^{\circ}$
72. (A) ATQ,

$\mathrm{AE} \times \mathrm{BE}=\mathrm{CE} \times \mathrm{ED}$
$5 \times 4=8 \times \mathrm{ED}$
$\mathrm{ED}=2.5 \mathrm{~cm}$
73. (C) ATQ,

Let the $\mathrm{OF}=x \mathrm{~cm}$
ATQ,
$\mathrm{OA}^{2}=x^{2}+4^{2}$
and, $\mathrm{OC}^{2}=(x+1)^{2}+3^{2}$
Now, $\mathrm{OA}=\mathrm{OC}$
$x^{2}+4^{2}=(x+1)^{2}+3^{2}$
$x=3$
Now, $\mathrm{OA}^{2}=3^{2}+4^{2}$
$\mathrm{OA}=\sqrt{25}=5 \mathrm{~cm}$
$\therefore \quad$ Radius of circle $=5 \mathrm{~cm}$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
74. (A) Total speed $=60+45=105 \mathrm{~km} / \mathrm{hr}$
$=105 \times \frac{5}{18}=\frac{175}{6} \mathrm{~m} / \mathrm{s}$
Total length of both trains $=\frac{175}{6} \times 18=525 \mathrm{~m}$
Ratio of length of trains $=2: 1$
Length of first train $=\frac{525}{3} \times 2=350 \mathrm{~m}$
and length of second train $=525-350=175 \mathrm{~m}$
Distance covered in 45 sec . by
First train $=60 \times \frac{5}{18} \times 45=750 \mathrm{~m}$
$\therefore \quad$ Length of platform $=750-350=400 \mathrm{~m}$
75. (B) Let the speed of train $=x \mathrm{~km} / \mathrm{hr}$ ATQ,
$x \times \frac{40}{60}=(x-10) \times \frac{45}{60}$
$\frac{2 x}{3}=\frac{3 x}{4}-\frac{15}{2}$
$\frac{3 x}{4}-\frac{2 x}{3}=\frac{15}{2}$
$\frac{9 x-8 x}{12}=\frac{15}{2}$
$x=90 \mathrm{~km} / \mathrm{hr}$
Distance between A and B $=90 \times \frac{40}{60}=60 \mathrm{~km}$
76. (C) The goods train leaves Delhi at 8 am and mail train 12 pm , hence after 6 hours The distance covered by goods train in 6 hours at $40 \mathrm{kmph}=40 \times 6=240 \mathrm{~km}$ The relative speed of mail train with respect to goods train $=60-40=20 \mathrm{kmph}$ To completely cross the goods train, the mail train will have to cover a distance
$=240 \mathrm{~km}+160 \mathrm{~m}+140 \mathrm{~m}=240.300 \mathrm{~km}$ more .
Since, the mail train goes 20 km more in 1 hour.
$\therefore \quad$ Mail train goes 240.300 km more in $\frac{2403}{10} \times \frac{1}{20}=12.015$ hours.
77. (C) Let the speed of boat in still water is $x \mathrm{kmph}$ and that of the current be $y \mathrm{kmph}$, then
$\frac{12}{x-y}+\frac{18}{x+y}=3$
$\frac{36}{x-y}+\frac{24}{x+y}=\frac{13}{2}$
By equation (i) $\times 3-$ equation (ii),
$\frac{54}{x+y}-\frac{24}{x+y}=9-\frac{13}{2}$
$\frac{30}{x+y}=\frac{5}{2}$
$x+y=12$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
From equation (i),
$\frac{12}{x-y}+\frac{18}{12}=3$
$\frac{12}{x-y}=3-\frac{3}{2}=\frac{3}{2}$
$x-y=\frac{12 \times 2}{3}=8$
$\therefore \quad$ Speed of current $=\frac{1}{2}(12-8)=2 \mathrm{kmph}$
78. (C) Let the number be $=x$

ATQ,
$\frac{3}{4} x-\frac{3}{14} x=150$
$\frac{21 x-6 x}{28}=150$
$\frac{15 x}{20}=150$
$x=150 \times \frac{28}{15}=280$
79. (C) The highest marks $=47$

The lowest marks $=14$
Difference in marks $=33$
After assessment if 50 becomes 10 then 33 becomes $=33 \times \frac{10}{50}=6.6$
80. (B)
$7 \frac{1}{2}-\left[2 \frac{1}{4} \div\left\{1 \frac{1}{4}-\frac{1}{2}\left(1 \frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right\}\right]$
$=\frac{15}{2}-\left[\frac{9}{4} \div\left\{\frac{5}{4}-\frac{1}{2}\left(\frac{3}{2}-\frac{1}{3}-\frac{1}{6}\right)\right\}\right]=\frac{15}{2}-\left[\frac{9}{4} \div\left\{\frac{5}{4}-\frac{1}{2}\left(\frac{9-2-1}{6}\right)\right\}\right]$
$=\frac{15}{2}-\left[\frac{9}{4} \div\left\{\frac{5}{4}-\frac{1}{2} \times 1\right\}\right]=\frac{15}{2}-\left[\frac{9}{4} \div\left\{\frac{5-2}{4}\right\}\right]$
$=\frac{15}{2}-\left[\frac{9}{4} \div \frac{3}{4}\right]=\frac{15}{2}-\left[\frac{9}{4} \times \frac{4}{3}\right]=\frac{15}{2}-3=\frac{15-6}{2}$
$=\frac{9}{2}=4 \frac{1}{2}$
81. (C) $2 \div\left[\frac{1}{2}+2 \div\{2+2 \div(2+2 \div 3)\}\right]$
$=2 \div\left[\frac{1}{2}+2 \div\left\{2+2 \div\left(2+\frac{2}{3}\right)\right\}\right]=2 \div\left[\frac{1}{2}+2 \div\left\{2+2 \div \frac{8}{3}\right\}\right]$
$=2 \div\left[\frac{1}{2}+2 \div\left\{2+2 \times \frac{3}{8}\right\}\right]=2 \div\left[\frac{1}{2}+2 \div\left\{2+\frac{3}{4}\right\}\right]$
$=2 \div\left[\frac{1}{2}+2 \div \frac{11}{4}\right]=2 \div\left[\frac{1}{2}+2 \times \frac{4}{11}\right]=2 \div\left[\frac{1}{2}+\frac{8}{11}\right]$
$=2 \div\left[\frac{27}{22}\right]=\frac{44}{27}$
82. (B) $\left[\frac{1}{2}+\frac{1}{2}\left\{\frac{3}{4}-\frac{1}{2}\left(\frac{7}{8}-\frac{3}{4}\right)\right\}\right]$

$$
\begin{aligned}
& =\left[\frac{1}{2}+\frac{1}{2}\left\{\frac{3}{4}-\frac{1}{2}\left(\frac{7-6}{8}\right)\right\}\right]=\left[\frac{1}{2}+\frac{1}{2}\left\{\frac{3}{4}-\frac{1}{16}\right\}\right] \\
& =\left[\frac{1}{2}+\frac{1}{2}\left\{\frac{12-1}{16}\right\}\right]=\left[\frac{1}{2}+\frac{1}{2} \times \frac{11}{16}\right] \\
& =\left[\frac{1}{2}+\frac{11}{32}\right]=\left[\frac{16+11}{32}\right]=\frac{27}{32}
\end{aligned}
$$

83. (B) $\frac{(0.55)^{2}+(0.07)^{2}+(0.027)^{2}}{(0.055)^{2}+(0.007)^{2}+(0.0027)^{2}}$
$=\frac{100\left[(0.055)^{2}+(0.007)^{2}+(0.0027)^{2}\right]}{\left[(0.055)^{2}+(0.007)^{2}+(0.0027)^{2}\right]}=100$
84. (A)

Radius of first circle $=8 \mathrm{~cm}$
Radius of second circle $=4 \mathrm{~cm}$
Diameter of new circle $=(8+4)=12 \mathrm{~cm}$
Area of new circle $=\pi r^{2}=36 \pi \mathrm{~cm}^{2}$
85. (C)

$\therefore \quad \angle \mathrm{CBE}=180^{\circ}-\angle \mathrm{CBA}=180^{\circ}-60=120^{\circ}$
86. (A)

$\therefore \quad$ Required number of days $=\frac{64}{5+4}=\frac{64}{9}$ days
87. (D) $\frac{1}{\sqrt{2}+\sqrt{1}}=\frac{1}{\sqrt{2}+\sqrt{1}} \times \frac{\sqrt{2}-\sqrt{1}}{\sqrt{2}-\sqrt{1}}=\sqrt{2}-\sqrt{1}$
$\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}} \ldots \frac{1}{\sqrt{99}+\sqrt{100}}$
$=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\ldots+\sqrt{100}-\sqrt{99}$
$=\sqrt{100}-\sqrt{1}=10-1=9$
88. (B) 5 years ago avg. age of husband and wife $=23$ years

Present age of husband or wife $=23+5=28$ years
Sum of present age of husband and wife $=28 \times 2=56$ years
Sum of present age of husband, wife and child $=20 \times 3=60$ years
$\therefore \quad$ Age of child $=60-56=4$ years
89. (B) $\mathrm{A}: \mathrm{B}=3: 2=6: 4$

B: $\mathrm{C}=4: 3$
$\therefore \quad$ A : B : C $=6: 4: 3 \Rightarrow$ total number of books should be multiple of 13 .
So, 689 is the required number of books.
90. (C) Interest for 2 years $=10+10+\frac{10 \times 10}{100}=21 \%$

Interest for 3 years $=21+10+\frac{21 \times 10}{100}=33.1 \%$
Now, $(33.1-21) \%$ of $\mathrm{P}=12100$
12. 1% of $\mathrm{P}=12100$
$\mathrm{P}=\frac{12100 \times 100}{12.1}=₹ 100000$
91. (A) Amount remaining after

1 year $=4000\left(1+\frac{7.5}{100}\right)-1500=₹ 2800$
2 years $=2800\left(1+\frac{7.5}{100}\right)-1500=₹ 1510$
3 years $=1510\left(1+\frac{7.5}{100}\right)-1500=₹ 123.25$
92. (C) Let the number of students appeared in school $\mathrm{X}=100$
$\therefore \quad$ Number of students qualified in school $\mathrm{X}=70$
$\therefore \quad$ ATQ,
Number of students appeared in School $\mathrm{Y}=120$
Number of students qualified in School Y $=70+50 \%$ of $70=70+35=105$
$\therefore \quad$ Required percentage $=\frac{105 \times 100}{120}=87.5 \%$
93. (D) Required number of items $=\frac{(3000+1000)}{(60-40)}=\frac{4000}{20}=200$
94. (A) According to question,

SI for 10 years $=\frac{1000 \times 5 \times 10}{100}=₹ 500$

Now, $P=₹ 1500, A=₹ 2000$
$\therefore \quad \mathrm{SI}=₹ 500$

Now, $T=\frac{500 \times 100}{1500 \times 5}=6 \frac{2}{3}$ years
\therefore Total time $=16 \frac{2}{3}$ years
95. (B) $\mathrm{SI}=\frac{15000 \times 9 \times 2}{100}=₹ 2700$
$\mathrm{CI}=12000\left[\left(1+\frac{8}{100}\right)^{2}-1\right]=12000\left[\left(\frac{27}{25}\right)^{2}-1\right]$
$=12000\left[\frac{729-625}{625}\right]=12000 \times \frac{104}{625}=₹ 1996.8$
$\therefore \quad$ Total interest earned $=₹(2700+1996.8)=₹ 4696.8$
96. (C) Required percentage $=\left(\frac{5}{12.5} \times 100\right) \%=40 \%$
97. (B) $17.5 \% \rightarrow 2.45$
$30 \% \rightarrow \frac{2.45}{17.5} \times 30=₹ 4.2$ crore
$\therefore \quad$ Required Amount $=₹ 4.2$ cr.
98. (D) Required ratio $=(20+12.5):(10+17.5)=32.5: 27.5=13: 11$
99. (C) Required ratio $=12.5: 20=5: 8$
100.(D) Ratio of expenditure to saving $=61: 6$

ATQ,
67 units $=8710$

6 units $=\frac{8710}{67} \times 6=780$
$\therefore \quad$ His saving $=₹ 780$

QUANTITATIVE ABILITY - 70 (ANSWER KEY)

1. (A)
2. (C)
3. (D)
4. (A)
5. (A)
6. (A)
7. (C)
8. (B)
9. (C)
10. (B)
11. (A)
12. (A)
13. (A)
14. (B)
15. (B)
16. (C)
17. (D)
18. (A)
19. (B)
20. (A)
21. (B)
22. (B)
23. (C)
24. (B)
25. (A)
26. (A)
27. (C)
28. (B)
29. (B)
30. (A)
31. (B)
32. (C)
33. (B)
34. (B)
35. (B)
36. (C)
37. (B)
38. (A)
39. (B)
40. (B)
41. (D)
42. (C)
43. (B)
44. (A)
45. (A)
46. (C)
47. (D)
48. (B)
49. (A)
50. (B)
51. (B)
52. (D)
53. (D)
54. (A)
55. (A)
56. (B)
57. (D)
58. (C)
59. (C)
60. (D)
61. (B)
62. (C)
63. (C)
64. (C)
65. (D)
66. (B)
67. (D)
68. (B)
69. (D)
70. (A)
71. (D)
72. (A)
73. (C)
74. (A)
75. (B)
76. (C)
77. (C)
78. (C)
79. (C)
80. (B)
81. (C)
82. (B)
83. (B)
84. (A)
85. (C)
86. (A)
87. (D)
88. (B)
89. (B)
90. (C)
91. (A)
92. (C)
93. (D)
94. (A)
95. (B)
96. (C)
97. (B)
98. (D)
99. (C)
100.(D)
