SBI CLERK SPECIAL PHASE - I - 291 (SOLUTION)

REASONING

(1-5) :

1. (4)
2. (2)
3. (3)
4. (5)
5. (2)
(6-10) :
6. (4) Combining all statements
$\mathrm{S}<\mathrm{K} \geq \mathrm{Z}>\mathrm{P} \geq \mathrm{O} \leq \mathrm{I}$
I. $\mathrm{O}<\mathrm{S} \rightarrow$ False
II. $\mathrm{K}>\mathrm{P} \rightarrow$ True

Hence, Only conclusion II is true.
7. (4) Combining all statements
$R \geq Z \geq P<Q$
I. $\mathrm{R} \geq \mathrm{P} \rightarrow$ True
II. $Z \geq \mathrm{Q} \rightarrow$ False

Hence, Only conclusion I is true.
8. (4) Combining all statements
$\mathrm{T}>\mathrm{N}<\mathrm{M}$
I. $\mathrm{T}>\mathrm{M} \rightarrow$ False
$\mathrm{O} \geq \mathrm{N}<\mathrm{T}$
II. $\mathrm{O} \geq \mathrm{T} \rightarrow$ False

Hence, Neither conclusion I nor II is true.
9. (1) Combining all statements
$\mathrm{Y} \leq \mathrm{B}>\mathrm{A}$
I. $\mathrm{Y}<\mathrm{A} \rightarrow$ False
$\mathrm{T} \geq \mathrm{B}=\mathrm{U} \geq \mathrm{P}$
II. T $>\mathrm{P} \rightarrow$ Doubt

Hence, Neither conclusion I nor II is true.
10. (5) Combining all statements

A $>\mathrm{K}>\mathrm{M}$
I. $\mathrm{A}>\mathrm{M} \rightarrow$ True
$\mathrm{I} \leq \mathrm{P}=\mathrm{K} \geq \mathrm{O}$
II. $\mathrm{O} \leq \mathrm{I} \rightarrow$ False

Hence, Only conclusion I is true.

KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
(11-15) :

Family Tree

Grandson is engineer.
Grand daughter is a student.
11. (4)
12. (1)
13. (3)
14. (4)
15. (4)
(16-20) :
16. (3)

I. True
II. True
III. True
IV. False

Only I, II and III follow.
17. (2)

I. True
II. False
III. True
IV. True

I, III and IV follow.
18. (4)

I. True
II. False
III. True
IV. True

I, III and IV follow.
19. (3)

I. False
II. False
III. False
IV. True Only III follows.
20. (5)

I. False
II. True
III. False
IV. False Only II follows.
22. (4)
23. (3)
24. (2)
25. (5)

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
(26-30) :

26. (3)
27. (1)
28. (3)
29. (4)
30. (3)
(31-32):

31. (1)
32. (4)
33. (4)

34. (5)

35. (4) Naina's rank from last $=(16+10)=26^{\text {th }}$

Naina's rank from beginning $=(54-26+1)=29^{\text {th }}$

MATHS

36. (5) The series is,
$655-(63-1)=440$
$440-(53-1)=316$
$316-(43-1)=253$
$253-(33-1)=227$
$227-(23-1)=220=$?

$K D$
 Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
37. (5) $117+272=389$
$389+136=525$
$525+68=593$
$593+34=627$
$627+17=644$
38. (4) The series is-
$7+(4 \times 1)=11$
$11+(4 \times 3)=23$
$23+(4 \times 7)=51$
$51+(4 \times 13)=103$
$103+(4 \times 21)=187$
So, ? = $103+(4 \times 21)=\mathbf{1 8 7}$
Multiples of 4 have difference of $2,4,6$ and so on.
39. (3) The pattern is-
$32 \times 0.5=16$
$16 \times 1=16$
$16 \times 1.5=24$
$24 \times 2=48$
$48 \times 2.5=120$
40. (1)

41. (1) Unit digit in $7^{4}=1$

Unit digit in $7^{754}=$ Unit digit in $\left\{7^{4^{188}} \times 7^{2}\right\}=$ Unit digit in $(1 \times 49)=9$
Unit digit in $3^{4}=1$
Unit digit in $3^{65}=3^{64} \times 3^{1}=3$
Unit digit in $=659=6$,
Unit digit in $={ }_{7} 71=$ Unit digit in $7^{4^{17} \times} 7^{3}$
Unit digit in $7^{3}=3 \rightarrow$ Required digit
$=$ Unit digit in $(3 \times 6 \times 3)$
$=$ Unit digit in $54=4$
So, Quantity I > Quantity II
42. (2) Total number of Events or no of sample space (Throwing of 2 dices) $=n(S)=36$

Event $\mathrm{I}, \mathrm{n}(\mathrm{I})=\{1,1\},\{2,2\},\{3,3\},\{4,4\},\{5,5\},\{6,6\} \rightarrow \mathrm{P}(\mathrm{I})=\frac{\mathrm{n}(\mathrm{I})}{\mathrm{n}(\mathrm{S})}=\frac{6}{36}=\frac{1}{6}$
Event II, n(II) $=\{3,1\},\{4,2\},\{5,3\},\{6,4\},\{3,5\},\{4,6\},\{2,4\},\{1,3\} \rightarrow P(\mathrm{II})$
$=\frac{8}{36}=\frac{2}{9}$
So, Quantity I < Quantity II

$K D$
 Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
43. (5) Quantity 1:
$841^{1 / 2} x+\sqrt{324}=315$
$33 x+18=315$
$33 x=297$
$\mathrm{x}=9$
Quantity 2 :
$(841)^{1 / 2} \mathrm{y}^{2}-469=2818$
$29 y^{2}-469=2818$
$29 \mathrm{y}^{2}=2818+469$
$29 \mathrm{y}^{2}=3287$
$? \mathrm{y}^{2}=113.3$
? $y= \pm 10.6$
No relation can be established.
44. (2) I- Suppose the person bought $11 \times 10=110$ mangoes

CP of 110 mangoes $=\frac{10}{11} \times 110=100 \rightarrow \mathrm{SP}$ of 110 mangoes $=\frac{11}{10} \times 1100=121$
Profit $=121-100=21 \rightarrow$ Profit $\%=\frac{21}{100} \times 100=21 \%$
II- Suppose the person bought $=8 \times 9=72$ pens
CP of 72 pens $=\frac{8}{9} \times 72=64 \rightarrow \mathrm{SP}$ of 72 pens $=\frac{9}{8} \times 72=81$
Profit $=81-64=17 \rightarrow$ Profit $\%=\frac{17}{64} \times 100=26.56>21$
So, Quantity I < Quantity II
45. (5) Quantity I.

Let Pravin, Kshama and Raghav (let say P, Q and R resp.) represent their respective monthly incomes. Then, we have:
$P+Q=(5050 \times 2)=10100$
$Q+R=(6250 \times 2)=12500$
$P+R=(5200 \times 2)=10400$
Adding (i), (ii) and (iii), we get: $2(\mathrm{P}+\mathrm{Q}+\mathrm{R})=33000$ or $\mathrm{P}+\mathrm{Q}+\mathrm{R}=16500$
Subtracting (ii) from (iv), we get $\mathrm{P}=4000$.
P's monthly income = Rs. 4000
Thus, quantity I $=4000$
Quantity II,
Ratio of initial investments $=\frac{7}{2}: \frac{4}{3}: \frac{6}{5}=105: 40: 36$
Let the initial investments be 105x, 40x, 36x
A : B : $C=\left(105 x \times 4+\frac{150}{100} \times 105 x \times 8\right):(40 x \times 12):(36 x \times 12)=35: 10: 9$
Hence, B's Share $=$ Rs. $21600 \times \frac{10}{54}=$ Rs. 4000
Thus, quantity II = 4000
Quantity I = Quantity II

KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
46. (2) Take nearest values $=3995.009-290.999-129.989 \times 2=$?
$=3995-291-130 \times 2=3445$ (Approx)
47. (5) $1200 \div 15 \times 20+400=80 \times 20+400$
$=1600+400=2000$ (Approx)
48. (2) $(23.9 \%$ of 1250.002$)-(14.997 \%$ of 79.222$)=$?
$=(24 \%$ of 1250$)-(15 \%$ of 80$)=$?
$=(300)-(12)=288$
49. (4) $(40.0002)^{2} \times 12.85=(40)^{2} \times 13$
$=1600 \times 13=20,800$
50. (3) $(12)^{2}-(8)^{2}+(6)^{3}=$?
$=144-64+216=296=300$ (Approx)
51. (1) The probability of selecting one box $=\frac{1}{3}$

Now, the probability of picking a blue ball from Box $1=\frac{1}{3} \times \frac{4}{15}$

The probability of picking a blue ball from Box $2=\frac{1}{3} \times \frac{4}{13}$
The probability of picking a blue ball from Box $3=\frac{1}{3} \times \frac{3}{12}$
Hence, the probability that blue ball is from either of the boxes $=\frac{1}{3} \times\left(\frac{4}{15}+\frac{4}{13}+\frac{3}{12}\right)$
$=\frac{643}{2340}$
52. (2) Number of balls other than orange in box $2=9$

For Boy 1, he can pick 2 balls from Box 2 such that no ball is orange in following ways
$=\frac{9}{13} \times \frac{8}{12}$
Total probability $=\frac{6}{13}$
Number of balls other than grey in box $3=5$
For Boy 2, he can pick 2 balls from Box 3 such that no ball is grey in following ways
$=\frac{5}{12} \times \frac{4}{11}$

Total probability $=\frac{5}{33}$
Hence, the total probability $=\frac{6}{13} \times \frac{5}{33}=\frac{30}{429}$

KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
53. (3) For first process,

3 orange balls from Box 2 with replacement. Probability is $\left(\frac{4}{13}\right)^{3}=\frac{64}{2197}$
For second process,
3 Grey balls from Box 1 without replacement, Probability is $\frac{(6 \times 5 \times 4)}{(15 \times 14 \times 13)}=\frac{4}{91}$
Hence, second probability is greater by 50.89%
54. (4) Let $P(A)$ be the probability that Grey ball is transferred.
$\mathrm{P}(\mathrm{A})=6 / 15$
Let $P(B)$ be the probability that ball drawn is Grey. Three cases are there
Case 1 : If Blue ball was transferred,
P1 $=\frac{4}{15} \times \frac{7}{13}$
Case 2 : If Orange ball was transferred,
P2 $=\frac{5}{15} \times \frac{7}{13}$
Case 3 : If Grey ball was transferred,
$P 3=\frac{6}{15} \times \frac{8}{13}$
$\mathrm{P}(\mathrm{B})=\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3=\frac{111}{195}$
$P\left(\frac{A}{B}\right)=\frac{A \text { int } \operatorname{ersec} t s B}{B}=\frac{\frac{48}{195}}{\frac{111}{195}}$
Hence, the probability is $\frac{48}{111}$ or $\frac{16}{37}$
55. (5) The maximum probability is drawing Grey ball from Box 3 with probability $\frac{7}{12}$ and the minimum probability is drawing Orange ball from Box 3 with probability $\frac{2}{12}$.

Hence, the ratio $=\frac{7}{2}$
56. (3) Total Letters $=7$

Total $\mathrm{A}=2$,
Total $\mathrm{R}=2$
Total number of words $=\frac{7!}{2!2!}=1260$
Now, taking both RR together, we consider there as one unit RR can be arranged in
ways and the words having both R together $=\frac{6 \times 5 \times 4 \times 3 \times 2!}{2!} \times \frac{2!}{2!}=360$
Number of words not having both R together $=1260-360=900$

$K D$
 Campus
 KD Campus

60. (2) Let 1 kg of each was mixed
weight of copper in this mixture of $2 \mathrm{~kg}=1 \times \frac{5}{13}=\frac{5}{13} \mathrm{~kg}$
$\therefore \quad$ Weight of copper per $\mathrm{kg}=\frac{5}{26} \mathrm{~kg}$
61. (1) Required average no. of boys students $=\frac{1}{3} \times\left(\frac{3}{5} \times \frac{90}{360}+\frac{3}{4} \times \frac{75}{360}+\frac{4}{7} \times \frac{63}{360}\right) \times 72000=9750$
62. (3) Total no. of girls from Gorakhpur $=\frac{1}{3} \times \frac{60}{360} \times 72000=400$

Total no. of boys from Lucknow $=\frac{5}{8} \times \frac{72}{360} \times 72000=9000$
Required percentage $=\frac{9000-4000}{9000} \times 100=\frac{500}{9} \%$ less
63. (4) Here, we don't know the actual marks of student from Kanpur and student from Mau. So, we cannot find the required answer.
64. (4) Female from Allahabad $=\frac{90}{360} \times \frac{2}{5} \times 72000=7200$

From Gorakhpur $=\frac{60}{360} \times \frac{1}{3} \times 72000=4000$

From Kanpur $=\frac{75}{360} \times \frac{1}{4} \times 72000=3750$

From Lucknow $=\frac{72}{360} \times \frac{3}{8} \times 72000=5400$
From Mau $=\frac{3}{7} \times \frac{63}{360} \times 72000=5400$
65. (3) Required no. of students $=\frac{(90+60+72)}{360} \times 72000=44400$
66. (4)

28
$\therefore \quad$ Required area $=28 \times 28-\frac{22}{7} \times 14 \times 14=784-616=168 \mathrm{~m}^{2}$

KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
67. (1) Ratio of income of Suresh to Vinod $=13: 10$

Ratio of income of Vinod to Vinay $=4: 5$
Ratio of income of Suresh, Vinod and Vinay $=26: 20: 25$
Monthly income of Vinod $=\frac{800}{26-25} \times 20=16000$
68. (2) Profit $=\frac{11}{(33-11)} \times 100=\frac{11}{22} \times 100=50 \%$
69. (2) Selling price of article $=12000 \times \frac{75}{100}=9000$

Cost price of article $=9000 \times \frac{100}{90}=10000$
New selling price $=10440$
\therefore Required discount $=\frac{1200-10440}{12000} \times 100=\frac{1560}{12000} \times 100=13 \%$
70. (1) Cost price of mixture $=80 \times \frac{100}{150}=\frac{160}{3}$

$\frac{\text { Milk }}{\text { Water }}=\frac{160}{140}=\frac{8}{7}$
\therefore Water: Milk $=7: 8$

ENGLISH LANGUAGE

(81-90) :
81. (4) Change 'charging' into 'charge of'.
82. (2) Change 'enable' into 'enables'.
83. (3) Change 'current's' into 'current'.
84. (1) Change 'deal' into 'dealt'.
85. (2) Change 'employee' into 'employees'.
86. (1) Add 'state' or 'country' after 'our'.
87. (5) No error
88. (2) Change 'in' into 'into'.
89. (4) Add 'about' before 'the cutlery'.
90. (4) Change 'to' into 'in'.

Word

Hermitage
Immersed
Contemplation
Pursuit
Fugitives

Peremptory

Audacity
Hermitage
Virtuous
Inflicted

Hastened
Inevitably
Incarnated
Engrossed

Withstood
Lenient

Galloped
Giggle
Deceive

Rendered
Mingled
Amused

Meaning in English

the dwelling of a hermit, especially when small and remote
dip or submerge in a liquid
the action of looking thoughtfully at something for a long time चिं तन the action of following or pursuing someone or something a person who has escaped from a place or is in hiding, especially to avoid arrest or persecution
(especially of a person's manner or actions) insisting on immediate attention or obedience, especially in a brusquely imperious way
the willingness to take bold risks
the dwelling of a hermit, especially when small and remote
having or showing high moral standards
cause (something unpleasant or painful) to be suffered by someone or something be quick to do something as is certain to happen; unavoidably
embody or represent (a deity or spirit) in human form having all one's attention or interest absorbed by someone or something
remain undamaged or unaffected by; resist
(of punishment or a person in authority) permissive, merciful, or tolerant
(of a horse) go at the pace of a gallop
a light, silly laugh
(of a person) cause (someone) to believe something that is not true, typically in order to gain some personal advantage
provide or give (a service, help, etc.)
mix or cause to mix together
cause (someone) to find something funny; entertain

Meaning in Hindi
आ ${ }^{2} म$
तर ली न

पी छ
\% T ग ${ }^{\prime}$ ड. T

आ ज्ञ सू चक

सा हस
आ श्रम
ध र्मि क
प्र वृ г त

ज दी करना
अनिवा र्य स्पसे
अवती ${ }^{\text { }}$ प
तल ली न

ख रे उ तरे
उ दा र

सप्ट दाँ ड.
खि सिम ना
ध' खा दे ना

प्र स तु त करना
मिश्रित
खु प

SBI CLERK SPECIAL PHASE - I - 291 (ANSWER KEY)

1. (4)
2. (2)
3. (3)
4. (5)
5. (2)
6. (4)
7. (4)
8. (4)
9. (1)
10. (5)
11. (4)
12. (1)
13. (3)
14. (4)
15. (4)
16. (3)
17. (2)
18. (4)
19. (3)
20. (5)
21. (4)
22. (4)
23. (3)
24. (2)
25. (5)
26. (3)
27. (1)
28. (3)
29. (4)
30. (3)
31. (1)
32. (4)
33. (4)
34. (5)
35. (4)
36. (5)
37. (5)
38. (4)
39. (3)
40. (1)
41. (1)
42. (2)
43. (5)
44. (2)
45. (5)
46. (2)
47. (5)
48. (2)
49. (4)
50. (3)
51. (1)
52. (2)
53. (3)
54. (4)
55. (5)
56. (3)
57. (4)
58. (3)
59. (3)
60. (2)
61. (1)
62. (3)
63. (4)
64. (4)
65. (3)
66. (4)
67. (1)
68. (2)
69. (2)
70. (1)
71. (3)
72. (2)
73. (2)
74. (1)
75. (4)
76. (3)
77. (5)
78. (2)
79. (5)
80. (1)
81. (4)
82. (2)
83. (3)
84. (1)
85. (2)
86. (1)
87. (5)
88. (2)
89. (4)
90. (4)
91. (3)
92. (5)
93. (3)
94. (4)
95. (2)
96. (3)
97. (4)
98. (1)
99. (3)
100. (5)
