IBPS PO SPECIAL PHASE-I MOCK TEST- 276 (SOLUTION)

(1-5) :

1. (4)
2. (5)
3. (1)
4. (5)
5. (3)
(6-10) :
$\$ \rightarrow \geq \quad \delta \rightarrow=$
@ $\rightarrow>$
© $\rightarrow \leq \quad \# \rightarrow<$
6. (2) Statement :
$\mathrm{H}>\mathrm{T}<\mathrm{F}=\mathrm{E} \leq \mathrm{V}$
Conclusion:
I. $\mathrm{V} \geq \mathrm{F}$; true
II. E > T ; True
III. $\quad \mathrm{H}>\mathrm{V}$; Can't say
IV. $\quad \mathrm{T}<\mathrm{V}$; True
Only I, II and IV are true.
7. (5) Statement :

D < R $\leq K>F \geq J$
Conclusion:
I. J < R ; Can't say II. J < K ; True III. $\mathrm{R}<\mathrm{F}$; Can't say IV. K $>\mathrm{D}$; True None is true.
8. (5) Statetment :
$\mathrm{N}=\mathrm{B} \geq \mathrm{W}<\mathrm{H} \leq \mathrm{M}$
Conclusion :
I. $\mathrm{M}>\mathrm{W}$; True
II. H > N ; Can't say
III. W = N ; Can't say IV. W < N ; Can't say

Only either III or IV and I are true
9. (1) Statements :
$\mathrm{R} \leq \mathrm{D} \geq \mathrm{J}<\mathrm{M}>\mathrm{K}$
Conclusions:
I. $\mathrm{K}<\mathrm{J}$; Can't say
II. D > M ; Can't say
III. R < M ; Can't say
IV. D > K ; Can't say

None is true.

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
10. (4) Statements :
$\mathrm{M} \geq \mathrm{K}>\mathrm{N} \leq \mathrm{R}<\mathrm{W}$
Conclusions:
I. W > K ; Can't say
II. $\mathrm{M} \geq \mathrm{R}$; Can's say
III. K > W; Can't say
IV. M > N ; True

Either I or III and IV are true.
(11-15) :

11. (4)
12. (3)
13. (1)
14.
(5)
15.
(2)
(16-21) :

Floor	Person	Profession
6	Q	Doctor
5	R / U	Engineer
4	P	Journalist
3	S	Lawer
2	T	Architect
1	U / R	Teacher

16. (2)
17. (2)
18. (3)
19.

(2)
20.
(5) 21 .
(4)
22. (5) $67 \begin{array}{lllllll}7 & 2 & 1 & 9 & 8 & 6 & 4\end{array}$

12466789
Thus, there is no such digit in the given number.
23. (3) Original:

EPISODE
New arrangement:
F O J R P C F
Now, all new letters are arranged in alphabetical order.
alphabetical order \rightarrow C F F J O P R
Hence third letter from left is \mathbf{F}.
24. (2)
25. (1)
(26-30) :
26. (2) From I. Possible diagrams:

or

Hence I alon is not sufficient to answer the question.

$K D$ Campus
 KD Campus

From II.

Hence, C is second to the left of E
Hence II alone is sufficient to answer the question.
27. (5) From both I and II.
$\mathrm{Z}>\mathrm{Y}>\mathrm{V}=\mathrm{W}>\mathrm{X}$
$(x+p)(x+5)(x+5)$
Hence Z scores the highest runs.
28. (5) From both I and II

Hence, A is grandmother of E
29. (5) From both I and II.
T V S X P $-Q$
Q_P X S V T
Hence X is the middle of the row.
30. (1)
(31-33) :

31. (4) $\mathrm{FC} \| \mathrm{AB}$
$\mathrm{FC}=\mathrm{AB}=9 \mathrm{~m}$

$$
\mathrm{FD}=\mathrm{FC}+\mathrm{CD}=9+5=14 \mathrm{~m}
$$

32. (3)
33. (4)
34. (2)

35. (3)

T	A	L	K
\downarrow	\downarrow	\downarrow	\downarrow
20	1	12	11
$+1\|+1\|$	$+1 \mid$	+1	
21	2	13	12

$K \gg$ Campus

KD Campus

Similarly,

R	A	N	C	H	I
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
18	1	14	3	8	9
$+1\|+1\|$	$+1 \mid$	$+1\|+1\|$	$+1 \mid$		
19	2	15	4	9	10

Maths

36. Quantity I.

Let the number of days taken by Amit be x
Time taken by Arnav $=\frac{6 x}{5}$

Amit one day work $=\frac{1}{x}$
Arnav one day work $=\frac{5}{6 x}$
$\frac{1}{x}+\frac{5}{6 x}=\frac{1}{24}$
$6+\frac{5}{6 x}=\frac{1}{24}$
$6 \mathrm{x}=24 \times 11$
$x=44$ days
Quantity I = 44
Quantity II.
Total units of work $=600$
Sourav one day work $=30$ units
Rohit one day work $=24$ units
Sumit one day work $=20$ units
Work done by them in 4 days $=74 \times 4$
$=296$ units
Remaining units of work $=600-296$
$=304$ units
Units of work done by Rohit with $\frac{3}{4}$ efficiency $=24 \times \frac{3}{4}=18$ units
Units of work done by Sumit with $\frac{3}{4}$ efficiency= $20 \times \frac{3}{4}=15$ units
Time required to complete the remaining work $=\frac{304}{33}$

Total time required $=4+\frac{304}{33}$
$=\frac{436}{33}$ days

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
37. Quantity I.

Let the present age of Soumen be x
Present age of Ankit $=x+12$
So,
$\Rightarrow \mathrm{x}+\frac{10}{x}+12+10=\frac{2}{3}$
$\Rightarrow \mathrm{x}+\frac{10}{x}+22=\frac{2}{3}$
$\Rightarrow 3 \mathrm{x}+30=2 \mathrm{x}+44$
$\Rightarrow \mathrm{x}=14$
Age of Ankit after 4 years $=14+12+4$
= 30 years.

Quantity II.

Present age of Ankit $=21-5=16$ years
Age of Priyanka $=16 \times \frac{5}{4}=20$ years
Age of Madhu $=20 \times 2=40$ years
38. Quantity I.

Difference in percentage of votes received by A and B = 48-30 $=18 \%$
Total number of votes polled $=720 \times \frac{100}{18}$
$=4000$

Quantity II.

Total number of votes received by A and $B=630 \times \frac{12}{7}=1080$
Total number of votes polled $=1080 \times \frac{100}{90}$
$=1200$ votes .
39. Quantity I

Let the actual selling price be Rs. 100
So, Selling price when sold at one-fourth less $=100-100 \times \frac{1}{4}=75$
Cost price $=75 \times \frac{100}{100}=$ Rs 68.18
Selling price when sold at 20% more
$=100 \times \frac{120}{100}=$ Rs. 120
Profit $=120-68.18=$ Rs. 51.82
Profit percentage $=51.82 \times \frac{100}{68.18}=76 \%$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Quantity II.

Selling price of half of the goods
$=14000 \times \frac{120}{100}=$ Rs. 16800
Cost price of remaining 35% of the remaining goods $=14000 \times \frac{35}{100}=$ Rs. 4900
Selling price of 35% goods $=4900 \times \frac{5}{4}$
= Rs 6125
Remaining cost price of the goods
$=1400-4900=$ Rs 9100
Selling price of remaining goods
$=9100 \times \frac{110}{100}=$ Rs. 10010
Total selling price of the goods
$=16800+6125+10010=$ Rs 32935
Profit $=32935-28000=4935$
Profit percentage $=4935 \times \frac{100}{28000}=17.625 \%$
40. Let the ratio of numbers A and B be $4 x$ and $5 x$

Value of A after increasing $=4 \mathrm{x} \times \frac{150}{100}$
$=6 x+5$
Value of B after increasing $=5 x \times \frac{200}{100}$
$=10 \mathrm{x}+4$
So,
$\Rightarrow 6 x+\frac{5}{10 x}+4=\frac{2}{3}$
$\Rightarrow 18 \mathrm{x}+15=20 \mathrm{x}+8$
$\Rightarrow 2 \mathrm{x}=7$
$\Rightarrow \mathrm{x}=3.5$
Original Value of $\mathrm{A}=4 \times 3.5=14$

Quantity II

Let the amount of milk be added be x
Milk = 36 liters
Water $=27$ liters
$\Rightarrow \frac{36}{27}+\mathrm{x}=2: 3$
$\Rightarrow 108=54+2 \mathrm{x}$
$\Rightarrow 2 \mathrm{x}=54$
$\Rightarrow x=27$ liters

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
41. Compound interest obtained from scheme $\mathrm{A}=45000 \times\left[(1.1)^{2}-1\right]=$ Rs. 9450

Compound interest obtained from scheme $B=36000 \times\left[(1.15)^{2}-1\right]=$ Rs. 11610
Compound interest obtained from scheme $C=50000 \times\left[(1.05)^{2}-1\right]=$ Rs. 5125
Compound interest obtained from scheme $D=60000 \times[(1.08) \times(1.08) \times(1.08)-1]$
= Rs. 15582.72
Compound interest obtained from scheme $\mathrm{E}=48000 \times\left[(1.2)^{2}-1\right]=$ Rs. 21120
Total compound interest obtained from all the schemes together $=9450+11610+5125+$ $15582.72+21120=62887.72$
Therefore, required percentage
$=\frac{9450+11610}{62887.72} \times 100=33.5 \%$
42. Compound interest obtained from scheme $A=45000 \times\left[(1.1)^{2}-1\right]=$ Rs. 9450

Compound interest obtained from scheme $B=36000 \times\left[(1.15)^{2}-1\right]=$ Rs. 11610
Compound interest obtained from scheme $C=50000 \times\left[(1.05)^{2}-1\right]=$ Rs. 5125
Compound interest obtained from scheme $D=60000 \times[(1.08) \times(1.08) \times(1.08)-1]$
= Rs. 15582.72
Compound interest obtained from scheme $\mathrm{E}=48000 \times\left[(1.2)^{2}-1\right]=$ Rs. 21120
Total compound interest obtained from all the schemes together $=9450+11610+5125+$ $15582.72+21120=62887.72$
Simple interest obtained from scheme A
$=45000 \times 10 \times \frac{4}{100}=$ Rs. 18000
Simple interest obtained from scheme B
$=36000 \times 15 \times \frac{4}{10}=$ Rs. 21600
Simple interest obtained from scheme C
$=50000 \times 5 \times \frac{4}{100}=$ Rs. 10000
Simple interest obtained from scheme D
$=60000 \times 8 \times \frac{6}{100}=$ Rs. 28800
Simple interest obtained from scheme E
$=48000 \times 20 \times \frac{4}{100}=$ Rs. 38400
Total Simple interest obtained from all the schemes together $=18000+21600+10000+$
$28800+38400=116800$
\therefore Required percentage
$=\frac{116800-62887}{62887} \times 100=85.72 \%$
43. Scheme A:

Compound interest obtained from scheme $A=45000 \times\left[(1.1)^{2}-1\right]=$ Rs. 9450
Simple interest obtained from scheme A

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=45000 \times 10 \times \frac{2}{100}=$ Rs. 9000
\therefore Required Percentage $=\frac{9450}{9000} \times 100=105 \%$

Scheme B:

Compound interest obtained from scheme $B=36000 \times\left[(1.15)^{2}-1\right]=$ Rs. 11610
Simple interest obtained from scheme B
$=36000 \times 15 \times \frac{2}{10}=$ Rs. 10800
\therefore Required Percentage
$=\frac{11610}{10800} \times 100=107.5 \%$

Scheme C:

Compound interest obtained from scheme $C=50000 \times\left[(1.05)^{2}-1\right]=$ Rs. 5125
Simple interest obtained from scheme C
$=50000 \times 5 \times \frac{2}{100}=$ Rs. 5000
\therefore Required Percentage
$=\frac{5125}{500} \times 100=102.5 \%$

Scheme D:

Compound interest obtained from scheme $\mathrm{D}=60000 \times[(1.08) \times(1.08) \times(1.08)-1]$
= Rs. 15582.72
Simple interest obtained from scheme D
$=60000 \times 8 \times \frac{3}{100}=$ Rs. 14400
\therefore Required Percentage
$=\frac{15582}{14400} \times 100=108.2 \%$

Scheme E:

Compound interest obtained from scheme $E==48000 \times\left[(1.2)^{2}-1\right]=$ Rs. 21120
Simple interest obtained from scheme E
$=48000 \times 20 \times \frac{2}{100}=$ Rs. 19200
\therefore Required percentage
$=\frac{21120}{19200} \times 100=110 \%$
44. Total amount deposited on all the schemes together $=45000+36000+50000+60000+$ $48000=$ Rs. 239000

Average amount deposited on each scheme $=\frac{239000}{5}=$ Rs. 47800

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
Since, the amount is deposited on compound interest which is compounded half - yearly. So, time period $=2$ years

Rate of interest $=\frac{10}{2}=5 \%$
Compound interest obtained from scheme $\mathrm{E}=47800 \times(1.05)^{2}=$ Rs. 52699.5
45. Actual compound interest obtained from scheme C and scheme D is :

Compound interest obtained from scheme $C=50000 \times\left[(1.05)^{2}-1\right]=$ Rs. 5125
Compound interest obtained from scheme $D=60000 \times[(1.08) \times(1.08) \times(1.08)-1]$
= Rs. 15582.72
So, total actual compound interest obtained from scheme C and scheme $\mathrm{D}=5125+15582$
= 20707
After principal amount of scheme C and scheme D is reduced:
Principal amount invested on scheme C
$=0.85 \times 50000=$ Rs. 42500
Principal amount invested on scheme D
$=0.9 \times 60000=$ Rs. 54000
So, total compound interest obtained from scheme C and scheme D after principal amount is reduced $=42500 \times\left[(1.05)^{2}-1\right]$
$+540005\left[(1.08)^{3}-1\right]$
$=4356.25+14024.5=$ Rs. 18380
Therefore, required percentage
$=\frac{20707-18380}{20707} \times 100=11.2 \%$
46. $217-196=217-14^{2}=21$
$\Rightarrow 21+144=21+12^{2}=165$
$\Rightarrow 165-100=165-10^{2}=65$
$\Rightarrow 65+64=65+8^{2}=\mathbf{1 2 9}$
47. $162 \div 2-1=80$
$\Rightarrow 80 \div 2-1=39$
$\Rightarrow 39 \div 2-1=18.5$
$\Rightarrow 18.5 \div 2-1=\mathbf{8 . 2 5}$
48.

49. $12+8=20 ; 20-1=19$
$19+7=26 ; 26-1=25$
$25+6=31 ; 31-1=30$
50. $422+613=1035$
$1035+1226=2261$
$2261+1839=4100$
$4100+2452=6552$
$6552+3065=\mathbf{9 6 1 7}$
51. I. $5 x-19 y=13$
II. $13 x-17 y=5$

$K D$ Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
From first equation,
$x=\frac{(13+19 y)}{5}$
Substituting this value in 2 nd equation,
$13 \times \frac{(13+19 y)}{5}-17 y=5$
$169+247 y-85 y=25$
$162 \mathrm{y}=-144$,
$y=-\frac{8}{9}$
$x=(13+19 \times(-8 / 9)) / 5$
$x=-\frac{7}{9}$
So, $x>y$
52. $x^{2}+31 x-752=0$
$y^{2}-31 y-816=0$
$\Rightarrow \mathrm{x}=-47,16$
$\Rightarrow \mathrm{y}=48,-17$
No relationship can be established.
53. I. $(\mathrm{p}-2)(\mathrm{p}-3)$
$\mathrm{p}=3,2$
II. $(\mathrm{q}-3)(\mathrm{q}-1)$
$q=3,1$
Hence, We cannot establish any relationship (For instance $p=2, q=3$ then $q>p$ but if $p=$ $3, q=1$, then $p>q$).
54. $x^{2}-\sqrt{36} x+\sqrt[3]{512}=0$

Square root of a number is always positive
$x^{2}-6 x+8=0$
$\Rightarrow(\mathrm{x}-2)(\mathrm{x}-4)$
$\Rightarrow \mathrm{x}=2,4$
II. $\mathrm{y}^{2}-\sqrt[3]{125}+4=0$
$\Rightarrow y=+4,-1$
So, $\mathrm{X}=\mathrm{Y}$ or the relationship cannot be established is correct choice.
55. I. $x^{2}-20 x+75=0$
$\Rightarrow(\mathrm{x}-15)(\mathrm{x}-5)$
$\Rightarrow \mathrm{x}=15,5$
II. $y^{2}-35 y+300=0$
$\Rightarrow(\mathrm{y}-20)(\mathrm{y}-15)$
$\Rightarrow \mathrm{y}=20,15$
So, $x \leq y$

Kampus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
56. $\sqrt{10000}+\frac{3.001}{4.987}$ of 1891.992
$\Rightarrow \sqrt{10000}+\frac{3}{5} \times 1892$
$\Rightarrow 100+1135.2=1235.2 \approx 1230$
57. $47.03 \times 26.96+14.98 \times(42870)^{1 / 3}$
$47 \times 27+15 \times 35$
$=1269+525=1794$
= 1795 (Approx)
58. $84.6624 \times 18.9865 \div 11.0124$
$=84.6624 \times 18.9865 \times \frac{1}{11.0124}$
$=85 \times 19 \times \frac{1}{11}$
$=146$ (Approx)
59. $30.003 \times 17.998+63.010$
$30 \times 18+63$
$=540+63$
$=603$
60. $\quad 19.003 \times 22.998-280.010$
$19.003 \times 22.998-280.010$
$\Rightarrow 19 \times 23-280=437-280=157$
$=160$ (approx)
61. Total number of candidate $=980$

Number of candidates who did not qualify in bank $K=80 \%$ of 980
$=\frac{80 \times 980}{100}=784$
Number of candidates who did not qualify in bank $I=74 \%$ of 2200
$=\frac{74 \times 2200}{100}=1628$
\therefore Required percentage $=\left(\frac{784}{1628} \times 100\right) \%$
$=48.15 \% \approx 48 \%$
62. Number of candidates who qualified in bank $\mathrm{H}=14 \%$ of 1500
$=\frac{14 \times 1500}{100}=210$
Number of candidate who did qualified in bank $L=28 \%$ of 1200
$=\frac{28 \times 1200}{100}=336$
\therefore Required ratio $=\frac{210}{336}=\frac{5}{8}=5: 8$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
63. The total number of candidates who appeared for interview in bank H, J and $\mathrm{L}=1500+$ $3000+1200=5700$
Average number of these candidates
$=\frac{5700}{3}=1900$
64. Difference of number of candidates who qualified for bank I and J together who did not qualified for these banks
$=(74 \% \times 2200+83 \% \times 3000)-(26 \% \times 2200+17 \% \times 3000)$
$=(74 \%-26 \%) \times 2200+(83 \%-17 \%) \times 3000=48 \% \times 2200+66 \% \times 3000$
$=\frac{48 \times 2200}{100}+\frac{66 \times 3000}{100}$
$=1056+1980$
= 3036
65. Total number of candidates qualifying in the bank K, L and M together
$=20 \% \times 980+28 \% \times 1200+21 \% \times 2500$
$=\frac{20 \times 980}{100}+\frac{28 \times 1200}{100}+\frac{21 \times 2500}{100}$
$=196+336+525=1057$
66. Total weight of the boys $=21 \times 64=1344$

Let the weight of the teacher be $x \mathrm{~kg}$
Therefore;
$1344+x=65 \times 22$
$x=1430-1344=86 \mathrm{kgs}$
67. Let the cost price of laptop be Rs. 100.

Then, selling price should be 120% of 100
$=\frac{120 \times 100}{100}=$ Rs. 120
Now, selling price the laptop should be 10% lower than marked price because of the discount of 10%.
\therefore Marked price $=\frac{100 \times \mathrm{SP}}{100-10}=\frac{100 \times 120}{90}$
$=\frac{400}{90}$
Required percentage at which article is marked higher than cost price
$=\frac{\mathrm{MP}-\mathrm{CP}}{\mathrm{CP}} \times 100 \%$
$=\frac{\frac{400}{3}-100}{100} \times 100$
$=\frac{(400-300)}{3 \times 100}=\frac{100}{3}=33 \frac{1}{3} \%$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
68. Let the total distance be 2D. Now
$\frac{D}{150}+\frac{D}{90}=24$
D = 1350
Total distance $=2 \mathrm{D}=2700 \mathrm{~km}$
69. Work completed in 75 days $=200 \times 75$
$=$ half work $=\frac{\mathrm{w}}{2}$ for rest half work to be done on time i.e. in left 25 days, ' x ' more men are added.
$\Rightarrow 200 \times 75 / 1 / 2=(200+x) 25 / 1 / 2$
$\Rightarrow 600=200+x$
$\Rightarrow \mathrm{x}=400$
Hence, 400 more workers are required to complete the work on time.
70. Let the Varsha's monthly income be Rs. x and the common ratio be y
\therefore Amount spent on grocery, clothes and education $=4 y+2 y+5 y$
According to the question,
$11 y=\frac{55 x}{100}$
And,
$2 \mathrm{y}=5540$
$\mathrm{y}=2770$
By putting the value of y inn equation (i), we get,
$\Rightarrow 11 \times 2770=\frac{55 \mathrm{x}}{100}$
$\Rightarrow \mathrm{x}=11 \times 2770 \times \frac{100}{55}$
$\Rightarrow \mathrm{x}=$ Rs. 55400

ENGLISH LANGUAGE

(86-90) :
86. (4) Instead of trump it should be trump's as sentence is in possessive form.
87. (3) Hardly itself is negative so after it no is not required.
88. (1) Word unique is complete in itself, superlative the most is superfluous here.
89. (2) Sentence is in past form, so word survey should be surveyed.
90. (1) Conjunction not only is for recorded growth not for island, the correct format is the island has not only recorded a growth.....

Kampus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

VOCABULARIES

Word
Plummet
Plunge
Breach

Volatile
Laurels
Kudos
Postulate

Ascent
Transient
Screech
Littoral
Naval
Deliberate

Meaning in English
a steep and rapid fall or drop
an act of jumping or diving into water.
an act of breaking or failing to observe a law, agreement, or code of conduct.
(of a substance) easily evaporated at normal temperatures परिवर्त नषी ल
a tangible symbol signifying approval or distinction
praise and honor received for an achievement
a thing suggested or assumed as true as the basis for reasoning, discussion, or belief.
a climb or walk to the summit of a mountain or hill.
lasting only for a short time; impermanent.
a loud, harsh, piercing cry
of or relating to a coastal or shore region
connected with or belonging to or used in a navy
done consciously and intentionally

य
मा गना

आ रा` हप
क्ष पि क
प ट T आ वा ज
नदी के किना रे का
नाँ सै निक
ज नबू झकर

Meaning in Hindi
से से का श TTर
डु बकी, तै रने का ता ला
उ ल लं हा न

Campus
 KD Campus

IBPS PO SPECIAL PHASE-I MOCK TEST- 276 (ANSWER KEY)

1. (4)
2. (5)
3. (1)
4. (5)
5. (3)
6. (2)
7. (5)
8. (5)
9. (1)
10. (4)
11. (4)
12. (3)
13. (1)
14. (5)
15. (2)
16. (2)
17. (2)
18. (3)
19. (2)
20. (5)
21. (4)
22. (5)
23. (3)
24. (2)
25. (1)
26. (2)
27. (5)
28. (5)
29. (5)
30. (1)
31. (4)
32. (3)
33. (4)
34. (2)
35. (3)
36. (1)
37. (3)
38. (1)
39. (1)
40. (3)
41. (2)
42. (4)
43. (3)
44. (1)
45. (3)
46. (3)
47. (4)
48. (3)
49. (2)
50. (2)
51. (1)
52. (5)
53. (1)
54. (5)
55. (4)
56. (2)
57. (1)
58. (1)
59. (2)
60. (3)
61. (1)
62. (4)
63. (5)
64. (3)
65. (2)
66. (1)
67. (2)
68. (2)
69. (2)
70. (1)
71. (4)
72. (4)
73. (2)
74. (5)
75. (2)
76. (4)
77. (3)
78. (4)
79. (5)
80. (3)
81. (3)
82. (2)
83. (3)
84. (4)
85. (1)
86. (4)
87. (3)
88. (1)
89. (2)
90. (1)
91. (4)
92. (4)
93. (4)
94. (5)
95. (3)
96. (4)
97. (2)
98. (3)
99. (4)
100. (4)
