QUANTITATIVE ABILITY-71 (SOLUTION)

1. (B) $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
$=\frac{1}{2}(332+333+335)\left[(332-333)^{2}+(333-335)^{2}+(335-332)^{2}\right]$
$=\frac{1}{2} \times 1000\left[(-1)^{2}+(-2)^{2}+(3)^{2}\right]=\frac{1}{2} \times 1000[1+4+9]$
$=500 \times 14=7000$
2. (D)

Required time $=\frac{x y}{y-x}$
3. (D) From option,

Let first number be 6 , second be 10 , third be 14 and fourth be 18 .
ATQ,
$6+5=10+1=14-3=18-7=11$
So, all are equal
4. (B) Quantity of milk $=729 \times \frac{7}{9}=567 \mathrm{ml}$

Quantity of Water $=162 \mathrm{ml}$
Let $x \mathrm{ml}$ water be added.
ATQ,
$\frac{567}{162+x}=\frac{7}{3}$
$162+x=243$
$x=81 \mathrm{ml}$
5. (A)

In $\triangle \mathrm{ABC}$,
$\cos 30^{\circ}=\frac{\mathrm{BC}}{\mathrm{AC}}$
$\frac{\sqrt{3}}{2}=\frac{B C}{10}$
$B C=8.66 \mathrm{~m}$
6. (B)

Area of $\triangle \mathrm{ADC}=\left(\frac{5}{4} \times 60\right)$ sq. $\mathrm{cm}=75$ sq. cm
7. (D)

Radius $=\mathrm{OE}$
$\mathrm{OB}=\mathrm{OA}=\frac{x}{\sqrt{2}}$
$\angle \mathrm{EBO}=90^{\circ}+45^{\circ}$
$\cos \angle \mathrm{EBO}=\cos (90+45)^{\circ}$
$\cos \left(90+45^{\circ}\right)=\frac{\mathrm{BE}^{2}+\mathrm{OB}^{2}-\mathrm{OE}^{2}}{2 \times \mathrm{BE} \times \mathrm{OB}}$
$-\sin 45^{\circ}=\frac{x^{2}+\left(\frac{x}{\sqrt{2}}\right)^{2}-\mathrm{OE}^{2}}{2 \times x \times \frac{x}{\sqrt{2}}}$
$-\frac{1}{\sqrt{2}}=\frac{x^{2}+\frac{x^{2}}{2}-\mathrm{OE}^{2}}{\sqrt{2} \times x^{2}}$
$\mathrm{OE}^{2}=\frac{5 x}{2}$
$\mathrm{OE}=\sqrt{\frac{5}{2}} x$
8. (B) Total C.P of the rice $=30 \times 70+20 \times 70.75=2100+1415=₹ 3515$

Total S.P of rice $=50 \times 80.50=₹ 4025$
So, profit $=4025-3515=$ ₹ 510
9. (C) $\tan 4^{\circ} \cdot \tan 43^{\circ} \cdot \tan 47^{\circ} \cdot \tan 86^{\circ}$
$=\tan \left(90^{\circ}-86^{\circ}\right) \cdot \tan \left(90^{\circ}-47^{\circ}\right) \cdot \tan 47^{\circ} \cdot \tan 86^{\circ}$
$=\cot 86^{\circ} \cdot \cot 47^{\circ} \cdot \tan 47^{\circ} \cdot \tan 86^{\circ}=1$
10. (A) $x \cos \theta-\sin \theta=1$

Let $\theta=0^{\circ}$
$x \cos 0^{\circ}-\sin 0^{\circ}=1$
$x \times 1-0=1$
$x=1$
$x^{2}+\left(1+x^{2}\right) \sin \theta^{\circ}$
$=x^{2}+\left(1+x^{2}\right) \sin 0^{\circ}$
$=x^{2}+\left(1+x^{2}\right) \times 0$
$=x^{2}$ or $(1)^{2}=1$
11. (A) Area $\mathrm{A}=\pi r^{2}$ \qquad
$\mathrm{C}=2 \pi r$
Dividing equation (i) by (ii),
$\frac{\mathrm{A}}{\mathrm{C}}=\frac{\pi r^{2}}{2 \pi r}$
$\frac{\mathrm{A}}{\mathrm{C}}=\frac{r}{2}$
$2 \mathrm{~A}=\mathrm{Cr}$
12. (D)

In $\triangle \mathrm{ABC}$,
$\mathrm{AC}=\sqrt{12^{2}+5^{2}}=\sqrt{144+25}$
$=\sqrt{169}=13 \mathrm{~km}$
13. (B)

$A B=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}$
$=\sqrt{25}=5$ units
14. (C) $\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{3-\sqrt{8}}$
$=\frac{1}{\sqrt{7}-\sqrt{6}} \times \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}} \times \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}+\frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{\sqrt{8}+\sqrt{7}}{\sqrt{8}+\sqrt{7}}+\frac{1}{3-\sqrt{8}} \times \frac{3+\sqrt{8}}{3+\sqrt{8}}$
$=\frac{\sqrt{7}+\sqrt{6}}{(\sqrt{7})^{2}-(\sqrt{6})^{2}}-\frac{\sqrt{6}+\sqrt{5}}{(\sqrt{6})^{2}-(\sqrt{5})^{2}}+\frac{\sqrt{5}+2}{(\sqrt{5})^{2}-2^{2}}-\frac{\sqrt{8}+\sqrt{7}}{(\sqrt{8})^{2}-(\sqrt{7})^{2}}+\frac{3+\sqrt{8}}{3^{2}-(\sqrt{8})^{2}}$
$=\sqrt{7}+\sqrt{6}-\sqrt{6}-\sqrt{5}+\sqrt{5}+2-\sqrt{8}-\sqrt{7}+3+\sqrt{8}=5$
15. (A) Required percentage $=\frac{10+5+4+3}{9+15+18+22+14+10+5+4+3} \times 100$

$$
=\frac{22}{100} \times 100=22 \%
$$

16. (C) Required percentage $=\frac{4+3}{9+15+18+22+14+10+5+4+3} \times 100$ $=\frac{7}{100} \times 100=7 \%$
17. (B) Required percentage $=\frac{18+22}{9+15+18+22+14+10+5+4+3} \times 100$
$=\frac{40}{100} \times 100=40 \%$
18. (A) $x+y=2 z$
$x=2 z-y$
$x-z=2 z-y-z$
$x-z=z-y$
$\therefore \quad \frac{x}{x-z}+\frac{z}{y-z}$
$=\frac{x}{x-z}-\frac{z}{z-y}$
$=\frac{x}{x-z}-\frac{z}{x-z}$
$=\frac{x-z}{x-z}=1$
19. (B) Length of train $=\frac{350}{27-9} \times 9=\frac{350 \times 9}{18}=175 \mathrm{~m}$
20. (D)

So, length of $\mathrm{PA}=\sqrt{(\mathrm{PO})^{2}-(\mathrm{OA})^{2}}$
$=\sqrt{(10)^{2}-(6)^{2}}=8 \mathrm{~cm}$
21.
(C) $\tan \theta=\frac{p}{q}$
[Given]
$\therefore \frac{p \sin \theta-q \cos \theta}{p \sin \theta+q \cos \theta}=\frac{\frac{p}{q} \tan \theta-1}{\frac{p}{q} \tan \theta+1}$
$=\frac{\frac{p}{q} \times \frac{p}{q}-1}{\frac{p}{q} \times \frac{p}{q}+1}=\frac{p^{2}-q^{2}}{p^{2}+q^{2}}$

Campus

K D Campus Pvt. Ltd

22. (A) Weight of the new man $=42+15 \times 1.6$
$=42+24.0=66.0 \mathrm{~kg}$
23. (C) Let the number of students appeared in school $\mathrm{X}=100$

Number of students qualified in school X = 70
According to question,
Number of students appeared in School Y = 120
Number of students qualified in School Y $=70+50 \%$ of $70=70+35=105$
$\therefore \quad$ Required percentage $=\frac{105 \times 100}{120}=87.5 \%$
24. (C) $\frac{\cos ^{2} 45^{\circ}}{\sin ^{2} 60^{\circ}}+\frac{\cos ^{2} 60^{\circ}}{\sin ^{2} 45^{\circ}}-\frac{\tan ^{2} 30^{\circ}}{\cot ^{2} 45^{\circ}}-\frac{\sin ^{2} 30^{\circ}}{\cot ^{2} 30^{\circ}}$
$=\frac{\left(\frac{1}{\sqrt{2}}\right)^{2}}{\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{\left(\frac{1}{2}\right)^{2}}{\left(\frac{1}{\sqrt{2}}\right)^{2}}-\frac{\left(\frac{1}{\sqrt{3}}\right)^{2}}{(1)^{2}}-\frac{\left(\frac{1}{2}\right)^{2}}{(\sqrt{3})^{2}}$
$=\frac{\frac{1}{2}}{\frac{3}{4}}+\frac{\frac{1}{4}}{\frac{1}{2}}-\frac{\frac{1}{3}}{1}-\frac{\frac{1}{4}}{3}=\frac{2}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{12}$
$=\frac{8+6-4-1}{12}=\frac{14-5}{12}$
$=\frac{9}{12}=\frac{3}{4}$
25. (D) If equations have no solution, then,
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\frac{2}{6}=\frac{-k}{-12} \neq \frac{15}{15}$
$6 k=24$
$k=4$
26. (C) Required time $=\frac{4 \times \frac{165}{60}}{16.5}$ hour
$=\frac{4 \times 165}{16.5 \times 60} \times 60=40$ minutes
27. (B)

$\because \quad \Delta \mathrm{COD}$ is a equilateral triangle.
$\therefore \quad a=r$
$\because \quad \Delta \mathrm{AOB}$ is an isosceles triangle.
So, $\angle \mathrm{OBA}=45^{\circ}$
$\sin 45^{\circ}=\frac{r}{b}$
$\frac{1}{\sqrt{2}}=\frac{r}{b}$
$b=\sqrt{2} r$ or $\sqrt{2} a$
28. (B) Arithmetic mean of first n natural number $=\frac{n+1}{2}$
29. (A) One side of cube $=\frac{20}{4}=5 \mathrm{~cm}$

Area of cube $=5^{3}=125 \mathrm{~cm}^{3}$
30. (D) $[\sqrt{6}+\sqrt{2}]^{2}<[\sqrt{5}+\sqrt{3}]^{2}$
$(\sqrt{6})^{2}+(\sqrt{2})^{2}+2 \sqrt{6} \times \sqrt{2}<(\sqrt{5})^{2}+(\sqrt{3})^{2}+2 \times \sqrt{5} \times \sqrt{3}$
$6+2+2 \sqrt{12}<5+3+2 \sqrt{15}$
$8+2 \sqrt{12}<8+2+2 \sqrt{15}$
So, Statement (i) and (iii) are incorrect.
31
(C) Rate $=12 \frac{1}{2} \%=\frac{1}{8}$
$\left.\begin{array}{cc}\text { Amount } & \text { Instalment } \\ 8 \times 9 & 9 \square 7 \times 9 \\ 64 & 81\end{array}\right]$
32. (C) Total maximum marks in four subjects $=120+140+100+180=540$
60% of total maximum marks $=\frac{3}{5} \times 540=324$
Marks obtained in three subjects $=120 \times \frac{2}{5}+140 \times \frac{11}{20}+100 \times \frac{9}{20}$
$=48+77+45=170$
Required Marks in Maths = 324-170=154
33. (C) S.I $=956-800=₹ 156$

Rate $=\frac{156 \times 100}{800 \times 3}=6.5 \%$ per annum
New rate $=10.5 \%$
$\therefore \quad$ S.I $=\frac{800 \times 3 \times 10.5}{100}=₹ 252$
Amount $=800+252=₹ 1052$
34. (A) Population of the village $=5500$

After increment new population of the village $=6330$
Percentage increment $=\frac{(6330-5500)}{5500} \times 100=\frac{166}{11} \%$

Ratio of Male
\& Female $=$
According to the question,
11 units $=5500$
1 unit = 500
Number of females $=500 \times 5=2500$
Short trick:-

Number of females $=\frac{225}{9} \times 100=2500$
35. (C) Let the total valid votes be 100%.

Then second candidate got $=(100-52-12) \%=36 \%$
According to the question,
$36 \%=28800$
$100 \%=28800 \times \frac{100}{36}=800,00$
Hence total valid votes $=80,000$
Total votes polled $=80,000+10,000=90,000$
Total number of votes $=\frac{10}{9} \times 90,000=1,00,000$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
36. (B) Total weight of section $\mathrm{A}=42 \times 25=1050 \mathrm{~kg}$

Total weight of group B $=28 \times 40=1120 \mathrm{~kg}$
Total weight of whole class $=2170 \mathrm{~kg}$
Average weight of whole class $=\frac{2170}{70}=31 \mathrm{~kg}$
37. (C) According to the question,
$\mathrm{n} \times \frac{90}{100} \times \frac{80}{100} \times \frac{75}{100}=270$
$\mathrm{n}=\frac{270 \times 10 \times 10 \times 100}{9 \times 8 \times 75}$
$\mathrm{n}=500$ chocolates

Short trick:-

$10 \%=\frac{1}{10}, 20 \%=\frac{1}{5}, 25 \%=\frac{1}{4}$
ATQ,

Quantity	Remaining
10	9
5	4
4	3
200	108
$\mid \times 2.5$	$\mid \times 2.5$
500	270

38. (C) According to the question,

Man : Woman : Girl
Efficiency $\rightarrow 6$: 3
Money received by (woman + girl $)=\frac{10000}{10} \times 4=₹ 4000$
39. (C)

Let R is a point where both the trains meet.
Till 2: 45 pm the distance covered by the second train $=\frac{70}{60} \times 60=70 \mathrm{~km}$
Remaining distance $=510-70=440 \mathrm{~km}$
Now relative speed of both trains $=50+60=110 \mathrm{~km} / \mathrm{h}$
Required time of meeting $=\frac{440}{110}=4$ hours
Distance from Delhi to meeting point $\mathrm{R}=4 \times 50=200 \mathrm{~km}$
40. (C) $4 \%=\frac{1}{25}, 5 \%=\frac{1}{20}, 6 \%=\frac{3}{50}$

25	26
20	21
50	53
$25,000$	
50,000	57876

$\mathrm{CI}=57876-50000=₹ 7876$
41. (A)

$\therefore \quad$ C.P of suitcase $=\frac{7}{4} \times 100=₹ 175$
42. (A) They left with 85% money it means they spent 15%.

By alligation method,

Amount of Sonam $=\frac{1200}{8} \times 5=₹ 750$
Amount of Mona $=\frac{1200}{8} \times 3=₹ 450$
After spending of 12%, amount left with Sonam $=\frac{750 \times 88}{100}=₹ 660$
43. (D) The remainder will be same.

On dividing 9 by 6 , remainder $=3$
On dividing 81 by 6 , remainder $=3$
44. (A)

Let the initial weight $=100$ unit and the cost price of 1 unit weight is $₹ 1$.
According to the question,
Gain $\%=37 \frac{1}{2} \%=\frac{3}{8} \rightarrow$ Profit
C.P = 8 units $\mathrm{S} . \mathrm{P}=11$ units
$\downarrow \times 10 \quad \downarrow \times 10$
$80 \quad 110$
$x \%=\frac{(110-100)}{100} \times 100=10 \%$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
45. (D)

No. of Pe	n Rupees
$\text { Buy[} \begin{array}{r} 4 \\ \text { or } 12 \end{array}$	$\longrightarrow 45$
$\text { Sell }\left[\begin{array}{r} 6 \\ \text { or } 12 \end{array}\right.$	$\begin{aligned} & \longrightarrow \\ & \\ & \hline \end{aligned}$
Profit	Number of Pens
5	12
$\downarrow \times 5$	$\downarrow \times 5$
25	60

Profit percentage $=\frac{50-45}{45} \times 100=11 \frac{1}{9} \%$
46. (A)

S_+4
From equation (i) and (ii)
$-4 \mathrm{~S}+6 \mathrm{~T}=24$
$4 \mathrm{~S}-4 \mathrm{~T}=16$
$2 \mathrm{~T}=40$
$\mathrm{T}=20$ hours
Put the value of T in equation (ii),
$4 \mathrm{~S}-80=16$
$\mathrm{S}=24 \mathrm{~km} / \mathrm{h}$
Distance $=24 \times 20=480 \mathrm{~km}$
47. (A)

$$
\mathrm{A}: \mathrm{B}
$$

Efficiency $\rightarrow \quad 2: 1$
According to the question,
Both A and B take 4 days to complete the work
Total work $=(2+1) \times 4=12$ units
Time taken by $B=\frac{12}{1}=12$ days
48. (D) Total Distance $=240 \times 5=1200 \mathrm{~km}$

Then required speed to cover the same distance in $1 \frac{2}{3}$ hours, i.e. is in $\frac{5}{3} \mathrm{hrs}=\frac{1200}{\frac{5}{3}}$
$=\frac{1200 \times 3}{5}=720 \mathrm{~km} / \mathrm{hr}$.
49. (B) Discount offered by Sonu $=25+5-\frac{25 \times 5}{100}=28.75 \%$

Discount offered by Monu $=16+12-\frac{16 \times 12}{100}=26.08 \%$
Buying from Sonu is more preferable.

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
50. (B) Height of pole $=100 \mathrm{~m}$

Work done by spiderman in 2 minutes $=1 \mathrm{~m}$
Time taken by spiderman to climb 96 m
i.e. $96+4=100$ meter
$=96 \times 2+1 \mathrm{~min}=3 \mathrm{hrs} 13 \mathrm{~min}$
51. (C) Water : Milk
$\operatorname{same}\left(\begin{array}{ccc}30 & : & 170 \longrightarrow 200 \\ 1 \times 30 & : & 7 \times 30 \longrightarrow 240\end{array}\right.$
$87.5 \% \rightarrow \frac{7}{8}$
Additional milk required $=(210-170)=40 l$
52. (A) Total surface area of tank without top $=30 \times 20+2(12 \times 20)+2(30 \times 12)=1800 \mathrm{~m}^{2}$

Area of iron sheet $=$ T.S.A without top
Length \times width $=1800$
Length $=\frac{1800}{3}=600 \mathrm{~m}$
$\therefore \quad$ Cost $=600 \times 10=₹ 6000$
53. (B) $4 x-3 y=13$

Cubing both sides,
$(4 x-3 y)^{3}=(13)^{3}$
$64 x^{3}-27 y^{3}-3 \times 4 x \times 3 y(4 x-3 y)=2197$
$64 x^{3}-27 y^{3}-36(14)(13)=2197$
$64 x^{3}-27 y^{3}=2197+6552$
$64 x^{3}-27 y^{3}=8749$
54. (A)

Total area of park $=60 \times 40=2400 \mathrm{~m}^{2}$
Area of lawn $=2109 \mathrm{~m}^{2}$ (given)
Area of the cross roads $=2400-2109=291 \mathrm{~m}^{2}$
ATQ,
$x(60+40-x)=291$
$x^{2}-100 x+291=0$
$(x-97)(x-3)=0$
$x=3$ or 97
$x=3[x=97$ is not possible]
55. (C) Water Poured by the $\operatorname{man}=\frac{4}{3}$ litres $/ \mathrm{min}$

Water Poured by the woman $=\frac{3}{4}$ litres $/ \mathrm{min}$
Required time to fill 200 litres of water $=\frac{200}{\frac{4}{3}+\frac{3}{4}}=\frac{200 \times 12}{25}$
$=96 \mathrm{~min}=1$ hour 36 min.
56. (C) Average ₹/student $=\frac{3900 P}{65}=60$ paise

Then number of girls $=\frac{2}{5} \times 65=26$
57. (D)

$\triangle \mathrm{ABC}$ is equilateral,
$\angle \mathrm{BCD}=\angle \mathrm{DCA}=30^{\circ} \quad(\mathrm{CD}$ bisects $\angle \mathrm{ACB})$
$\mathrm{ACE}=180^{\circ}-30^{\circ}=150^{\circ}$
$\mathrm{AC}=\mathrm{CE}$
$\angle \mathrm{CAE}=\angle \mathrm{CEA}=\frac{30}{2}=15^{\circ}$
58. (A) Larger Radius (R) $=14+7=21 \mathrm{~cm}$

Smaller Radius (r) $=7 \mathrm{~cm}$
$\therefore \quad$ Area of shaded portion $=\pi \frac{30^{\circ}}{360^{\circ}}(21 \times 21-7 \times 7)$
$=\frac{22}{7} \times \frac{1}{12} \times 392=102.67 \mathrm{~cm}^{2}$
59. (D) Ratio of A, B and $\mathrm{C}=\frac{1}{2}: \frac{1}{4}: \frac{5}{16}$

60. (A) $\left(x+\frac{1}{x}\right)^{2}=3$
$x+\frac{1}{x}=\sqrt{3}$
$x^{3}+\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right)^{3}-3\left(x \times \frac{1}{x}\right)\left(x+\frac{1}{x}\right)$
$=3 \sqrt{3}-3 \sqrt{3}=0$
$x^{6}+1=0$
$\therefore \quad x^{206}+x^{200}+x^{90}+x^{84}+x^{18}+x^{12}+x^{6}+1$
$=x^{200}\left(x^{6}+1\right)+x^{84}\left(x^{6}+1\right)+x^{12}\left(x^{6}+1\right)+\left(x^{6}+1\right)=0 \quad\left[\because x^{6}+1=0\right]$
61. (B) Maximum value of $(2 \sin \theta+3 \cos \theta)=\sqrt{a^{2}+b^{2}}$
$=\sqrt{4+9}=\sqrt{13}$
62. (C)

In $\triangle \mathrm{ABC}$,
$\mathrm{AB} \times \mathrm{BC}=\frac{A C^{2}}{2}$
$\mathrm{AC}^{2}=2 \mathrm{AB} \times \mathrm{BC}$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=2 \mathrm{AB} \times \mathrm{BC}$
$(A B-B C)^{2}=0$
$A B=B C$
$\therefore \quad \angle \mathrm{BAC}=\angle \mathrm{ACB}=45^{\circ}$
63. (C)

In $\triangle \mathrm{ABC}$,
$\mathrm{AD} \perp \mathrm{BC}$
$\triangle \mathrm{BAC} \sim \triangle \mathrm{ADC}$
The Ratio of area of two similar triangles = Ratio of square of their corresponding sides.
Hence, $\frac{\operatorname{ar}(\mathrm{BAC})}{\operatorname{ar}(\mathrm{ADC})}=\frac{B C^{2}}{A C^{2}}=\frac{64}{36}$
$=\frac{16}{9}=16: 9$
64. (D)

$\angle \mathrm{OPS}=\angle \mathrm{OQS}=90^{\circ}$
$\angle \mathrm{PSQ}=20^{\circ} \quad$ (Given)
$\angle \mathrm{POQ}=160^{\circ} \quad\left[\angle \mathrm{PSQ}+\angle \mathrm{POQ}=180^{\circ}\right]$
$\mathrm{PTQ}=80^{\circ}$
PRQT is a cyclic quadrilateral
$\therefore \quad \angle \mathrm{PRQ}=180^{\circ}-80^{\circ}=100^{\circ}$
65. (D) $\mathrm{a}-\mathrm{b}=x+y-x+y=2 y$
$\mathrm{b}-\mathrm{c}=x-y-x-2 y=-3 y$
$\mathrm{c}-\mathrm{a}=x+2 y-x-y=y$
ATQ,
$a^{2}+b^{2}+c^{2}-a b-b c-c a=\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
$=\frac{1}{2}\left[(2 y)^{2}+(-3 y)^{2}+y^{2}\right]=\frac{1}{2} \times 14 y^{2}=7 y^{2}$
66. (A) $\sec ^{2} \theta+\tan ^{2} \theta=7$
$1+\tan ^{2} \theta+\tan ^{2} \theta=7$
$2 \tan ^{2} \theta=6$
$\tan ^{2} \theta=3$
$\tan \theta=\sqrt{3}$
$\theta=60^{\circ}$
67. (C) $5 \tan \theta=4$
$\tan \theta=\frac{4}{5}$
$\therefore \frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+2 \cos \theta}=\frac{5 \cdot \frac{\sin \theta}{\cos \theta}-\frac{3 \cos \theta}{\cos \theta}}{5 \cdot \frac{\sin \theta}{\cos \theta}+\frac{2 \cos \theta}{\cos \theta}}$
$=\frac{5 \tan -3}{5 \tan \theta+2}=\frac{5 \times \frac{4}{5}-3}{5 \times \frac{4}{5}+2}$
$=\frac{4-3}{4+2}=\frac{1}{6}$
68. (B) In a cyclic quadrilateral opposite angles are supplementary.
69. (C)

3 unit - 400
1 unit $-\frac{400}{3}$
$\therefore \quad$ The height of the pillar $=\frac{400}{3} \times 2=\frac{800}{3} \mathrm{~m}$
70. (A) $\sqrt{x}+\frac{1}{\sqrt{x}}=3$
$\therefore \quad x+\frac{1}{x}=7$
$x^{2}+\frac{1}{x^{2}}=47$
71. (A) $\sec x+\cos x=3$
square both sides,
$\sec ^{2} x+\cos ^{2} x+2 \sec x \cdot \cos x=9$
$=\sec ^{2} x+\cos ^{2} x=9-2=7$
Now, $\tan ^{2} x-\sin ^{2} x$
$=\sec ^{2} x-1-\left(1-\cos ^{2} x\right) \quad\left[\because \sec ^{2} x-\tan ^{2} x=1\right]$
$=\sec ^{2} x+\cos ^{2} x-2$
$=7-2=5$
72. (B) $\frac{x^{2}}{b y+c z}=\frac{y^{2}}{c z+a x}=\frac{z^{2}}{a x+b y}=1$

So, $x^{2}=b y+c z ; y^{2}=c z+a x, z^{2}=a x+b y$
$\therefore \quad \frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}=\frac{a x}{a x+x^{2}}+\frac{b y}{b y+y^{2}}+\frac{c z}{c z+z^{2}}$
$=\frac{a x}{a x+b y+c z}+\frac{b y}{b y+c z+a x}+\frac{c z}{c z+a x+b y}=\frac{a x+b y+c z}{a x+b y+c z}=1$

Short trick:-

Let $a=b=c=1$ and $x=y=z=2$
Because these value satisfy $\frac{x^{2}}{b y+c z}=\frac{y^{2}}{c z+a x}=\frac{z^{2}}{a x+b y}=1$
$\therefore \quad \frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$
73. (B) $\cos \theta=\frac{15}{17}$
$\sec \theta=\frac{1}{\cos \theta}=\frac{17}{15}$
$\therefore \cot (90-\theta)=\tan \theta$
$=\sqrt{\sec ^{2} \theta-1}=\sqrt{\left(\frac{17}{15}\right)^{2}-1}$
$=\sqrt{\frac{289}{225}-1}=\sqrt{\frac{289-225}{225}}$
$=\sqrt{\frac{64}{225}}=\frac{8}{15}$
74. (D) For maximum value,

$$
a=b=c=d=\frac{1}{4}
$$

$\therefore \quad(1+\mathrm{a})(1+\mathrm{b})(1+\mathrm{c})(1+\mathrm{d})=\left(\frac{5}{4}\right)^{4}$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
75. (B) $12 \times 12 \times 12=1728=1728-1720=8$
$\therefore \quad$ Required number $=8$
76. (B) Total grain production of state:
$\mathrm{P}=45+103+27+29=204$ lakh tonnes
$\mathrm{Q}=48+86+73+19+15=241$ lakh tonnes
$\mathrm{R}=59+32+67+14+31=203$ lakh tonnes
$\mathrm{S}=41+37+59+21+15=173$ lakh tonnes
Obviously, State Q had the highest grain production.
77. (C) Total rice Production $=393$ lakh tonnes

Total wheat Production = 331 lakh tonnes
$\therefore \quad$ Required Ratio $=393: 331=1.2: 1$
78. (A) In the states Q, R and S, Jowar recorded highest production.
79. (D) Required percentage $=\frac{103}{331} \times 100 \approx 30 \%$
80. (C) Average per hectare yield of rice $=30$ tonnes

Total rice production = 393 lakh tonnes
$\therefore \quad$ Required area $=\frac{393}{30}=13.1=13$ lakh hectare
81. (A) $100 \times 35=3500$
$200 \times 5=1000$
Total work $=4500$
$200 \times 5=100 \times x$
10 days $=x$
Total days $=35+10=45$ days
Extra days $=45-40=5$ days
82. (C) Let the income of Ram $=₹ 100$

Expenditure on food $=100 \times \frac{25}{100}=₹ 25$

After increase of 20%, income $=100 \times \frac{120}{100}=₹ 120$
ATQ,
Expenditure is same in both cases.
$\therefore \quad$ Expenditure $=\frac{25}{120} \times 100=₹ \frac{250}{12}$
Percentage expenditure $=20.833 \%$
Percentage decrease in expenditure $=25-20.833=4.16 \%$
83. (D) Interest after 10 years at the rate of $5 \%=₹ 500$

Time $=\frac{500 \times 100}{1500 \times 5}=6 \frac{2}{3}$ years
$\therefore \quad$ Required time $=\left(10+6 \frac{2}{3}\right)$ years $=16 \frac{2}{3}$ years

K D Campus Pvt. Ltd

84. (B) Let the required number be x.

ATQ,
$x^{2}+5^{2}=386$
$x^{2}=386-25$
$x^{2}=361$
$x=\sqrt{361}=19$
85. (B) Let the minimum score be x.

Maximum score $=x+100$
ATQ,
$28 \times 38+x+x+100=30 \times 40$
$1064+2 x+100=1200$
$2 x=1200-1164=36$
$x=18$
86. (D)
$\mathrm{A} \rightarrow 12$ days $\quad 12$ units/day
$\mathrm{B} \rightarrow 16$ days $\frac{9}{6}(144$ Total work
$\mathrm{C} \rightarrow 24$ days
D $\rightarrow 36$ days
Work done on first day $=12$ units
On second day $=12+9=21$ units
On third day $=21+6=27$ units
On fourth day $=27+4=31$ units
On fifth day $=31$ units and so on.
Work done in five days $=91+31=122$ units
Remaining work $=144-122=22$ units
$\therefore \quad$ Total time $=5 \frac{22}{31}$ days
87. (D) Required number of students $=$ L.C.M of $6,8,12$ and $16=96$
88. (A) 1 cow : 1 calf

Old cost $\rightarrow 4000 \quad: 2800$ $\downarrow+20 \% \quad \downarrow+30 \%$
New Cost $\rightarrow 4800 \quad 3640$
ATQ,
Price of 1 dozen cows $=4800 \times 12=57600$
Price of 2 dozen calves $=3640 \times 24=87360$
Total cost $=57600+87360=₹ 144960$
89. (D) Simple interest of 2 years $=20 \%$

Compound interest of 2 years $=21 \%$
Difference between simple and compound interest $=1 \%$
$\therefore \quad$ Principal $=130 \times 100=₹ 13000$
90. (A)

Height of balloon $=\mathrm{AB}=h \mathrm{~km}$
$\mathrm{BD}=x \mathrm{~km}, \mathrm{CD}=1 \mathrm{~km}$
In $\triangle \mathrm{ABD}$,
$\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}}$
$\sqrt{3}=\frac{h}{x}$
$x=\frac{h}{\sqrt{3}} \mathrm{~km}$
In $\triangle \mathrm{ABC}$,
$\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\frac{1}{\sqrt{3}}=\frac{h}{\frac{h}{\sqrt{3}}+1}$
$\sqrt{3} h=\frac{h}{\sqrt{3}}+1$
$\sqrt{3} h-\frac{h}{\sqrt{3}}=1$
$\frac{3 h-h}{\sqrt{3}}=1$
$2 h=\sqrt{3}$
$h=\frac{\sqrt{3}}{2} \mathrm{~km}$
91. (C) S.I. $=\frac{6000 \times 5 \times 2}{100}=₹ 600$
C.I. $=5000\left[\left(1+\frac{8}{100}\right)^{2}-1\right]=5000\left[\left(\frac{27}{25}\right)^{2}-1\right]$
$=5000\left[\left(\frac{729-625}{625}\right)\right]=5000 \times \frac{104}{625}=₹ 832$
Difference $=(₹ 832-600)=₹ 232$
92. (D) $\sqrt{24010000}=4900$

Again $\sqrt{4900}=70$
$\therefore \quad \sqrt[4]{24010000}=70$
93. (D) From alligation,

$\therefore \quad$ Required ratio $=1: 4$
94. (A) Average height $=\frac{6 \times 1.15+8 \times 1.10+6 \times 1.12}{20}=\frac{6.9+8.8+6.72}{20}$
$=\frac{22.42}{20}=1 \mathrm{~m} 12.1 \mathrm{~cm}$
95. (A)

Efficiency of $(P+Q+R)=\frac{2+3+4}{2}=4.5$ units $/ \mathrm{min}$
Efficiency of $\mathrm{P}=(4.5-3)=1.5$ units $/ \mathrm{min}$
Efficiency of $Q=(4.5-4)=0.5$ units $/ \mathrm{min}$
Efficiency of $R=(4.5-2)=2.5$ units $/ \mathrm{min}$
Required time for $\mathrm{P}=\frac{180}{1.5}=120 \mathrm{~min}$
Required time for $Q=\frac{180}{0.5}=360 \mathrm{~min}$

Required time for $\mathrm{R}=\frac{180}{2.5}=72 \mathrm{~min}$
96. (B)

(B) Initial	Present
100	
40	103
20	41
21	

20	21
80,000	88683
$\downarrow \times 2$	$\downarrow \times 2$
$1,60,000$	$1,77,366$

Hence, Present population $=1,77,366$
97. (D)

Required total of B and $D=₹ 3060$
98. (A) Work done by A in 1 day $=$ Work done by B in 3 days

	\mathbf{A}	$:$	\mathbf{B}
Time	1	$:$	3
Efficiency	3	$:$	1

Now total work $=3 \times 2+9 \times 1=15$ units
Required time for A to complete the work $=\frac{15}{3}=5$ days

Required time for B to complete the work $=\frac{15}{1}=15$ days
99. (A) $\mathrm{A}+\mathrm{B}+\mathrm{C}$ earns in one day $=\frac{2700}{18}=₹ 150$
$A+C$ earns in one day $=₹ 94$
$B+C$ earns in one day $=₹ 76$
Earning of $\mathrm{A}=150-76=₹ 74$
$\therefore \quad$ Earning of $\mathrm{C}=94-74=₹ 20$
100. (C) Let the initial price $=₹ 1000$ the price of 1 gm weight is $₹ 1$.

ATQ,

Percentage profit $=\frac{180}{900} \times 100=20 \%$

QUANTITATIVE ABILITY - 71 (ANSWER KEY)

1. (B)
2. (D)
3. (D)
4. (B)
5. (A)
6. (B)
7. (D)
8. (B)
9. (C)
10. (A)
11. (A)
12. (D)
13. (B)
14. (C)
15. (A)
16. (C)
17. (B)
18. (A)
19. (B)
20. (D)
21. (C)
22. (A)
23. (C)
24. (C)
25. (D)
26. (C)
27. (B)
28. (B)
29. (A)
30. (D)
31. (C)
32. (C)
33. (C)
34. (A)
35. (C)
36. (B)
37. (C)
38. (C)
39. (C)
40. (C)
41. (A)
42. (A)
43. (D)
44. (A)
45. (D)
46. (A)
47. (A)
48. (D)
49. (B)
50. (B)
51. (C)
52. (A)
53. (B)
54. (A)
55. (C)
56. (C)
57. (D)
58. (A)
59. (D)
60. (A)
61. (B)
62. (C)
63. (C)
64. (D)
65. (D)
66. (A)
67. (C)
68. (B)
69. (C)
70. (A)
71. (A)
72. (B)
73. (B)
74. (D)
75. (B)
76. (B)
77. (C)
78. (A)
79. (D)
80. (C)
81. (A)
82. (C)
83. (D)
84. (B)
85. (B)
86. (D)
87. (D)
88. (A)
89. (D)
90. (A)
91. (C)
92. (D)
93. (D)
94. (A)
95. (A)
96. (B)
97. (D)
98. (A)
99. (A)
100. (C)
