QUANTITATIVE ABILITY - 80 (SOLUTION)

1. (C) Ratio of money received by each (Son : Daughter : Nephew) $=5 x: 4 x: x$

So, Ratio of amount to 5 Sons : 4 daughters : 2 nephews $=25 x: 16 x: 2 x$
$25 x: 16 x: 2 x=₹ 8600$
$43 x=₹ 8600$
$x=₹ 200$
\therefore Required money to each daughter $=4 \times 200=₹ 800$
2. (C) Repaired gain $=2 \times\left(6 \frac{1}{4}-4\right) \%$ of $5000=2 \times 2 \frac{1}{4} \%$ of 5000
$=2 \times \frac{9}{4 \times 100} \times 5000=₹ 225$
3. (D) Let the speed of the bus $=x \mathrm{~km} / \mathrm{hr}$

Then to take a lead of 60 m , he will have to cover a distance of $(60+40) \mathrm{m}=108 \mathrm{~m}$, with the speed of $(30-x) \mathrm{km} / \mathrm{hr}$ in 20 sec .
$100 \mathrm{~m}=(30-x) \mathrm{km} / \mathrm{hr} \times 20 \mathrm{sec}$.
$100=\frac{(30-x) \times 1000}{3600} \times 20$
$\frac{1}{10}=\frac{(30-x)}{180}$
$180=300-10 x$
$10 x=120$
$x=12 \mathrm{~km} / \mathrm{hr}$
4. (C)

Time taken for one round $=\frac{40}{8}=5 \mathrm{~min}$.
Now, new radius $=10 \mathrm{r}$
So, New circumference $=2 \pi \times 10 r=20 \pi r$

So Required time $=\frac{20 \pi \mathrm{r}}{2 \pi \mathrm{r}} \times 5$ minute $=50$ minutes

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
5. (B) In such type of questions, required ratio of the speeds of the two trains $=\frac{\sqrt{9}}{\sqrt{4}}=\frac{3}{2}=3: 2$
6.
(D) $\frac{1-x^{4}}{1+x} \div \frac{1+x^{2}}{x} \times \frac{1}{x(1-x)}=A$
$\frac{\left(1+x^{2}\right)\left(1-x^{2}\right)}{1+x} \times \frac{x}{1+x^{2}} \times \frac{1}{x(1-x)}=\mathrm{A}$
$\frac{\left(1+x^{2}\right)(1-x)(1-x)}{(1+x)} \times \frac{x}{1+x^{2}} \times \frac{1}{x(1-x)}=\mathrm{A}$
$\mathrm{A}=1$
7. (B)

ABCD is a $\| \mathrm{gm}$ whose diagonal $\mathrm{BD}=18 \mathrm{~cm}$.
Let both the diagonals bisect at ' O '
$D O=O B=9 \mathrm{~cm}$.
$\because \quad D O$ and $B O$ are medians of $\triangle A D C \& \triangle A B C$
Also P \& Q are centroids of $\triangle A D C \& \triangle A B C$
$\mathrm{PO}=\frac{1}{3} \times \mathrm{BO} \& \mathrm{QO}=\frac{1}{3} \times \mathrm{DO} \quad[$ Centroid of a Δ divides each median in the ratio of $2: 1$]
$\mathrm{PO}=\frac{1}{3} \times 9 \quad 8 \mathrm{QO}=\frac{1}{3} \times 9=3 \mathrm{~cm}$ and $=3 \mathrm{~cm}$
$P Q=P O+Q O=3+3=6 \mathrm{~cm}$
8. (A)

$\because \mathrm{E}$ is the mid point of AD
BE is the median.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{BED})=\operatorname{ar}(\triangle \mathrm{ABE})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABD})$
[A medians divides each Δ into two parts of equal areas]

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
Similarly, we can write
$\operatorname{ar}(\Delta \mathrm{CED})=\operatorname{ar}(\mathrm{AEC})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ACD})$
On adding (1) and (2)
$\operatorname{ar}(\Delta \mathrm{BEC})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ABD})+\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ACD})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ABC})$
9. (A) Let the parallel sides of the trapezium be $5 x \mathrm{~cm}$ \& $7 x \mathrm{~cm}$ its area $=\frac{1}{2}[5 x+7 x] \times 14$
$336=12 x \times 7$
$\frac{336}{7 \times 12}=x$
$x=4$
Smaller of the parallel sides $=5 x \mathrm{~cm}=5 \times 4=20 \mathrm{~cm}$
10. (D) Let the side of the square be $x \mathrm{~cm}$

Length of the rectangle $=(x+5) \mathrm{cm}$
Its breadth $=(x-3) \mathrm{cm}$
ATQ,
$x^{2}=(x+5)(x-3)$
$x^{2}=x^{2}-3 x+5 x-15$
$2 \mathrm{x}=15$
$\mathrm{x}=\frac{15}{2}=7.5 \mathrm{~cm}$
Perimeter of the rectangle $=2(l+b)$
$=2[(7.5+5)+(7.5-3)]$
$=2[12.5+4.5]$
$=2 \times 17=34 \mathrm{~cm}$.
11. (B)

Let $A B=h \mathrm{~km}$
In $\triangle \mathrm{OAB}$,
$\tan 45^{\circ}=\frac{A B}{O B}$
$\mathrm{OB}=h \mathrm{~km}$
In Δ OLM,
$\mathrm{OM}=2 \cos 30^{\circ}=\sqrt{3} \mathrm{~km}$
$\therefore \quad \mathrm{LN}=\mathrm{BM}=(\mathrm{h}-\sqrt{3}) \mathrm{km}$

K D Campus Pvt. Ltd

In $\Delta \mathrm{OLM}$,
$\sin 30^{\circ}=\frac{L M}{O L}$
$\mathrm{LM}=2 \sin 30^{\circ}=1 \mathrm{~km}$
$\mathrm{BN}=\mathrm{LM}=1 \mathrm{~km}$
In $\Delta \mathrm{ALN}$,
$\tan 60^{\circ}=\frac{A N}{L N}$
$\sqrt{3}=\frac{A B-B N}{L N}$
$\sqrt{3}=\frac{h-1}{h-\sqrt{3}}$
$\sqrt{3} h-3=h-1$
$h=\frac{2}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$
$h=(\sqrt{3}+1) \mathrm{km}$
12. (A)

$\sin \left(10^{\circ} 6^{\prime} 32^{\prime \prime}\right)=a$
$\sin \left(90^{\circ}-79^{\circ} 53^{\prime} 28^{\prime \prime}\right)=a$
$\cos 79^{\circ} 53^{\prime} 28^{\prime \prime}=a$
$\therefore \cos \left(79^{\circ} 53^{\prime} 28^{\prime \prime}\right)+\tan \left(10^{\circ} 6^{\prime} 32^{\prime \prime}\right)=\mathrm{a}+\frac{a}{\sqrt{1-a^{2}}}=\frac{a\left(1+\sqrt{1-a^{2}}\right)}{\sqrt{1-a^{2}}}$
13. (B) Suppose B left the work after x days from the start.

ATQ,
$\frac{x}{25}+\frac{x+7}{15}=1$
$\frac{3 x+5 x+35}{75}=1$
$8 x=75-35$
$\therefore \quad x=\frac{40}{8}=5$

Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
14. (A) radius of pipe $=\frac{5}{20} \mathrm{~cm}$, (given)
height of pipe $=1000 \mathrm{~cm}$
radius of vessel $=20 \mathrm{~cm}$
and height $=24 \mathrm{~cm}$
Volume of water that flows in one minute through cylindrical pipe $=\pi\left(\frac{5}{20}\right)^{2} \times 1000=\frac{125}{2} \pi \mathrm{~cm}^{3}$
Also, volume of conical vessel $=\frac{1}{3} \pi(20)^{2} \times 24=3200 \pi \mathrm{~cm}^{3}$
\therefore Time taken by pipe to fill the vessel $=\frac{3200 \pi \times 2}{125 \pi}=51 \frac{1}{5}$ or 51 min 12 s
15. (C) Let the length, breadth and height of a rectangular parallelepiped be l, b and $h \mathrm{~cm}$ respectively.

ATQ,
$l=3 b=5 h=a \quad$ (say)
$l=\mathrm{a}, \mathrm{b}=\frac{a}{3}, h=\frac{a}{5}$
It is given that volume of parallelopiped $=14400 \mathrm{~cm}^{3}$
a $\times \frac{a}{3} \times \frac{a}{5}=14400$
$a^{3}=14400 \times 15$
$\therefore \quad a=\sqrt[3]{14400 \times 15}=60 \mathrm{~cm}$
Total surface area of parallelopiped $=2(l b+b h+h l)=2(60 \times 20+20 \times 12 \times 60)=4320 \mathrm{~cm}^{2}$
16. (C) Area of the courtyard $=3.78 \times 5.25=378 \times 525=198450 \mathrm{sq} \mathrm{cm}$
$\therefore \quad 198450=21 \times 21 \times 450$
450 sq marble stones shall be used of size $21 \mathrm{~cm} \times 21 \mathrm{~cm}$
17. (C) $1^{\text {st }}$ day $=4 \mathrm{~km}, 2^{\text {nd }}$ day $=4 \times \frac{1}{2}=2 \mathrm{~km}$,
$3^{\text {rd }}$ day $=2 \times \frac{1}{2}=1 \mathrm{~km}$
\therefore Total distance $\mathrm{S}=4+2+1+\frac{1}{2}+\frac{1}{4} \ldots$.
Which is infinite GP with $\mathrm{a}=4, \mathrm{r}=\frac{1}{2}$
Now, $\because r<1$
So, Sum; $\mathrm{S}=\frac{a}{1-r}=\frac{4}{1-\frac{1}{2}}=\frac{4}{\frac{1}{2}}=8 \mathrm{~km}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
18. (B) Milk : water in first glass $=\frac{1}{3}: \frac{2}{3}=4: 8$
and Milk: Water in second glass $=\frac{1}{4}: \frac{3}{4}=3: 9$
Milk in the vessel $=4+3=7$
Water in the vessel $=8+9=17$
Ratio of milk and water in the vessel $=7: 17$
19. (B) Gain $=2 \mathrm{~min}+4 \mathrm{~min} 48 \mathrm{~s}=6 \mathrm{~min} 48 \mathrm{~s}=408$ seconds

Hour $=(7 \times 24+2)=170 \mathrm{hrs}$.
Clock gains $=\frac{408}{170}=2.4 \mathrm{~s} / \mathrm{h}$
\therefore It will gain 2 min or 120 s in $\frac{120}{2.4} \mathrm{~h} .=50 \mathrm{~h}$
Clock will show correct time 2 pm to Tuesday
20. (B) $\because \alpha, \beta, \gamma$ are the roots of polynomial
$3 x^{3}-5 x^{2}-11 x-3$
$\alpha+\beta+\gamma=\frac{-(-5)}{3}=\frac{5}{3}$
$\alpha \beta+\beta \gamma+\alpha \gamma=\frac{-11}{3}$
$\alpha \beta \gamma=\frac{-(-3)}{3}=\frac{3}{3}=1$
Now,
$\alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma=(\alpha+\beta+\gamma)$
$\left[\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\alpha \beta\right]$
$\alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma=(\alpha+\beta+\gamma)$
$\left[(\alpha+\beta+\gamma)^{2}-2 \alpha \beta-2 \beta \gamma-2 \alpha \gamma-\alpha \beta-\beta \gamma-\alpha \gamma\right]$
$\alpha^{3}+\beta^{3}+\gamma^{3}-3 \times 1=\frac{5}{3}\left[\left(\frac{5}{3}\right)^{2}-3(\alpha \beta+\gamma \beta+\alpha \gamma]\right.$
$=\frac{5}{3}\left[\frac{25}{9}-3 \times \frac{-11}{3}\right]$
$=\frac{5}{3}\left[\frac{25}{9}+11\right]=\frac{5}{3}\left[\frac{25+99}{9}\right]$
$\alpha^{3}+\beta^{3}+\gamma^{3}=\frac{5}{3} \times \frac{124}{4}+3=\frac{620}{27}+3$
$=\frac{620+81}{27}=\frac{701}{27}$
21. (C) $\because x=\sqrt{2}$ and $x=-\sqrt{2}$ are zeroes of the polynomial $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$
$(x-\sqrt{2})$ and $(x+\sqrt{2})$ are factors of $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$
$\left(x^{2}-2\right)$ is a factor of $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$
Now,

$$
\begin{array}{r}
2 x^{2}-3 x+1 \\
x^{2}-2 \sqrt{2 x^{4}-3 x^{3}-3 x^{2}+6 x-2} \begin{array}{r}
-4 x^{2} \\
\frac{-2 x^{4}+x^{2}+6 x-2}{}+3 x^{3}+ \pm 6 x \\
\frac{x^{2}}{}-2 \\
\frac{-x^{2} \quad \mp 2}{0}
\end{array}
\end{array}
$$

Other factor $=2 x^{2}-3 x+1$
for other zeroes
$2 x^{2}-3 x+1=0$
$2 x^{2}-2 x-x+1=0$
$2 x(x-1)-1(x-1)=0$
$(2 x-1)(x-1)=0$
$x=\frac{1}{2}, 1$
22. (B) \because QT \& RT are bisectors of $\angle \mathrm{PQR} \& \angle \mathrm{PRS}$ respectively.
$\angle \mathrm{TRS}=\frac{1}{2} \angle \mathrm{PQR}+\angle \mathrm{QTR}$ \qquad
(Ext. angle property)
Also,
$\angle \mathrm{PRS}=\angle \mathrm{PQR}+\angle \mathrm{QPR}$
$\frac{1}{2} \angle \mathrm{PRS}=\frac{1}{2} \angle \mathrm{PQR}+\frac{1}{2} \angle \mathrm{QPR}$
$\angle \mathrm{TRS}=\frac{1}{2} \angle \mathrm{PQR}+\frac{1}{2} \angle \mathrm{QPR}$
From (1) \& (2),
$\frac{1}{2} \angle \mathrm{PQR}+\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{PQR}+\frac{1}{2} \angle \mathrm{QPR}$
$\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$
23. (C) $\because(\operatorname{llgm} A B C D) \&(l l g m ~ A B M N)$ are on the same base $\&$ between the same parallels.
$\therefore \quad \operatorname{ar}(\operatorname{llgm} \mathrm{ABCD})=\operatorname{ar}(\operatorname{llgm} \mathrm{ABMN})$
$\therefore \quad \operatorname{ar}(l l g m ~ A B C D)=80$ sq. unit
Again, \triangle APN \& llgm (ABMN) are on the same base $\&$ between the same parallels.
$\therefore \operatorname{ar}(\triangle \mathrm{APN})=\frac{1}{2} \operatorname{ar}(\operatorname{llgm} \mathrm{ABMN})=\frac{1}{2} \times 80$ sq. unit $=40$ sq unit.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
24. (A) Required number of books $=\frac{4400}{100} \times 84 \times \frac{2}{5}=1478.4 \approx 1478$
25. (D)
26. (D) Total number books sold in $\mathrm{A}=\frac{18000}{3} \times 7=42,000$

Total number of books $=\frac{42000}{16} \times 100$
Total number of books sold in $\mathrm{E}=\frac{24000}{2} \times 5=60,000$
Total number of books $=\frac{60000}{12.5} \times 100$
\therefore Required ratio $=\frac{42000}{16} \times 100: \frac{60000}{12.5} \times 100=105: 192$
27. (B) Total number of books in $B=\frac{4200}{3} \times 7 \times \frac{100}{14}=70,000$
28. (B) Total number of books unsold in $E=\frac{4800}{3} \times 5=8,000$

Total number of books in $\mathrm{F}=\frac{8000}{32} \times 100=25,000$
\therefore Total number of Maths books sold in $F=\frac{25000}{5} \times 4=20,000$
29. (B) $x^{y}=y^{x}$
$\therefore y=x$
$\left(\frac{x}{y}\right)^{\frac{x}{y}}=\left(\frac{x}{x^{\frac{y}{x}}}\right)^{\frac{x}{y}}=x^{\frac{x}{y}-\frac{x}{y} \times \frac{y}{x}}=x^{\frac{x}{y}-1}$
30. (B) $\frac{1}{\cos \theta}=\frac{4 a^{2}+1}{4 a}$

$$
\begin{aligned}
& \therefore \sin \theta=1-\sqrt{1-\left(\frac{4 a}{4 a^{2}+1}\right)^{2}}=\sqrt{\frac{16 a^{4}+1+8 a^{2}-16 a^{2}}{\left(4 a^{2}+1\right)^{2}}} \\
& \quad=\sqrt{\frac{16 a^{4}-8 a^{2}+1}{\left(4 a^{2}+1\right)^{2}}}=\frac{4 a^{2}-1}{4 a^{2}+1}
\end{aligned}
$$

$$
\therefore \tan \theta+\frac{1}{\cos \theta}=\frac{\sin \theta+1}{\cos \theta}=\frac{\frac{4 a^{2}-1^{2}}{4 a^{2}+1}+1}{\frac{4 a}{4 a^{2}+1}}
$$

$$
=\frac{8 a^{2}}{4 a}=2 a
$$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
31. (C) Let $x=3, y=4$

So, $x+y=3+4=7$
and $x^{2}+y^{2}=3^{2}+4^{2}=25$
$\therefore \quad \frac{1}{x}+\frac{1}{y}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$
32. (C) $\sqrt{m n}=10, m n=100$

If $m=100$ then $n=1$
$\therefore \quad m+n=101$
If $m=50$, the $n=2$
$\therefore \quad m+n=52$
If $m=25$, the $n=4$
$m+n=29$
$\therefore \quad m+n \neq 50$
33. (A) Length of hypotenuse $=\sqrt{24^{2}+7^{2}}=25$
$\therefore \quad \frac{1}{2} \times 25 \times h=\frac{1}{2} \times 7 \times 24$
$h=\frac{7 \times 24}{25}=6.72 \mathrm{~cm}$
34. (A) $x+y-4=0$
$y=(-x)+4$
$3 x-y-4=0$
$y=3 x-4$
$x+3 y-4=0$
$y=\frac{(-x)}{3}+\frac{4}{3}$
Product of gradient of (ii) and (iii) equations are $=3 \times \frac{-1}{3}=-1$
Lines are perpendicular
Triangle formed is a right angled triangle.
35. (D) $\sin \theta+\cos \theta=\sqrt{3} \cos \theta$
$\sin \theta=(\sqrt{3}-1) \cos \theta$
$\therefore \cos \theta-\sin \theta=\cos \theta-(\sqrt{3}-1) \cos \theta$
$=\cos \theta[1-\sqrt{3}+1]=(2-\sqrt{3}) \cos \theta$
36. (D) If length, breadth and height of the cuboid are l, b, h respectively then
$l \times b=p$
$b \times h=q$
$l \times h=r$
$\therefore(l b h)^{2}=p q r$
$l b h=\sqrt{p q r}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
37. (C)

If $A D$ is the angle bisector, then
$\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{DC}}$
$\therefore \quad \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{3}{4}$
38. (A) $a+\frac{1}{a}=-1$
$a^{2}+1=-a$
$a^{2}+a+1=0$
$\therefore \quad a^{4}-a=a\left(a^{3}-1\right)$
$=a(a-1)\left(a^{2}+a+1\right)$
$\therefore 0 \times a(a-1)=0$
39. (B) $\frac{1-\sin \theta+1+\sin \theta}{\sqrt{1+\sin \theta} \times \sqrt{1-\sin \theta}}=\frac{2}{\cos \theta}=2 \sec \theta$
40. (C) $\sin ^{2} A\left(1-\sin ^{2} B\right)-\left(1-\sin ^{2} A\right) \sin ^{2} B$
$\therefore \quad \sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}$
41. (B) $\angle \mathrm{PBA}=100^{\circ}$
$\angle \mathrm{PBE}=\angle \mathrm{BED}=180^{\circ}-100^{\circ}=80^{\circ}$
$\therefore \quad \angle \mathrm{BED}=\angle \mathrm{CDS}$
$y=80^{\circ}$
42. (A) Total number of employees in Account department in all the organisations in the year 2002
$=(260+250+220+240+300+300+320) \times \frac{120}{100}=2268$
Total number of employees in HR department in all the organisations in the year 2002
$=(200+230+320+160+260+180+360) \times \frac{85}{100}=1453.5$
\therefore Required $\%=\left(\frac{2268}{1453.5} \times 100\right) \%=156.03 \% \approx 156 \%$
43. (C) Required ratio $=(220+240+320):(300+320+360)$
$=780: 880=39: 44$
44. (B) Total number of employees in Administration department
$=(350+280+240+360+160+240+200)=1830$
Total number of employees in Account department
$=(260+250+220+240+300+300+320)=1890$
\therefore Required difference $=1890-1830=60$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
45. (D) Required number $=350 \times \frac{112}{100}+280 \times \frac{120}{100}+240 \times \frac{115}{100}$
$=392+336+276=1004$
46. (A) Total number of employees in organisastion $\mathrm{M}=230+250+280=760$
$\therefore \quad$ Number of employees having liking music $=\frac{760}{16} \times 4=190$
47. (B) Sum of present age of husband, wife and child $=(27 \times 3+3 \times 3)$ years $=90$ years.

Sum of present age of wife and child $=(20 \times 2 \times 5 \times 2)$ years $=50$ years
Present age of husband $=90-50=40$ years
48. (C) Let the original weight be 100%

Weight of container $=25 \%$, then fluid $=75 \%$
New weight of fluid $=50 \%-25 \%=25 \%$
\therefore Required fraction $=\frac{75 \%-25 \%}{75 \%}=\frac{50 \%}{75 \%}=\frac{2}{3}$
49. (A) Let the C.P. be 100%.
then, $\mathrm{SP}=80 \%[100 \%-20 \%$]
Actual C.P. $=100 \%-40 \%=60 \%$
Profit $\%=\frac{80-60}{60} \times 100=\frac{20}{60} \times 100=33 \frac{1}{3} \%$
50. (C) Area of regular pentagon $=5 a^{2} \frac{\sqrt{3}}{4}$
$5 a^{2} \times \frac{\sqrt{3}}{4}=125 \sqrt{3}$
$a^{2}=\frac{125 \sqrt{3} \times 4}{5 \sqrt{3}}=100$
Each side $=a=10 \mathrm{~cm}$
51. (D)

Volume $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi r^{2}\left(\sqrt{l^{2}-r^{2}}\right)$
$=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \sqrt{100-49}=\frac{1}{3} \times 22 \times 7 \times \sqrt{51}$
$=\frac{154}{3} \sqrt{51} \mathrm{~m}^{3}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
52. (A)

Let the width of the river $=P Q$
In $\triangle \mathrm{ABQ}$,
$\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BQ}}$
$\frac{1}{\sqrt{3}}=\frac{18}{\mathrm{BQ}}$
$B Q=18 \sqrt{3} \mathrm{~m}$
In $\triangle \mathrm{ABP}$,
$\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BP}}$
$1=\frac{18}{\mathrm{BP}}$
$\mathrm{BP}=18 \mathrm{~m}$
So, width of the river $=P Q=B P+B Q$
$=18 \sqrt{3}+18=18(\sqrt{3}+1) \mathrm{m}$
53. (B) Since, one root $=2+\sqrt{5}$, then another root $=2-\sqrt{5}$

Sum of roots $=(2 \sqrt{5})+(2-\sqrt{5})=4$
Multiplication of the roots $=(2-\sqrt{5})(2-\sqrt{5})$
$=4-5=-1$
Then, required quadratic equation is
$x^{2}-$ (sum of roots) $x+$ (Multiplication of roots) $=0$
$x^{2}-4 x+(-1)=0$
$x^{2}-4 x-1=0$
54. (A) Let the C.P of article be 100%
then, marked price $=100 \%+20 \%=120 \%$
$S . P=120 \% \times \frac{95}{100}=114 \%$
Then Profit $=114 \%-100 \%=14 \%$
55. (A) Volume of the tank $=20 \times 15 \times 6=1800 \mathrm{~m}^{3}$
$=1800 \times 1000 \mathrm{~L}$
One day requirement $=4000 \times 150 \mathrm{~L}$
$\therefore \quad$ Number of days $=\frac{1800 \times 1000}{600 \times 1000}=3$ days

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
56. (A) Let C.P of watch $=100 \%$

Then, marked price $=140 \%$
Then, S.P $=140 \times \frac{90}{100}=126 \%$
Gross Profit $=26 \%$
Net profit $=26 \% \times \frac{90}{100}=\frac{117}{5} \%$
$\frac{117}{5} \%=₹ 468$ (Given)
$100 \%=₹ 2000$
57. (C)

Let sides of square be a.
$\mathrm{AO}=\frac{\sqrt{2} a}{2}=\frac{a}{\sqrt{2}}=\mathrm{AK}=\mathrm{BL}$
$\mathrm{LM}=\frac{a}{\sqrt{2}}-\frac{a}{2}[\mathrm{BL}-\mathrm{BM}]$
$\mathrm{OM}=\frac{a}{2}$
In $\Delta \mathrm{LOM}$,

$$
\begin{aligned}
& \tan \frac{O}{2}=\frac{\mathrm{LM}}{\mathrm{OM}}=\frac{\frac{a}{\sqrt{2}}-\frac{a}{2}}{\frac{a}{2}}=\frac{a\left(\frac{2-\sqrt{2}}{2 \sqrt{2}}\right)}{\frac{a}{2}} \\
& =\frac{2-\sqrt{2}}{2 \sqrt{2}} \times 2=\sqrt{2}-1 \\
& \tan \theta=\frac{2 \tan \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}=\frac{2(\sqrt{2}-1)}{1-(2+1-2 \sqrt{2})} \\
& =\frac{2(\sqrt{2}-1)}{1-3+2 \sqrt{2}}=\frac{2(\sqrt{2}-1)}{2(\sqrt{2}-1)}=1 \\
& \tan \theta=1=\tan 45^{\circ} \\
& \theta=45^{\circ}
\end{aligned}
$$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
58. (D)

Ratio of wages $=7: 5$
$A=\frac{7}{12} \times 48132=₹ 28077$
59. (A) Average collection $=$ speed \times capacity \times occupancy \times ticket ratio

Ratio of average collection of truck to that of bus = product of above rates
$=(3 \times 50 \times 1 \times 1.5):(1 \times 30 \times 2 \times 1)=15: 4$
60.
(C) $\frac{1}{1+p+\frac{1}{q}}+\frac{1}{1+q+\frac{1}{r}}+\frac{1}{1+r+\frac{1}{p}}=\frac{q}{1+p q+q}+\frac{r}{r+r q+1}+\frac{p}{p+r p+1}$
$=\frac{q}{1+p q+q}+\frac{r}{\frac{1}{p q}+\frac{1}{p}+1}+\frac{p}{p+\frac{1}{q}+1} \quad[\because p q r=1]$
$=\frac{q}{1+p q+q}+\frac{r p q}{1+q+p q}+\frac{p q}{p q+1+q}=\frac{q}{1+p q+q}+\frac{r p q}{1+q+p q}+\frac{p q}{p q+1+q}$
$=\frac{q+r p q+p q}{1+p q+q}=\frac{q+1+p q}{1+p q+q}$
$=1$
61. (C) Given:
$\frac{1}{a+1}+\frac{2 a+1}{a^{2}-1}=\frac{a-1+2 a+1}{a^{2}-1}=\frac{3 a}{a^{2}-1}$
Now, the value of a, we have on substituting.

62. (B) Let the pebbles with Manish, Rahul and Bharti be m, r, and b respectively.

Given :
$5 r=7 m$ and $5 m=7 b$
$25 \mathrm{r}=35 \mathrm{~m}$ and $35 \mathrm{~m}=49 \mathrm{~b}$
$25 r=35 m=49 b$
The least possible integral values of r, m and b will be $r=49, m=35$ and $b=25$
$\therefore \quad$ Required Total $=49+35+25=109$

Campus

K D Campus Pvt. Ltd

63. (A) Let PQRS be any square of length ' a ' cm and ' O ' be the centre of the two circles drawn inside (in-circle) and outside (cirum-circle) the square.

$\therefore \quad$ Radius of the in circle $=$ Half the length of one side $(P Q)$ of the square $=\left(\frac{a}{2}\right)^{2} \mathrm{~cm}$
Area of in-circle $=\pi \times\left(\frac{a}{2}\right)^{2}=\left[\frac{\pi a^{2}}{4}\right] \mathrm{cm}^{2}$
And the radius of circum-circle $=$ Half the length of the diagonal $(P R)$ of the square
$=\left[\frac{a \sqrt{2}}{2}\right]=\left[\frac{a}{\sqrt{2}}\right] \mathrm{cm}$
Area of the circum-circle $=\pi\left(\frac{a}{\sqrt{2}}\right)^{2}=\left[\frac{\pi a^{2}}{2}\right] \mathrm{cm}^{2}$
\therefore Area of in-circle : Area of circum-circle $=\frac{\pi a^{2}}{4}: \frac{\pi a^{2}}{2}=1: 2$
64. (B) Formula : $\mathrm{S}_{\mathrm{A}}: \mathrm{S}_{\mathrm{B}}=\sqrt{t_{\mathrm{B}}}: \sqrt{t_{\mathrm{A}}} \quad$ [Where $\mathrm{S}_{\mathrm{A}}=$ Speed of $\mathrm{A}_{\mathrm{B}}=$ Speed of B]

Applying this, $\frac{18}{\mathrm{~S}}=\frac{\sqrt{16}}{\sqrt{4}}$
$\mathrm{S}=\frac{18}{2}=9 \mathrm{kms} / \mathrm{hr}$
65. (A) The distance travelled by the car in 27 minutes could be travelled by the sound in (28 minutes $30 \mathrm{sec}-27$ minutes) i.e. $1 \frac{1}{2} \mathrm{~min}$
\therefore Distance travelled by the car in 27 minutes $=330 \times 1 \frac{1}{2} \mathrm{mins}$
$=330 \times \frac{3}{2} \times 60 \mathrm{secs}=330 \times 90 \mathrm{~min}$
Speed of the car $=\frac{330 \times 90}{27 \times 60}=\frac{330}{18} \mathrm{~m} / \mathrm{sec}$
$=\frac{330}{18} \times \frac{18}{5} \mathrm{kms} / \mathrm{hr}=66 \mathrm{kms} / \mathrm{hr}$
66. (A) Let $\mathrm{CP}=100$

16 articles cost price $=1600$
Profit $=\frac{35}{100} \times 1600=560$
Selling price $=2160$
Selling price of 15 article's selling price $=2160$
Selling price 1 articles $=\frac{2160}{15}=144$
Cost price $=100$
M. $\mathrm{P}=\frac{144}{96} \times 100=150$
50% above cost price

II Method

C.P.
S.P.
M.P.
$96_{\times 135}$ $100_{\times 135}$ $100_{\times 96} 135_{\times 96}$
Let MP = 135

$$
\mathrm{CP}=96
$$

M.P. of 15 articles $=135$
M.P of 1 articles $=\frac{135}{15}=9$
C.P of 16 article $=96$
C.P of 1 article $=\frac{96}{16}=6$
$\%$ of M.P. above the C.P. $=\frac{9-6}{6} \times 100=50 \%$

III Method

$\mathrm{MP} \times \frac{15}{16} \times \frac{96}{100}=\mathrm{CP} \times \frac{135}{100} \Rightarrow \frac{\mathrm{MP}}{\mathrm{MP}}=\frac{3}{2}$
MP is more than $C P=\frac{3-2}{2} \times 100=50 \%$
67. (A) Cost Price $=350000$

Books $=3000$ (Remaining)
If there are 30 books then 29 are sold
If there are 3000 books then 2900 are sold
$M . P=150$
$S . P=150 \times \frac{3}{4}$
Total S.P $=150 \times \frac{3}{4} \times 2900=326250$
Loss $=350000-326250=23750$
$\operatorname{Loss} \%=\frac{23750}{350000} \times 100=6.78 \%$

Campus

K D Campus Pvt. Ltd

68. (A) Let number of passengers are $2 x, 3 x$ and $5 x$

Rate $=y, 2 y, 4 y$
Since, income $=$ Number of passengers \times rate
Ratio of income $=2: 6: 20$
Income from A.C. sleeper class $=\frac{2}{28} \times 56000=4,000$
69. (C) Suppose, first pipe alone takes x hours to fill the tank .

Then, second and third pipes will take $(x-5)$ and $(x-9)$ hours respectively to fill the tank.
$\therefore \quad \frac{1}{x}+\frac{1}{(x-5)}=\frac{1}{(x-9)}$
$\frac{x-5+x}{x(x-5)}=\frac{1}{(x-9)}$
$(2 x-5)(x-9)=x(x-5)$
$2 x^{2}-23 x+45=x^{2}-5 x$
$x^{2}-18 x+45=0$
$(x-15)(x-3)=0$
$x=15$ (neglecting $x=3$)
70. (C) Suppose the container initially contains $7 x l$ and $5 x l$ of mixtures A and B respectively.

Quantity of A in mixture left $=\left(7 x-\frac{7}{12} \times 9\right)$ litres $=\left(7 x-\frac{21}{4}\right)$ litres
Quantity of B in mixture left $=\left(5 x-\frac{5}{12} \times 9\right)$ litres $=\left(5 x-\frac{15}{4}\right)$ litres
$\therefore \frac{\left(7 x-\frac{21}{4}\right)}{\left(5 x-\frac{15}{4}\right)+9}=\frac{7}{9}$
$\frac{28 x-21}{20 x+21}=\frac{7}{9}$
$252 x-189=140 x+147$
$112 x=336$
$x=3$
$7 x=21$
So, the container contained 21 litres of mixture A
71. (A) Amount remaining after

1 year $=4000\left(1+\frac{7.5}{100}\right)-1500=₹ 2800$
2 years $=2800\left(1+\frac{7.5}{100}\right)-1500=₹ 1510$
3 years $=1510\left(1+\frac{7.5}{100}\right)-1500=₹ 123.25$
72. (A) If a equilateral Δ is inscribed in a circle, it means the circle is circum-circle of that equilateral triangle.

Area of equilateral $\Delta=\frac{\sqrt{3}}{4} \times(\text { side })^{2}=4 \sqrt{3} \mathrm{~cm}^{2}$
side $=\frac{4 \sqrt{3}}{\frac{\sqrt{3}}{4}} \mathrm{~cm}=4 \mathrm{~cm}$
Circum-radius of equilateral $\Delta=\frac{\text { side }}{\sqrt{3}}=\frac{4}{\sqrt{3}} \mathrm{~cm}$

So, area of circle $=\pi \times\left(\frac{4}{\sqrt{3}}\right)^{2} \mathrm{~cm}^{2}=\frac{16}{3} \pi \mathrm{~cm}^{2}$
73. (C) Let the number of students appeared in school $\mathrm{X}=100$
$\therefore \quad$ Number of students qualified in school $\mathrm{X}=70$
According to question,
Number of students appeared in School Y = 120
Number of students qualified in School Y $=70+50 \%$ of $70=70+35=105$
\therefore Required percentage $=\frac{105 \times 100}{120}=87.5 \%$
74. (D) Required number of items $=\frac{(3000+1000)}{(60-40)}=\frac{4000}{20}=200$
75. (B) $\frac{(x-y)^{3}+(y-z)^{3}+(z-x)^{3}}{4(x-y)(y-z)(z-x)}$
$\because x-y+y-z+z-x=0$
$(x-y)^{3}+(y-z)^{3}+(z-x)^{3}=3(x-y)(y-z)(z-x)$
$=\frac{3(x-y) \times(y-z) \times(z-x)}{4(x-y)(y-z)(z-x)}=\frac{3}{4}$
76. (C) $\left.x^{2}-2 x-3\right) x^{3}-2 x^{2}+p x-q(x$

$x^{3}-2 x^{2}-3$
$-+\quad+$
$3 x+p x-q$

As per given condition, we have
$(p+3) x-\mathrm{q}=x-6$
$p+3=1, q=6$
$p=-2, q=6$
77. (B) $\mathrm{AD}=$ median $=\frac{\sqrt{3}}{2} \times 8 \mathrm{~cm}=4 \sqrt{3} \mathrm{~cm}$
$\mathrm{OD}=$ radius of the in-circle $=\frac{1}{3} 4 \sqrt{3} \mathrm{~cm}$
Area of in-circle $=\frac{22}{7} \times \frac{4 \sqrt{3}}{3} \times \frac{4 \sqrt{3}}{3} \mathrm{~cm}^{2}=\frac{22 \times 16}{21} \mathrm{~cm}^{2}$

Area of triangle $=\frac{\sqrt{3}}{4} \times 8 \times 8 \mathrm{~cm}^{2}=16 \sqrt{3} \mathrm{~cm}^{2}$
Required area of the portion between the triangle and the circle $=\left(16 \sqrt{3}-\frac{22 \times 16}{21}\right) \mathrm{cm}^{2}$
$=16\left(\sqrt{3}-\frac{22}{21}\right) \mathrm{cm}^{2}$
$=\frac{16}{21}(21 \times 1.732-22) \mathrm{cm}^{2}=\frac{16}{21}(36.372-22) \mathrm{cm}^{2}$
$=\frac{16}{21}(14.372) \mathrm{cm}^{2}=10.95 \mathrm{~cm}^{2}$
78. (A) Let the shares of Anita, Bindu and Champa are $11 x, 18 x$ and $24 x$ respectively.
$1105=11 x+10+18 x+20+24 x+15$
$1105=53 x+45$
$x=20$
\therefore Amount received by Champa $=24 x+15$
$=24 \times 20+15=₹ 495$
79. (A) Total marks got by the students in 8 subjects $=8 \times 57=696$

Total marks got by the student in 6 subjects $=6 \times 85=510$
Remaining marks in 2 subjects $=696-510=186$
Let the highest marks be x, then the second highest marks will be $x-2$.
$\therefore \quad x+x-2=186$
$2 x=188$
$x=94$
Highest marks $=94$
80. (D) Total score of first three friends $=15 \times 3=45$

And total score of last three friends $=16 \times 3=48$
Total score of four friends $=45+19=64$
Score of first friend $=64-48=16$
So, required percentage $=\frac{16}{48} \times 100 \%=33 \frac{1}{3} \%$
81. (A) Given, $a \sec \theta+b \tan \theta=1$
and, $a^{2} \sec ^{2} \theta-b^{2} \tan ^{2} \theta=5$
From Eqs. (i) and (ii),
$a \sec \theta-b \tan \theta=5$
From Eqs. (i) and (iii),
$a \sec \theta=3$
$b \tan \theta=-2$
From Eq. (iv),
$a^{2} \sec ^{2} \theta=9$
$a^{2}\left(1+\tan ^{2} \theta\right)=9$
$a^{2}\left(1+\frac{4}{b^{2}}\right)=9$
$a^{2} b^{2}+4 a^{2}=9 b^{2}$
82. (A)

Let the height of the shorter tower be $x \mathrm{~m}$.
Then, from $\triangle \mathrm{CDE}$,
$\tan 30^{\circ}=\frac{(150-x)}{60}$
$\frac{1}{\sqrt{3}}=\frac{150-x}{60}$
$(150-x)=\frac{60}{\sqrt{3}}=2 \sqrt{3}$
$\therefore \quad x=150-20 \sqrt{3}=116 \mathrm{~m}$ (approx)
83. (C)

In $\Delta \mathrm{PQO}$,
$(17)^{2}=(8)^{2}+(\mathrm{OQ})^{2}$
$(\mathrm{OQ})^{2}=289-64=225$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$\mathrm{OQ}=15$
$\therefore \mathrm{OS}=23-15=8$
Now in \triangle ORS,
$(R S)^{2}=(17)^{2}-(8)^{2}=289-64=225$
$\therefore \quad \mathrm{RS}=15 \mathrm{~cm}$
Hence, length of other chord $=15 \times 2=30 \mathrm{~cm}$
84. (D) Let the three points be $\mathrm{A}\left(0, \frac{8}{3}\right), \mathrm{B}(1,3)$ and $\mathrm{C}(82,30)$

Then,
$\mathrm{AB}=\sqrt{(1-0)^{2}+\left(3-\frac{8}{3}\right)^{2}}=\frac{\sqrt{10}}{3}$
$\mathrm{BC}=\sqrt{(82-1)^{2}+(30-3)^{2}}=\sqrt{6561+729}$
$=\sqrt{7290}=27 \sqrt{10}$
$C A=\sqrt{(82-0)^{2}+\left(30-\frac{8}{3}\right)^{2}}$
$=\sqrt{\frac{10 \times(82)^{2}}{9}}=\frac{82}{3} \sqrt{10}$
Now, $\mathrm{AB}+\mathrm{BC}=\frac{\sqrt{10}}{3}+27 \sqrt{10}=\frac{82 \sqrt{10}}{3}$
Since, $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$, it means points A, B and C are collinear.
85. (D) Given,
$\frac{\sin A}{\cos A}=\frac{4}{7}$
$\therefore \quad \frac{7 \frac{\sin A}{\cos A}-3}{7 \frac{\sin A}{\cos A}+2}=\frac{7 \times \frac{4}{7}-3}{7 \times \frac{4}{7}+2}$
$=\frac{4-3}{4+2}=\frac{1}{6}$
86. (B) Let x be the total score in the innings.

So, the highest score $=\frac{2}{9} x$
And, the next highest score $=\frac{2}{9}$ of the remaining runs $=\frac{2}{9}\left(x-\frac{2}{9} x\right)$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
ATQ,
$\frac{2}{9} x-\frac{2}{9}\left(x-\frac{2}{9} x\right)=8$
$x-x+\frac{2}{9} x=\frac{8 \times 9}{2}$
$x=\frac{8 \times 9 \times 9}{2 \times 2}=162$
87. (B) Let total marks be 100 .

So, the minimum marks required to be pass $=40 \%$ of $100=40$ marks ATQ,

Marks obtained by $\mathrm{A}=40-40 \times \frac{10}{100}=36$ marks
And marks obtained by $B=36-\frac{100}{9} \times \frac{36}{100}=36-4=32$ marks
So, Marks obtained by C $=(36+32)-(36+32) \times \frac{700}{17 \times 100}$
$=68-28=40$ marks
88. (A) Let the rate of filling tank be $x \mathrm{~m}^{3} / \mathrm{min}$.

Then, the rate of empting the tank $=(x+10) \mathrm{m}^{3} / \mathrm{min}$
ATQ,
$\therefore \quad \frac{2400}{x}-\frac{2400}{x+10}=8$
$2400\left[\frac{10}{x(x+10)}\right]=8$
$x(x+10)=3000$
$x=50 \mathrm{~m}^{3} / \mathrm{min}$
89. (A) Let the distance covered by the first train be $x \mathrm{~km} / \mathrm{h}$.

As both trains have travelled for same time.

$$
\begin{aligned}
\therefore & \frac{x}{50}=\frac{x+120}{60} \\
& 60 x=50 x+6000 \\
& x=600
\end{aligned}
$$

$$
\therefore \text { Total distance }=x+(x+120)=1320 \mathrm{~km}
$$

90. (B) Total candidates $=2000$

Number of boys $=900$
Number of girls $=1100$
Number of students who passed $=\frac{32 \times 900}{100}+\frac{38 \times 1100}{100}$
$=288+418=706$
Number of students who failed $=2000-706=1294$
Required percentage $=\frac{1294}{2000} \times 100=64.7 \%$
91. (B) Avg. Speed $=\frac{\text { Total distance }}{\text { Total time }}$

ATQ,
$53+\frac{1}{3}=\frac{200}{\frac{50}{40}+\frac{150}{x}}$
$\frac{160}{3}=\frac{200 \times 40 x}{50 x+600}$
$200 x=24000=600 x$
$400 x=24000$
$x=60 \mathrm{Km} / \mathrm{h}$
92. (C) Required difference $=(l \times b \times h)-\pi r^{2} h$
$=10 \times 10 \times 21-\frac{22}{7}\left(\frac{10}{2}\right)^{2} \times 21$
$=2100-1650=450 \mathrm{~cm}^{3}$
93. (D) $u_{n}=\cos ^{n} \alpha+\sin ^{n} \alpha$

Now,
$2 u_{6}-3 u_{4}+1$
$=2\left(\cos ^{6} \alpha+\sin ^{6} \alpha\right)-3\left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+1$
$\left.=2\left(\cos ^{2} \alpha+\cos ^{2} \alpha\right)^{3}-3 \sin ^{2} \alpha \cos ^{2} \alpha\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)-3\left\{\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)^{2}-2 \sin ^{2} \alpha \cos ^{2} \alpha\right)\right\}+1$
$=2-6 \sin ^{2} \alpha \cdot \cos ^{2} \alpha+6 \sin ^{2} \alpha \cos ^{2} \alpha-3+1$
$=2-3+1=0$
94. (A) $3 x+4 y=12$
$x=0, \mathrm{y}=3$
$\mathrm{A}(0,3)$
$y=0, x=4$
$\mathrm{B}(4,0)$

$6 y+8 y=60$
$x=0, y=7.5$
$\mathrm{C}(0,7.5)$
$y=0, x=10$
$\mathrm{D}(10,0)$
Area of Trapezium $=$ Area of \triangle COD - Area of $\triangle \mathrm{AOB}$
$=\frac{1}{2} \times 10 \times 7.5-\frac{1}{2} \times 4 \times 3$
$=37.5-6=31.5$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
95. (C) Curved surface area of cone = Area of sector of circle
$\pi \mathrm{rl}=\pi \mathrm{R}^{2} \times \frac{120}{360}$
Here,
$l=\mathrm{R}$
$\therefore \quad \mathrm{r}=15 \times \frac{120}{360}=5 \mathrm{~cm}$
$\therefore \mathrm{h}=\sqrt{225-25}=10 \sqrt{2} \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \times \pi \times 25 \times 10 \sqrt{2}=250 \sqrt{2} \pi / 3 \mathrm{~cm}^{3}$
96. (C) Let marks obtained by A in Chemistry $=x$ and in Physics $=y$
$\left(\frac{95}{100} \times 100\right)+\left(\frac{86}{100} \times 50\right)+\left(\frac{70}{100} \times 150\right)+x+y+\left(\frac{96}{100} \times 50\right)+\left(\frac{60}{100} \times 75\right)=536$
$x+y=536-336=220$
$x: y=2: 3$
$x=80, y=120$
Marks obtained by B in Physics $=\frac{88}{100} \times 150=132$
\therefore Required percentage $=\left(\frac{120}{132} \times 100\right) \%=90.90 \%$
97. (D) Let score of F in Chemistry $=x$

$$
\frac{(100+25)}{100} \times x=140
$$

$\therefore \quad x=112$
Average score in Chemistry
$=\frac{80+\left(\frac{96}{100} \times 125\right)+\left(\frac{80}{100} \times 125\right)+\left(\frac{64}{100} \times 125\right)+\left(\frac{60}{100} \times 125\right)+112}{6}=\frac{567}{6} \approx 95$
98. (D) Marks obtained by D in Hindi $=583-(74+88+64+92+94+84)=87$
$\therefore \quad$ Required averge $=\frac{95+78+82+87+88+92}{6}=\frac{522}{6}=87$
99. (A) Marks obtained by E in Hindi, Maths and Chemistry
$=\left(\frac{88}{100} \times 100\right)+\left(\frac{70}{100} \times 150\right)+\left(\frac{60}{100} \times 125\right)=268$
Marks obtained by F in Botany, Physics and Biology
$=\left(\frac{88}{100} \times 75\right)+\left(\frac{88}{100} \times 150\right)+\left(\frac{68}{100} \times 50\right)=232$
Required percentage $=\left(\frac{268-232}{232}\right) \times 100 \%=15.51 \% \approx 15 \%$ more
100. (C) Marks obtained by F in Maths and English $=\frac{92}{100} \times 150+\frac{94}{100} \times 50=185$

Marks obtained by C in Maths and Botany = 185-1=184
Total marks of C in all the Subject
$=\left(\frac{82}{100} \times 100\right)+\left(\frac{88}{100} \times 50\right)+\left(\frac{80}{100} \times 125\right)+\left(\frac{70}{100} \times 150\right)+\left(\frac{86}{100} \times 50\right)+184=558$
Required Percentage $=\left(\frac{558}{700} \times 100\right) \% \approx 80 \%$

Campus

K D Campus Pvt. Ltd

QUANTITATIVE ABILITY - 80 (ANSWER KEY)

$\begin{array}{lllllll}\text { 1. } & \text { (C) } & \text { 26. } & \text { (D) } & \text { 51. } & \text { (D) } & \text { 76. }\end{array}$ (C) $)$

