IBPS PO SPECIAL PHASE - I - 283 (SOLUTION)

REASONING

(1-5) :

6. (4)
7. (3)
8. (3)
9. (5)
10. (4)
(11-13) :

11. (1)
12. (2)
13. (1)
14. (1)
15. (5)
16. (3)
17. (2)
18. (4)
(19-23) :

19. (2)
20. (1)
21. (4)
22. (1)
23. (4)

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
24. (1) Given Word: UNDERNEATH

First, Fourth, Sixth and Ninth letters are U, E, N, T
Word formed \Rightarrow TUNE
First letter of word is ' T '.
25. (1)
(26-30) :

Year	Age	Person
1945	73	R
1956	62	V
1961	57	S
1973	45	P
1978	40	U
1989	29	T
1996	22	W
2007	11	Q

26. (2)
27. (5)
28. (1)
29. (3)
30. (5)
31. (5)
32. (5)
33. (4)
34. (1) From statement 1,
$\mathrm{E}>\mathrm{B}>\mathrm{C}, \mathrm{D}$ (In weight) but E is not the heaviest that means A is the heaviest.
A $>\mathrm{E}>\mathrm{B}>\mathrm{C}, \mathrm{D}$
From statement 2,
$\mathrm{A}>\mathrm{E}>\mathrm{B}, \mathrm{C}$. So, D could be either the heaviest or the lightest.
Statement 2, does not clarify Hence, statement 1 alone is sufficient to answer the question.
35. (5) From I and II,

So point M is north of point T .
So I and II together are necessary to answer the question.

$K D$
 Campus

 KD Campus

 KD Campus}

Maths

36. (5) Amount invested in scheme A be Rs.X and amount invested in scheme B be Rs.(7000 -X)

Interest earned from scheme $\mathrm{A}=\mathrm{X} \times[10+10+(10 \times 10) / 100] \%=\mathrm{X} \times\left(\frac{21}{100}\right)$

Return from Scheme B $=(7000-X) \times\left(3 \times \frac{15}{100}\right)$
$=(7000-X) \times \frac{45}{100}$
ATQ,
$X \times\left(\frac{21}{100}\right)=[(7000-X) \times 45 / 100] \times\left(\frac{84}{100}\right)$
$\mathrm{X}=(7000-\mathrm{X}) \times 1.8$
$2.8 \mathrm{X}=7000 \times 1.8$
$X=7000 \times\left(\frac{18}{28}\right)=4500$
37. (1) Let the number of red balls be X, then

Probability of getting 1 st ball red $=\frac{X}{(X+5)}$
Probability of getting 2nd ball red (Without replacement) $=(\mathrm{X}-1) /(\mathrm{X}+4)$
Probability of getting both balls red $=[X /(X+5)] \times[(X-1) /(X+4)]=\frac{3}{7}$
On solving, we get
$\mathrm{X}=10$
38. (3) A alone can do $=20$ days

Efficiency ratio of $\mathrm{A} \& \mathrm{~B}=4: 5$
Time required will be in ratio $=5: 4$
Hence B alone will do it in $=16$ days
LCM of $(16,20)=80$,
Assume work size of 80 units
1 day work of $\mathrm{A}=4$ units
1 day work of $\mathrm{B}=5$ units
Work done by both in 4 days $=4 \times(5+4)=36$ units
Work left $=80-36=44$ units
Now C takes 22 days to complete $=44$ units.
Therefore, the efficiency of $\mathrm{C}=\frac{44}{22}=2$
Hence time taken by C alone to complete the work $=\frac{80}{2}=40$ days
39. (3) Say haircut voucher $=\mathrm{H}$ pedicure voucher $\mathrm{P}=\mathrm{H}-130$
$H+P=450$,
$H=290, P=160$
Male getting pedicure $=160 \times\left(\frac{13}{20}\right)=104$

Female Getting Pedicure $=160 \times\left(\frac{7}{20}\right)=56$
Male Haircut $=104+15=119$
Female haircut $=290-119=171$

	Male	Female	Total
Haircut	119	171	290
Pedicure	104	56	160
Total	223	227	450

Required \% $=\left(\frac{56}{290}\right) \times 100=19 \%$
40. (4) Say haircut voucher $=H$ pedicure voucher $P=H-130$
$H+P=450$,
$H=290, P=160$
Male getting pedicure $=160 \times\left(\frac{13}{20}\right)=104$
Female Getting Pedicure $=160 \times\left(\frac{7}{20}\right)=56$
Male Haircut $=104+15=119$
Female haircut $=290-119=171$

	Male	Female	Total
Haircut	119	171	290
Pedicure	104	56	160
Total	223	227	450

Total for manicure $=30+50 \%$ of $290=30+145=175$
41. (4) Say haircut voucher $=H$ pedicure voucher $P=H-130$
$H+P=450$,
$H=290, P=160$
Male getting pedicure $=160 \times\left(\frac{13}{20}\right)=104$
Female Getting Pedicure $=160 \times\left(\frac{7}{20}\right)=56$
Male Haircut $=104+15=119$
Female haircut $=290-119=171$
Males redeemed pedicure voucher $=104$
42. (3) Say haircut voucher $=\mathrm{H}$ pedicure voucher $\mathrm{P}=\mathrm{H}-130$
$H+P=450$,
$H=290, P=160$
Male getting pedicure $=160 \times\left(\frac{13}{20}\right)=104$

Campus
 KD Campus

Female Getting Pedicure $=160 \times\left(\frac{7}{20}\right)=56$
Male Haircut $=104+15=119$
Female haircut $=290-119=171$
Males redeemed pedicure voucher $=104$
43. (4) Say haircut voucher $=H$ pedicure voucher $P=H-130$
$H+P=450$,
$H=290, P=160$
Male getting pedicure $=160 \times\left(\frac{13}{20}\right)=104$
Female Getting Pedicure $=160 \times\left(\frac{7}{20}\right)=56$
Male Haircut $=104+15=119$
Female haircut $=290-119=171$
Males redeemed pedicure voucher $=104$
Required Difference $=104-56=48$
44. (1) Required average $=\{98.75 \%$ of $(2.8+3.6)\} / 2=3.16$ lakh.
45. (4) Shirts failed test in $2014=2.5 \%$ of 3.2 lakh $=8000$

Shirts failed test in $2017=1.25 \%$ of 3.6 lakh $=4500$
Decerase in percentage $=(8000-4500) \times\left(\frac{100}{8000}\right)=43.75 \%$
46. (4) In the year 2015 : No. of coloured shirts : No. of white shirts $=3:(3-1)=3: 2$

Hence, answer $=\left(\frac{3}{5}\right) \times 4=2.4$ lakh
47. (3) Number of shirts, which passed the quality test in $2015=97.75 \%$ of 4.0 lakh

Hence, answer $=10 \%$ of $(97.75 \%$ of 4.0 lakh $)=39100$
48. (2) Total no. of shirts passed the quality test
$=3,20000 \times\left(1-\frac{2.5}{100}\right)=3,20000 \times \frac{97.5}{100}=312000$
Hence, the total revenue $=3,12,000 \times 500=$ Rs. 15.6 Crore.
(49-53):
49. (1) Required ratio $=\frac{2500+5500}{3500+3500}=\frac{8000}{7000}=\frac{8}{7}$
50. (2) Sales of company HP in $2017=1.2 \times 5000=6000$

Sales of company Dell in $2017=1.1 \times 4500=4950$
Required Difference $=6000-4950=1050$
51. (3) Sales of both the companies in $2015=3500+5000=8500$

Sales of both the companies in $2013=3000+2000=5000$
Required $\%=\frac{(8500-5000)}{5000} \times 100=\frac{3500}{5000} \times 100=70 \%$
52. (4) Total sales of HP from 2012 to $2014=2500+2000+4000$

Total sale of Dell from 2013 to $2015=3000+5500+5000=13500$
Required Difference $=13500-8500=5000$

53. (2) Sales of HP in $2011=2500 \times \frac{100}{125}=2000$

Required percentage increage $=\frac{(3500-2000)}{2000} \times 100$
$=\frac{1500}{2000} \times 100=75 \%$
54. (2) Given, $\mathrm{r}=5 \mathrm{~cm}$ and volume of cylinder $=\pi \mathrm{r}^{2} \mathrm{~h}=500 \pi$
$\mathrm{h}=20 \mathrm{~cm}$
So, the diagonal of square $=20 \mathrm{~cm}$
Side of the square $=\frac{\text { Diagonal }}{\sqrt{2}}=\frac{20}{\sqrt{2}}=10 \sqrt{2} \mathrm{~cm}$
Perimeter of square $=4 \times$ side $=4 \times 10 \sqrt{2}=40 \sqrt{2} \mathrm{~cm}$
55. (2) A. $2 x^{2}+5 x+3=0$
$\Rightarrow 2 \mathrm{x}^{2}+2 \mathrm{x}+3 \mathrm{x}+3=0$
$\Rightarrow 2 \mathrm{x}(\mathrm{x}+1)+3(\mathrm{x}+1)=0$
$\Rightarrow(2 \mathrm{x}+3)(\mathrm{x}+1)=0$
$\Rightarrow \mathrm{x}=-\frac{3}{2}$ or $\mathrm{x}=-1$
B. $2 y^{2}-7 y+6=0$
$\Rightarrow 2 y^{2}-4 y-3 y+6=0$
$\Rightarrow \mathrm{y}=+2$ or $\mathrm{y}=+\frac{3}{2}$
Thus, $\mathrm{x}<\mathrm{y}$
56. (4) A. $3 x^{2}-7 x+4=0$
$\Rightarrow 3 x^{2}-4 \mathrm{x}-3 \mathrm{x}+4=0$
$\Rightarrow X=\frac{4}{3}$ or 1
B. $2 y^{2}-3 y+1=0$
$\Rightarrow 2 y^{2}-2 y-y+1=0$
$\Rightarrow \mathrm{Y}=1$ or $\frac{1}{2}$
57. (1) A. $x^{2}+12 x+35=0$
$\Rightarrow x^{2}+7 x+5 x+35=0$
$\Rightarrow x=-7$ or -5
B. $y^{2}+17 y+72=0$
$\Rightarrow y^{2}+8 y+9 y+72=0$
$\Rightarrow \mathrm{Y}=-8$ or -9
So, $x>y$
58. (4) A. $x^{2}-10 x+25=0$
$\Rightarrow \mathrm{x}^{2}-5 \mathrm{x}-5 \mathrm{x}+25=0$
$\Rightarrow x=+5$
B. $\mathrm{y}^{2}=25$
$\Rightarrow Y=+5,-5$
So, $x=y$

$K D$
 Campus
 KD Campus

59. (2) A. $x^{2}-36 x+324=0$
$x^{2}-18 x-18 x+324=0$
$\mathrm{x}=18$
B. $y^{2}-42 y+441=0$
$\mathrm{y}^{2}-21 \mathrm{y}-21 \mathrm{y}+441=0$
$\mathrm{y}=21$
$\mathrm{x}<\mathrm{y}$
60. (2) In 30 minutes the train with 50 Km speed reach at a distance of 25 Km And their relative speed is $25 \mathrm{Km} / \mathrm{h}$
So, Time take $\rightarrow \frac{25}{25}=1 \mathrm{Hr}$
Distance from Delhi the two trains will be together $=75 \times 1=75 \mathrm{KM}$
61. (4) Cost Price $=$ Rs. $(50000+2000+500)=$ Rs. 52,500

Profit = 20\%
Hence, selling price $=120 \%$ of $52500=$ Rs. Rs. 63,000
62. (1) Let the number of persons in the group Initially be x, then
$x \times 16.75+20 \times 13.25=(x+20) \times 15$
$\Rightarrow 1.75 \mathrm{x}=20 \times(15-13.25)$
$\Rightarrow 1.75 \mathrm{x}=20 \times 1.75$
$\Rightarrow x=20$
63. (5) $A_{2001}: A_{2002}=4: 5$
$\mathrm{A}_{2001}: \mathrm{B}_{2001}=2: 3$
We have to make A_{2001} same in both cases.
$\mathrm{A}_{2001}: \mathrm{B}_{2001}=4: 6$
Let A's income in $2001=4 \mathrm{x}$
Let B's income in $2001=6 \mathrm{x}$
A and B income in $2001=25000$ [Given]
$10 \mathrm{x}=25000$
$\mathrm{x}=2500$
A's income in $2001=4 \mathrm{x}=4 \times 2500=$ Rs. 10000
B's income in $2001=6 x=6 \times 2500=$ Rs. 15000
A's income in $2002=5 x=5 \times 2500=$ Rs. 12500
Savings of A in $2002=$ Rs. 4000
Expenditure $=$ Income - Savings $=12500-4000=$ Rs. 8500
64. (1) Let the current ages be y and $3 y$

Their ages after 5 years $\rightarrow \mathrm{y}+5 \& 3 \mathrm{y}+5$
$\frac{(y+5)}{(3 y+5)}=\frac{3}{4} \rightarrow y=1$
So, their current ages are $1 \& 3$ years and after 10 years the average age be 12 years.
65. (1) Ratio of mixture of spirit and water in Container $1=2: 3$

Amount of mixture taken = 10 litres
Amount of spirit $=\frac{2}{5} \times 10=4$ litres
Amount of water $=\frac{3}{5} \times 10=6$ litres
Ratio of mixture of spirit and water in Container $2=3: 2$
Amount of mixture taken $=x$ litres
Amount of spirit $=\frac{3}{5} \times x=\frac{3 x}{5}$ litres

Amount of water $=\frac{2}{5} \times x=\frac{2 \mathrm{x}}{5}$ litres
Ratio of mixture of spirit and water in resultant mixture $=4: 5$ Therefore,
$\frac{\left(4+\frac{3 x}{5}\right)}{\left(6+\frac{2 x}{5}\right)}=\frac{4}{5}$
$\frac{\left(\frac{20}{5}+\frac{3 x}{5}\right)}{\left(\frac{30}{5}+\frac{2 x}{5}\right)}=\frac{4}{5}$
$\frac{(20+3 x)}{(30+2 x)}=\frac{4}{5}$
$100+15 x=120+8 x$
$7 x=20 ; x=2.86$ litres
66. (2) $0.5,2,1,4,32,512$
taking from opposite side
$512 \div 2^{4}=32$
$32 \div 2^{3}=4$
$4 \div 2^{2}=1$
$1 \div 2^{1}=0.5 \neq 2$
$0.5 \div 20=0.5$
Hence 2 is wrong term.
67. (2) $5.1=4+1.1$
$7.3=5.1+2.2$
$10.6=7.3+3.3$
$15=10.6+4.4$
$20.5=15+5.5$
(Hence, 20 is the wrong term)
$27.1=20.5+6.6$
68. (4) $3=(2 \times 2)-1$
$8=(3 \times 3)-1$
$31=(8 \times 4)-1$
$154=(31 \times 5)-1$
$923=(154 \times 6)-1$
(Hence, 924 is the wrong term)
$6460=(923 \times 7)-1$
69. (4) $134-69=65$ further $65-33=32$
$69-36=3333-17=16$
$36-19=1717-9=8$
$9-10=99-5=4$
$10-5=5$
70. (2) $251-1^{3}=250$
(Hence, 252 is the wrong term)
$250+2^{2}=254$
$254-3^{3}=227$
$227+4^{2}=243$
$243-5^{3}=118$
$118+6^{2}=154$

Campus
 KD Campus

IBPS PO SPECIAL PHASE - I - 283 (ANSWER KEY)

1. (5)
2. (1)
3. (3)
4. (2)
5. (1)
6. (4)
7. (3)
8. (3)
9. (5)
10. (4)
11. (1)
12. (2)
13. (1)
14. (1)
15. (5)
16. (3)
17. (2)
18. (4)
19. (2)
20. (1)
21. (4)
22. (1)
23. (4)
24. (1)
25. (1)
26. (2)
27. (5)
28. (1)
29. (3)
30. (5)
31. (5)
32. (5)
33. (4)
34. (1)
35. (5)
36. (5)
37. (1)
38. (3)
39. (3)
40. (4)
41. (4)
42. (3)
43. (4)
44. (1)
45. (4)
46. (4)
47. (3)
48. (2)
49. (1)
50. (2)
51. (3)
52. (4)
53. (2)
54. (2)
55. (2)
56. (4)
57. (1)
58. (4)
59. (2)
60. (2)
61. (4)
62. (1)
63. (5)
64. (1)
65. (1)
66. (2)
67. (2)
68. (4)
69. (4)
70. (2)
71. (5)
72. (2)
73. (5)
74. (1)
75. (2)
76. (3)
77. (5)
78. (4)
79. (1)
80. (2)
81. (5)
82. (3)
83. (1)
84. (4)
85. (2)
86. (1)
87. (2)
88. (3)
89. (1)
90. (1)
91. (2)
92. (2)
93. (2)
94. (2)
95. (1)
96. (2)
97. (2)
98. (3)
99. (4)
100. (5)
