

Campus K D Campus Pvt. Ltd 1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09 Similarly, we can write $ar(\Delta CED) = ar(AEC) = \frac{1}{2}ar(\Delta ACD)$ On adding (1) and (2) $ar(\Delta BEC) = \frac{1}{2} ar(\Delta ABD) + \frac{1}{2} ar(\Delta ACD) = \frac{1}{2}ar(\Delta ABC)$ (A) Let the parallel sides of the trapezium be 5x cm & 7x cm its area = $\frac{1}{2}[5x+7x]\times 14$ 9. $336 = 12x \times 7$ $\frac{336}{7 \times 12} = x$ x = 4Smaller of the parallel sides = $5x \text{ cm} = 5 \times 4 = 20 \text{ cm}$ 10. (D) Let the side of the square be x cmLength of the rectangle = (x + 5) cm Its breadth = (x - 3) cm ATQ, $x^2 = (x + 5) (x - 3)$ $x^2 = x^2 - 3x + 5x - 15$ 2x = 15 $x = \frac{15}{2} = 7.5 \, cm$ Perimeter of the rectangle = 2(l+b)= 2 [(7.5 + 5) + (7.5 - 3)]= 2 [12.5 + 4.5]= 2 × 17 = 34 cm. 11. (B) 60° $2 \,\mathrm{km}$ Ν В Let AB = h km In ΔOAB $\tan 45^\circ = \frac{AB}{OB}$ OB = h kmIn Δ OLM, $OM = 2 \cos 30^\circ = \sqrt{3} \text{ km}$ $LN = BM = (h - \sqrt{3}) km$ *.*.. 09555108888, 095

EXAMPLE 1997. GROUND PLOTE OPDOSITE MUKERENE ALCAR POLICE STATION, OUTRAM LINES, GTB MAGAR, NEW DELHI-09
14. (A) radius of pipe =
$$\frac{5}{20}$$
 cm, (given)
height of pipe = 1000 cm
radius of vessel = 20 cm
and height = 24 cm
Volume of water that flows in one minute through cylindrical pipe = $\pi \left(\frac{5}{20}\right)^2 \times 1000 - \frac{125}{2} \pi \text{ cm}^3$
Also, volume of conical vessel = $\frac{1}{3} \pi (20)^2 \times 24 = 3200 \pi \text{ cm}^3$
 \therefore Time taken by pipe to fill the vessel = $\frac{3200\pi \times 2}{125\pi} = 51\frac{1}{5}$ or 51 min 128.
15. (C) Let the length, breadth and height of a rectangular parallelepiped be *l*, *b* and *h* cm respec-
tively.
ATO,
 $l = 3b = 5h = a$ (say)
 $l = a, b = \frac{a}{3}, h = \frac{a}{5}$
It is given that volume of parallelopiped = 14400 cm²
 $a \times \frac{a}{3} \times \frac{a}{5} = 14400$
 $a^3 = 14400 \times 15$
 $\therefore a = \sqrt[3]{1400} \times 15$
 $\therefore a = \sqrt[3]{1400} \times 15$
 $\therefore a = \sqrt[3]{1400} \times 15$
 $\therefore 0 = 0$ the courty of a 78 × 525 = 378 × 525 = 198450 sq cm
 $\therefore 198450 - 21 \times 21 \times 450$
450 sq marble atories shall be used of size 21 cm × 21 cm
17. (C) 1^{ar} day = 4 km, 2⁻⁴ day = 4 $\times \frac{1}{2} = 2$ km,
 $3^{art} day = 2 \times \frac{1}{2} = 1$ km
 \therefore fotal distance S = 4 + 2 + 1 + $\frac{1}{2}$ + $\frac{1}{4}$...
Which is infinite GP with a = 4, $r = \frac{1}{2}$
Now, $\because r < 1$
So, Sum; S = $\frac{a}{1-r} = \frac{4}{1-\frac{1}{2}} + \frac{4}{2} = 8$ km

Campus **K D Campus Pvt. Ltd** 1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09 31. (C) Let x = 3, y = 4So, x + y = 3 + 4 = 7and $x^2 + y^2 = 3^2 + 4^2 = 25$ $\therefore \quad \frac{1}{x} + \frac{1}{y} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$ 32. (C) $\sqrt{mn} = 10, mn = 100$ If m = 100 then n = 1: m + n = 101If m = 50, then n = 2: m + n = 52If m = 25, then n = 4m + n = 29 $\therefore m + n \neq 50$ 33. (A) Length of hypotenuse = $\sqrt{24^2 + 7^2} = 25$ $\therefore \quad \frac{1}{2} \times 25 \times h = \frac{1}{2} \times 7 \times 24$ $h = \frac{7 \times 24}{25} = 6.72 \text{ cm}$ 34. (A) x + y - 4 = 0y = (-x) + 4...(i) 3x - y - 4 = 0y = 3x - 4...(ii) x + 3y - 4 = 0 $y = \frac{(-x)}{3} + \frac{4}{3}$...(ii) Product of gradient of (ii) and (iii) equations are = $3 \times \frac{-1}{3} = -1$ Lines are perpendicular Triangle formed is a right angled triangle. (D) $\sin\theta + \cos\theta = \sqrt{3} \cos\theta$ 35. $\sin\theta = (\sqrt{3} - 1)\cos\theta$ $\therefore \quad \cos\theta - \sin\theta = \cos\theta - (\sqrt{3} - 1)\cos\theta$ $=\cos\theta\left[1-\sqrt{3}+1\right]=\left(2-\sqrt{3}\right)\cos\theta$ 36. (D) If length, breadth and height of the cuboid are *l*, *b*, *h* respectively then $l \times b = p$ $b \times h = q$ $l \times h = r$ $\therefore (lbh)^2 = pqr$ $lbh = \sqrt{pqr}$

Ph: 09555108888, 09555208888

EXAMPLE VIEW
EXAMPLE VIEW
EXAMPLE STATION, OUTBAM LINES, GTB MAGAR, NEW DELHI-09
58. (D)
$$5 \times 5 \times 7$$

 25
 35
Ratio of wages = 7: 5
 $A = \frac{7}{12} \times 48132 = 728077$
59. (A) Average collection = speed × capacity × occupancy × ticket ratio
Ratio of average collection of truck to that of bus = product of above rates
 $-(3 \times 50 \times 1 \times 1.5): (1 \times 30 \times 2 \times 1) = 15 \times 4$
60. (C) $\frac{1}{1+p+\frac{1}{q}} + \frac{1}{1+q+\frac{1}{r}} + \frac{1}{1+r+\frac{1}{p}} = \frac{q}{1+pr+q} + \frac{r}{r+q+1} + \frac{p}{p+rp+1}$
 $= \frac{q}{1+pq+q} + \frac{r}{r+\frac{1}{q+1}} + \frac{1}{p+\frac{1}{q+1}} = \frac{q}{1+pr+q} + \frac{7q}{1+q+q} + \frac{pq}{p+q+1+q}$
 $= \frac{q}{1+pq+q} + \frac{r}{1+q+p} + \frac{pq}{q+1+q} = \frac{q}{1+pq+q} + \frac{7q}{1+q+pg} + \frac{pq}{pq+1+q}$
 $= \frac{q}{1+pq+q} - \frac{q+1+pq}{1+pq+q} + \frac{q+1}{q+1} = \frac{q}{1+pq+q} + \frac{7q}{1+q+pg} + \frac{pq}{pq+1+q}$
 $= \frac{1}{1+q+q} + \frac{r}{1+q+1} + \frac{3q}{(2+x)} = \frac{3(\frac{1}{2}+x)}{(2+x)^2}$
Now, the value of s, we have on substituting.
 $\frac{4(\frac{1+x}{2-x})}{(\frac{1}{2-x})} + \frac{3(\frac{1}{2-x})}{(2-x)}$
51. (C) Given:
 $\frac{3(\frac{1+x}{2-x})}{(\frac{1}{2-x})} + \frac{3(\frac{1}{2-x})}{(2-x)}$
52. (B) Let the pebbles with Manish, Rahul and Bharti be *m*, *r*, and *b* respectively.
Given :
 $5r = 7m$ and $5m = 7b$
 $25r = 35m = 49b$
The least possible integral values of *r*, *m* and *b* will be $r = 49, m = 35$ and $b = 25$
 \therefore Required Total = 49 + 35 + 25 = 109

г

Campus K D Campus Pvt. Ltd 1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09 66. (A) Let CP = 10016 articles cost price = 1600Profit = $\frac{35}{100} \times 1600 = 560$ Selling price = 2160Selling price of 15 article's selling price = 2160Selling price 1 articles = $\frac{2160}{15}$ = 144 Cost price = 100 $M.P = \frac{144}{96} \times 100 = 150$ 50% above cost price II Method C.P. S.P. M.P. 100_{*96} 135_{*96} 96_{×135} $100_{\times 135}$ Let MP = 135CP = 96 M.P. of 15 articles = 135 M.P of 1 articles = $\frac{135}{15}$ = 9 C.P of 16 article = 96C.P of 1 article = $\frac{96}{16} = 6$ % of M.P. above the C.P. = $\frac{9-6}{6} \times 100 = 50\%$ **III Method** $MP \times \frac{15}{16} \times \frac{96}{100} = CP \times \frac{135}{100} \Rightarrow \frac{MP}{MP} = \frac{3}{2}$ MP is more than CP = $\frac{3-2}{2} \times 100 = 50\%$ (A) Cost Price = 350000 67. Books = 3000 (Remaining) If there are 30 books then 29 are sold If there are 3000 books then 2900 are sold M.P = 150 $S.P = 150 \times \frac{3}{4}$ Total S.P = $150 \times \frac{3}{4} \times 2900 = 326250$ Loss = 350000 - 326250 = 23750 $Loss\% = \frac{23750}{350000} \times 100 = 6.78\%$

Ph: 09555108888, 09555208888

Campus K D Campus Pvt. Ltd 1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09 68. (A) Let number of passengers are 2x, 3x and 5xRate = y, 2y, 4ySince, income = Number of passengers × rate Ratio of income = 2:6:20Income from A.C. sleeper class = $\frac{2}{28} \times 56000 = 4,000$ 69. (C) Suppose, first pipe alone takes *x* hours to fill the tank. Then, second and third pipes will take (x - 5) and (x - 9) hours respectively to fill the tank. $\therefore \quad \frac{1}{x} + \frac{1}{(x-5)} = \frac{1}{(x-9)}$ $\frac{x-5+x}{x(x-5)} = \frac{1}{(x-9)}$ (2x-5)(x-9) = x(x-5) $2x^2 - 23x + 45 = x^2 - 5x$ $x^2 - 18x + 45 = 0$ (x-15)(x-3)=0x = 15 (neglecting x = 3) (C) Suppose the container initially contains 7x l and 5x l of mixtures A and B respectively. 70. Quantity of A in mixture left = $\left(7x - \frac{7}{12} \times 9\right)$ litres = $\left(7x - \frac{21}{4}\right)$ litres Quantity of B in mixture left = $\left(5x - \frac{5}{12} \times 9\right)$ litres = $\left(5x - \frac{15}{4}\right)$ litres $\therefore \quad \frac{\left(7x - \frac{21}{4}\right)}{\left(5x - \frac{15}{4}\right) + 9} = \frac{7}{9}$ $\frac{28x - 21}{20x + 21} = \frac{7}{9}$ 252x - 189 = 140x + 147112x = 336x = 37x = 21So, the container contained 21 litres of mixture A (A) Amount remaining after 71. 1 year = 4000 $\left(1 + \frac{7.5}{100}\right)$ - 1500 = ₹ 2800 2 years = 2800 $\left(1 + \frac{7.5}{100}\right)$ - 1500 = ₹ 1510 3 years =1510 $\left(1 + \frac{7.5}{100}\right)$ - 1500 = ₹ 123.25 09555108888, 09

EXAMPLE
BUD CONDUCTOR OPPOSITE MUMERATE NAGAR POLICE STATION, OUTRAM LINES, GTB MAGAR, NEW DELH - 09
OQ = 15

$$\therefore$$
 OS = 23 - 15 = 8
Now in \land ORS,
 $(RS)^2 = |17|^2 - (8)^2 = 289 - 64 = 225$
 \therefore RS = 15 cm
Hence, length of other chord = 15 × 2 = 30 cm
84. (D) Let the three points be $\land (0, \frac{8}{3})$, B(1, 3) and C(82, 30)
Then,
 $\land B = \sqrt{(a - 0)^2 + (3 - \frac{8}{3})^2} = \frac{\sqrt{10}}{3}$
 $BC = \sqrt{(82 - 1)^2 + (30 - 3)^2} = \sqrt{6561 + 729}$
 $= \sqrt{7290} = 27\sqrt{10}$
 $CA = \sqrt{(82 - 0)^2 + (30 - \frac{8}{3})^2}$
 $= \sqrt{\frac{10 \times (82)^2}{9}} = \frac{82}{3}\sqrt{10}$
Now, $AB + BC = \frac{\sqrt{10}}{3} + 27\sqrt{10} = \frac{82\sqrt{10}}{3}$
Since, $AB + BC = \frac{\sqrt{10}}{3} + 27\sqrt{10} = \frac{82\sqrt{10}}{3}$
Since, $AB + BC = \frac{\sqrt{10}}{7} + \frac{27\sqrt{10}}{9} = \frac{7\times\frac{4}{7} - 3}{7\times\frac{4}{7} + 2}$
 $= \frac{4}{4+2} = \frac{1}{6}$
86. (B) Let x be the total score in the innings.
So, the highest score $= \frac{2}{9}x$
And, the next highest score $= \frac{2}{9}$ of the remaining runs $= \frac{2}{9}(x - \frac{2}{9}x)$
B1: 095551063383, 09555208383

EXAMPLE 1997. COUND FLOW OPPOSITE MURKHER ANALARY POLE STATION, OUTRAM LINES, GTE MAGAR, NEW DELHI-09
95. (C) Curved surface area of cone = Area of sector of circle

$$\pi t^{2} = \pi R^{2} \times \frac{120}{360} = 5 \text{ cm}$$

 $\therefore h = \sqrt{225} = 5 = 10 \sqrt{2} \text{ cm}$
Volume of cone $= \frac{1}{3} \pi t^{2}h = \frac{1}{3} \times \pi \times 25 \times 10\sqrt{2} = 250\sqrt{2} \pi/3 \text{ cm}^{3}$
96. (C) Let marks obtained by A in Chemistry - x and in Physics - y
 $\left(\frac{95}{100} \times 100\right) + \left(\frac{86}{100} \times 50\right) + \left(\frac{70}{100} \times 150\right) + x + y + \left(\frac{96}{100} \times 50\right) + \left(\frac{60}{100} \times 75\right) - 536$
 $x + y = 536 - 336 - 220$
 $x : y = 2 : 3$
 $x = 30, y = 120$
Marks obtained by B in Physics = $\frac{88}{100} \times 150 = 132$
 \therefore Required percentage = $\left(\frac{120}{1122} \times 100\right)^{26} = 90.90\%$
97. (D) Let score of F in Chemistry = x
 $\left(\frac{100 + 25}{100} \times x = 140$
 $\therefore x = 112$
Average score in Chemistry
 $= \frac{80 + \left(\frac{96}{100} \times 125\right) + \left(\frac{80}{100} \times 125\right) = \left(\frac{64}{100} \times 125\right) + \left(\frac{10}{100} \times 125\right) + 112}{100} = \frac{567}{6} = 95$
98. (D) Marks obtained by D in Hindi = 583 - 174 + 88 + 64 + 92 + 94 + 84) = 87
 \therefore Required average $= \frac{95 + 78 + 82 + 87 + 88 + 92}{2} = \frac{522}{6} = 87$
99. (A) Marks obtained by E in Hindi, Maths and Chemistry
 $= \left(\frac{83}{100} \times 75\right) + \left(\frac{80}{100} \times 150\right) + \left(\frac{60}{100} \times 125\right) = 268$
Marks obtained by F in Botany, Physics and Biology
 $= \left(\frac{83}{100} \times 75\right) + \left(\frac{80}{100} \times 150\right) + \left(\frac{60}{100} \times 125\right) = 232$
Required percentage $= \left(\frac{268 - 232}{232}\right) \times 100\% = 15.51\% \approx 15\%$ more
100. (C) Marks obtained by F in Maths and Chemistry
 $= \left(\frac{82}{100} \times 75\right) + \left(\frac{80}{100} \times 125\right) + \left(\frac{70}{100} \times 150\right) + \left(\frac{80}{100} \times 50\right) = 185$
Marks obtained by F in Maths and Brangi H $= \frac{92}{100} \times 50 = 185$
Marks obtained by F in Maths and Brangi H $= \frac{92}{100} \times 50 + 184 = 558$
Required Percentage $= \left(\frac{558}{50} \times 1100\right) + \left(\frac{50}{100} \times 125\right) + \left(\frac{70}{100} \times 150\right) + \left(\frac{80}{100} \times 50\right) + 184 = 558$
Required Percentage $= \left(\frac{558}{50} \times 1100\right) = 0.555552055335$

Campus K D Campus Pvt. Ltd 1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

QUANTITATIVE ABILITY - 80 (ANSWER KEY)

1.	(C)	26.	(D)	51.	(D)	76.	(C)
2.	(C)	27.	(B)	52.	(A)	77.	(B)
3.	(D)	28.	(B)	53.	(B)	78.	(A)
4.	(C)	29.	(B)	54.	(A)	79.	(A)
5.	(B)	30.	(B)	55.	(A)	80.	(D)
6.	(D)	31.	(C)	56.	(A)	81.	(A)
7.	(B)	32.	(C)	57.	(C)	82.	(A)
8.	(A)	33.	(A)	58.	(D)	83.	(C)
9.	(A)	34.	(A)	59.	(A)	84.	(D)
10.	(D)	35.	(D)	60.	(C)	85.	(D)
11.	(B)	36.	(D)	61.	(C)	86.	(B)
12.	(A)	37.	(C)	62.	(B)	87.	(B)
13.	(B)	38.	(A)	63.	(A)	88.	(A)
14.	(A)	39.	(B)	64.	(B)	89.	(A)
15.	(C)	40.	(C)	65.	(A)	90.	(B)
16.	(C)	41.	(B)	66.	(A)	91.	(B)
17.	(C)	42.	(A)	67.	(A)	92.	(C)
18.	(B)	43.	(C)	68.	(A)	93.	(D)
19.	(B)	44.	(B)	69.	(C)	94.	(A)
20.	(B)	45.	(D)	70.	(C)	95.	(C)
21.	(C)	46.	(A)	71.	(A)	96.	(C)
22.	(B)	47.	(B)	72.	(A)	97.	(D)
23.	(C)	48.	(C)	73.	(C)	98.	(D)
24.	(A)	49.	(A)	74.	(D)	99.	(A)
25.	(D)	50.	(C)	75.	(B)	100	. (C)