SSC MOCK TEST - 295 (SOLUTION)

1. (D) Insulin is a Hormone, similarly Pepsin is an Enzyme.
2. (C) As,
$\begin{array}{rcccc}\text { I } & \text { N } & \text { D } & \text { I } & \text { A } \\ +1 \mid & +3 \mid & \downarrow & 1 \mid & +3 \mid \\ \mathbf{J} & \mathbf{Q} & \mathbf{E} & \mathbf{L} & \mathbf{B}\end{array}$

Similarly,
$\begin{array}{ccccccccc}\mathrm{A} & \mathrm{F} & \mathrm{G} & \mathrm{H} & \mathrm{A} & \mathrm{N} & \mathrm{I} & \mathrm{S} & \mathrm{T} \\ +1 \mid \\ \downarrow & \downarrow & \downarrow \\ \mathbf{B} & \mathbf{I} & \mathbf{H} & \mathbf{K} & \mathbf{K} & \mathbf{B} & \mathbf{Q} & \mathbf{J} & \mathbf{J} \\ \mathbf{V} & \mathbf{V} & \mathbf{U} & \mathbf{D} & \mathbf{D} & \mathbf{O}\end{array}$
3. (D) $9729 \Rightarrow 9^{3}=729$
$5125 \Rightarrow 5^{3}=125$
$6216 \Rightarrow 6^{3}=216$
$\mathbf{8 5 2 5} \Rightarrow 8^{3}=512 \neq 525$
4. (D) Except Charity, others are synonym of one another.
5. (C)

6. (C)

7. (D)

8. (C) As,

Similarly,

9. (C)

I. False
II. True
III. True

Only Conclusion II and III follow

$K D$

 Campus

 Campus

 K D Campus Pvt. Ltd

 K D Campus Pvt. Ltd}

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
10. (D) 14 V 7 M 484 L 22 S 9

After changing the signs as per the given detail,
$14-7+484 \div 22 \times 9$
$=14-7+22 \times 9$
$=14-7+198=205$
11. (D) As, B

C Y
$2+3 \Rightarrow 5^{2}=25$

A
1
:---
3

Similarly,

B
2
:---:
1

12. (B) 3. Grass \rightarrow 5. Insect \rightarrow 2. Sparrow \rightarrow 4. Snake \rightarrow 1. Hawk
13. (C)

In $\triangle \mathrm{ABD}$,
$\mathrm{AD}=\sqrt{5^{2}+12^{2}}=\sqrt{25+144}$
$=\sqrt{169}=13 \mathrm{~km}$
14. (C) As,
$14+16=30 \Rightarrow 30-10=20$
Similarly,
$8+12=20 \Rightarrow 20-10=10$
15. (D) As,

Similarly,

16. (B)

17. (D)
18. (B) Let X's present age $=9 \mathrm{x}$ years

Y's present age $=4 \mathrm{x}$ years
ATQ,
$9 \mathrm{x}-4 \mathrm{x}=20$
$5 x=20$
$\mathrm{x}=4$
The sum of their ages after 30 years
$=9 \mathrm{x}+30+4 \mathrm{x}+30=13 \mathrm{x}+60$
$=13 \times 4+60=52+60=112$ years
19. (C)
20. (C) lmno / onml / lmno/onml
21. (D)
22. (B)
23. (D)
24. (B)
25. (D)
26. (B) Sonauli is a town area in Maharajganj district in Uttar Pradesh. It located on the IndoNepal Border and is a well-known and most famous transit point between India and Nepal.
27. (B) Walayar Dam is a dam in Palakkad district of Kerala, south India. This dam is constructed across the Walayar River which is a tributary of Kalpathipuzha River.
29. (D) The Statue of Unity is a colossal statue of Indian statesman and independence activist Vallabhbhai Patel, who was the first Deputy Prime Minister and Home Minister of independent India and an adherent of Mahatma Gandhi during the nonviolent Indian Independence movement.
32. (C) Savitribai Phule (3 January 1831-10 March 1897) was an Indian social reformer, educationalist, and poet from Maharashtra.
33. (C) Araku Valley is a hill station in Visakhapatnam district in the Indian state of Andhra Pradesh, lying 111 km west of Visakhapatnam city. This place is often referred to as Ooty of Andhra.
35. (D) Senior bureaucrat Saurbah Garg has been appointed as the Chief Executive Officer (CEO) of Unique Identification Authority of India (UIDAI) as part of a bureaucratic reshuffle effected by the Centre on Thursday. Garg is at present serving in his cadre state Odisha.
36. (D) Dry Ice is the common name for solid carbon dioxide (CO 2). It gets this name because it does not melt into a liquid when heated; instead, it changes directly into a gas (a process known as sublimation).
38. (D) Roe arrived at the port of Surat in September 1615 with a letter from King James I to the then reigning Mughal Emperor, Jahangir, seeking a trade agreement. The ambassador would go on to spend four years of negotiations at the Mughal court, eventually returning to England in 1619 without the trade agreement he sought.
39. (A) Cynology is the study of matters related to canines or domestic dogs.
40. (D) Acetic acid, systematically named ethanoic acid, is a colorless liquid organic compound with the chemical formula CH 3 COOH .
41. (D) The synthase enzyme converts the amino acids sulfoxides of the onion into sulfenic acid.
42. (B) The garden was officially inaugurated in 1936 and was given the name Lady Willingdon Park to honor her efforts. When the country gained independence in 1947, it was renamed as Lodhi Gardens.
43. (B) The sun, the moon and all those objects shining in the night sky are called celestial bodies. Some celestial bodies are very big and hot.
45. (C) The thymus gland, located behind your sternum and between your lungs, is only active until puberty.
47. (C) China's largest city Shanghai is located south of the Yangtze mouth and the 1000 km long navigable stretch of the Yangtze west of it is a zone of major economic activity.

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
48. (B) The Economic Survey is prepared by the Economics Division of the Department of Economic Affairs in the Finance Ministry under the overall guidance of the chief economic adviser and is released after it is approved by the finance minister.
49. (C) CDROM is an optical memory. But floppy disk is a type of disk storage and core memory is a form of random access memory.
51. (A) Total number of students $=1280$

Number of boys $=\frac{1280}{8} \times 5=800$
Number of girls $=1280-800=480$
Let the number of boys should be joined the class be x .
ATQ,
$\frac{800+x}{480+60}=\frac{14}{9}$
$\frac{800+x}{540}=\frac{14}{9}$
$7200+9 x=7560$
$9 \mathrm{x}=7560-7200$
$\mathrm{x}=\frac{360}{9}=40$
\therefore Required number of boys $=40$
52. (D) $x^{2 a}=y^{2 b}=z^{2 c}=0$

Let $\mathrm{x}^{2 \mathrm{a}}=\mathrm{y}^{2 \mathrm{~b}}=\mathrm{z}^{2 \mathrm{c}}=\mathrm{k}$ (Let)
So,
$x=k^{\frac{1}{2 a}}, y=k^{\frac{1}{2 b}}, z=k^{\frac{1}{2 c}}$
Now, $x^{2}=y z$
$\left(k^{\frac{1}{2 a}}\right)^{2}=k^{\frac{1}{2 b}} \times k^{\frac{1}{2 c}}$
$\mathrm{k}^{\frac{2}{2 \mathrm{a}}}=\mathrm{k}^{\left(\frac{1}{2 \mathrm{~b}} \times \frac{1}{2 \mathrm{c}}\right)}$
$\frac{2}{2 a}=\frac{1}{2 b}+\frac{1}{2 c}$
$\frac{2}{2 a}=\frac{c+b}{2 b c}$
$\frac{1}{a}=\frac{b+c}{2 b c}$
$2 b c=a b+a c$
$\therefore \quad \frac{\mathrm{ab}+\mathrm{bc}+\mathrm{ac}}{\mathrm{bc}}=\frac{2 \mathrm{bc}+\mathrm{bc}}{\mathrm{bc}}$
$=\frac{3 b c}{b c}=3$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
53. (B) Let the cost price of an article be ₹ 100 .

Marked price $=100 \times \frac{150}{100}=₹ 150$
Selling price $=150 \times \frac{80}{100} \times \frac{70}{100}=₹ 84$
Loss $=100-84=₹ 16$
ATQ,
₹ $16 \rightarrow$ ₹ 208
\therefore ₹ $100 \rightarrow \frac{208}{16} \times 100=₹ 1300$
Cost price of an article $=₹ 1300$
54. (D) Let for ' n ' numbers the average be ' x '.

So, the total sum of ' n ' numbers would be ' $n x$ '.
If 2 is subtracted from each ' n ' numbers, then the resulted value to be subtracted becomes $=2 n$
Thus, value of the total sum $=(n x-2 n)$
Given that, this value equals to 102
So, $n \mathrm{x}-2 \mathrm{n}=102$
Again when 5 is subtracted from each ' n ' numbers, then the resulted value to be subtracted becomes $=5 n$
Thus, value of the total sum $=(n x-5 n)$
Given that, this value equals to 12
So, $\mathrm{nx}-5 \mathrm{n}=12$
Subtracting equation (ii) from (i), we get
$n \mathrm{n}-2 \mathrm{n}-(\mathrm{nx}-5 \mathrm{n})=102-12$
$-2 n+5 n=90$
$3 n=90$
$\mathrm{n}=\frac{90}{3}=30$
There are 30 numbers.
Putting $n=30$, in equation (i), we get
$(30) x-2(30)=102$
$30 \mathrm{x}-60=102$
$30 x=162$
$30 x=162$
$\mathrm{x}=\frac{162}{30}=5.4$
\therefore The average of 30 numbers is 5.4
55. (C) Simple interest $=₹ 7650$

Time $=3$ years
Rate $=6 \%$
$P=\frac{7650 \times 100}{3 \times 6}=₹ 42500$

$K D$

 Campus

 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
Now, principal $=₹ 42500$
Time $=3$ years
Rate $=12 \%$
$A=42500\left(1+\frac{12}{100}\right)^{3}$
$=42500 \times \frac{112}{100} \times \frac{112}{100} \times \frac{112}{100}=₹ 59709.44$
\therefore Compound interest $=59709.44-42500=₹ 17209.44$
56. (A)

$\angle \mathrm{XOQ}=130^{\circ}$ (Given)
$\angle \mathrm{XOQ}+\angle \mathrm{XOP}=180^{\circ}($ Straight line $)$
$130^{\circ}+\angle \mathrm{XOP}=180^{\circ}$
$\angle \mathrm{XOP}=180^{\circ}-130^{\circ}=50^{\circ}$
$\angle \mathrm{XPO}=90^{\circ} \quad$ (A tangent makes an angle of 90° with the radius of circle)
In $\triangle \mathrm{XPO}$,
$\angle \mathrm{XPO}+\angle \mathrm{XOP}+\angle \mathrm{PXO}=180^{\circ} \quad$ (Angle sum property of Δ)
$90^{\circ}+50^{\circ}+\angle \mathrm{PXO}=180^{\circ}$
$\angle \mathrm{PXO}=180^{\circ}-140^{\circ}=40^{\circ}$
57. (A) Let the first train be X which leaves Delhi at 10:00 AM and second train be Y which leaves Delhi at 10 : 30 AM.

Speed of train $A=110 \mathrm{~km} / \mathrm{hr}$
Speed of train B $=150 \mathrm{~km} / \mathrm{hr}$
Distance covered by train A in 30 minutes $=110 \times \frac{30}{60}=55 \mathrm{~km}$
At 10:30 AM, distance between both the trains $=55 \mathrm{~km}$
Relative speed of train $B=150-110=40 \mathrm{~km} / \mathrm{hr}$
Time taken by train B to meet train $A=\frac{55}{40}$ hours $=\frac{11}{8}$ hours

Distance covered by train B in $\frac{11}{8}$ hours $=\frac{11}{8} \times 150=206.25 \mathrm{~km}$
$\therefore \quad 206.25 \mathrm{~km}$ from Delhi will both the trains meet.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
58. (B) $\frac{36 \div 42 \text { of } 6 \times 7+24 \times 6 \div 18+3 \div(2-6)-(4+3 \times 2) \div 8}{(21 \div 3 \text { of } 7)+6}$

$$
\begin{aligned}
& =\frac{36 \div 42 \text { of } 6 \times 7+24 \times 6 \div 18+3 \div-4-10 \div 8}{1+6} \\
& =\frac{36 \div 252 \times 7+24 \times 6 \div 18+3 \div-4-10 \div 8}{7}
\end{aligned}
$$

$$
=\frac{\frac{36}{252} \times 7+24 \times \frac{6}{18}+\frac{3}{-4}-\frac{10}{8}}{7}
$$

$$
=\frac{1+8+\frac{-3}{4}-\frac{10}{8}}{7}=\frac{9+\frac{-6-10}{8}}{7}
$$

$$
=\frac{9-2}{7}=\frac{7}{7}=1
$$

59. (A) Let the speed of boat be $\mathrm{xkm} / \mathrm{hr}$ and speed of current be $\mathrm{y} \mathrm{km} / \mathrm{hr}$.

ATQ,

$$
\begin{align*}
& \frac{3}{x-y}+\frac{5}{x+y}=\frac{55}{60} \tag{i}\\
& \frac{4}{x-y}+\frac{9}{x+y}=1 \frac{25}{60} \tag{ii}
\end{align*}
$$

Let $\frac{1}{x-y}=u$ and $\frac{1}{x+y}=v$
$3 u+5 v=\frac{11}{12}$
$4 u+9 v=\frac{17}{12}$

By multiplication of equation (iii) by 4 and equation (iv) by 3 , then substract,
$12 u+20 v=\frac{44}{12}$

$\mathrm{v}=\frac{1}{12}$
Put the value of v in equation (iii),

$$
3 u+5 \times \frac{1}{12}=\frac{11}{12}
$$

$3 u=\frac{11}{12}-\frac{5}{12}$
$3 u=\frac{6}{12}$
$u=\frac{6}{12 \times 3}=\frac{1}{6}$
Now, $\frac{1}{x-y}=u=\frac{1}{6}$
$x-y=6$
$\frac{1}{x+y}=v=\frac{1}{12}$
$x+y=12$
Adding equation (v) and (vi), we get
$2 \mathrm{x}=18$
$\mathrm{x}=9 \mathrm{~km} / \mathrm{hr}$
Put the value of x in equation (v),
$9-y=6$
$y=9-6=3 \mathrm{~km} / \mathrm{hr}$
\therefore Time taken to travel 54 km downstream $=\frac{54}{9+3}=4.5$ hours
60. (B) Let Raghav's income $=₹ 100$

Saving $=100 \times \frac{25}{100}=₹ 25$
Expenditure $=100-25=₹ 75$
Now, new income $=100 \times \frac{120}{100}=₹ 120$
Saving $=₹ 25$
New expenditure $=120-25=₹ 95$
Increase in expenditure $=95-75=₹ 20$
$\therefore \quad$ Required $\%=\left(\frac{20}{75} \times 100\right) \%=26 \frac{2}{3} \%$
61. (A)

$\angle \mathrm{BAD}=\frac{1}{2} \angle \mathrm{BOD}$ (Angle formed by chord at circumference of a circle is half of the angle formed by it at the centre of the circle).

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

$$
\begin{equation*}
\angle \mathrm{BAD}=\frac{z}{2} \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{ABE}$,
$\angle \mathrm{EAB}+\angle \mathrm{ABE}+\angle \mathrm{BAE}=180^{\circ}($ Angle sum property of $\Delta)$
$\frac{z}{2}+\mathrm{x}^{\circ}+\angle \mathrm{BAE}=180^{\circ}$
$(\because \mathrm{EAB}=\angle \mathrm{BAD})$
$\angle \mathrm{BAE}=180^{\circ}-\frac{z}{2}-\mathrm{x}^{\circ}$

As, I is incentre, thus BI is the angle bisector.
$\angle \mathrm{IBE}=\frac{1}{2} \angle \mathrm{ABE}$
$\angle \mathrm{IBE}=\frac{\mathrm{x}}{2}$
Now, In \triangle IBE,
$\angle \mathrm{IBE}+\angle \mathrm{BEI}+\angle \mathrm{EIB}=180^{\circ}($ Angle sum property of $\Delta)$
$\frac{\mathrm{x}}{2}+\left(180^{\circ}-\frac{z}{2}-\mathrm{x}^{\circ}\right)+\mathrm{y}^{\circ}=180^{\circ}$
$\because \angle \mathrm{BEI}=\angle \mathrm{BEA})$
$y^{\circ}=\frac{x}{2}+\frac{z}{2}$
$y^{\circ}=\frac{x+z}{2}$
$\therefore \quad \frac{\mathrm{x}+\mathrm{z}}{\mathrm{y}}=2$
62. (C)

Volume of bucket $==\frac{1}{3} \pi h\left(R^{2}+r^{2}+R h\right)$
where, $\mathrm{R}=14 \mathrm{~cm}, \mathrm{R}=7 \mathrm{~cm}$ and $\mathrm{h}=36 \mathrm{~cm}$
$=\frac{1}{3} \times \frac{22}{7} \times 36\left(14^{2}+7^{2}+14 \times 7\right)$
$=\frac{1}{3} \times \frac{22}{7} \times 36(196+49+98)$
$=\frac{1}{3} \times \frac{22}{7} \times 36 \times 343=12936 \mathrm{~cm}^{3}$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
63. (B) Pipe A can fill the cistern in 15 minutes.

Pipe B can fill the cistern in 18 minutes.
Let the capacity of cistern $=90$ litres
Pipe A can fill the cistern in 1 minute $=\frac{90}{15}=6$ litres
Pipe B can fill the cistern in 1 minute $=\frac{90}{18}=5$ litres
Pipe $(A+B)$ can fill the cistern in 3 minutes $=(6+5) \times 3=33$ litres
Remaining part $=90-33=57$ litres
$\therefore \quad$ Time taken by B to fill the remaining cistern $=\frac{57}{5}$ minutes $=11 \frac{2}{5}$ minutes
64. (C) Taking $\frac{x y-1}{y}=\frac{y z-1}{z}$
$x y z-z=y^{2} z-y$
$y^{2} z=x y z+y-z$
Taking $\frac{x y-1}{y}=\frac{x z-1}{x}$
$x^{2} y-x=x y z-y$
$x^{2} y=x y z+x-y$

Taking $\frac{y z-1}{z}=\frac{x z-1}{x}$
$x y z-x=x z^{2}-z$
$x z^{2}=x y z+z-x$
$\therefore \quad \frac{x}{z}+\frac{y}{x}+\frac{z}{y}=\frac{x^{2} y+y^{2} z+z^{2} x}{x y z}$
Substituting from (i), (ii) and (iii)
$=\frac{x y z+x-y+x y z+y-z+x y z+z-x}{x y z}=\frac{3 x y z}{x y z}=3$
65. (D) Let the cost price of 1 litres milk $=₹ 1$

Selling price of 1 litre of milk $=₹ 1$
Profit $=20 \%$
Now, cost price of 1 litre milk $=\left(\frac{100}{120} \times 1\right)=₹ \frac{5}{6}$
By the rule of alligation,
Ratio of milk to water $=\frac{5}{6}: \frac{1}{6}=5: 1$
\therefore Percentage of water in the mixute $=\left(\frac{1}{6} \times 100\right) \%=16 \frac{2}{3} \%$
66. (A) Principal $=₹ 45000$

Rate $=20 \%$
Amount at the end of $1^{\text {st }}$ year $=45000 \times\left(1+\frac{20}{100}\right)^{1}$
$=45000 \times \frac{120}{100}=₹ 54000$
Remaining principal $=54000-12000=₹ 42000$
Amount at the end of $2^{\text {nd }}$ year $=42000\left(1+\frac{20}{100}\right)$
$=42000 \times \frac{120}{100}=₹ 50400$
Remaining principal $=50400-12000=₹ 38400$
Amount she has to pay at the end of $3^{\text {rd }}$ year $=38400\left(1+\frac{20}{100}\right)$
$=38400 \times \frac{120}{100}=₹ 46080$
67. (B) A

Let AB is the wall and AC is the ladder.
In $\triangle \mathrm{ABC}$,
$\cos 15^{\circ}=\frac{\mathrm{BC}}{\mathrm{AC}}$
$\cos 15^{\circ}=\frac{10}{\mathrm{AC}}$
$\mathrm{AC}=\frac{10}{\cos 15^{\circ}}$
Now, $\cos 15^{\circ}=\cos \left(45^{\circ}-30^{\circ}\right)$
$\cos 15^{\circ}=\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ}$
$\cos 15^{\circ}=\left(\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2}\right)$
$\cos 15^{\circ}=\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
$A C=\frac{10}{\frac{\sqrt{3}+1}{2 \sqrt{2}}}=\frac{20 \sqrt{2}}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}$
$=\frac{20 \sqrt{6}-20 \sqrt{2}}{2}=\frac{20(\sqrt{6}-\sqrt{2})}{2}$
$=10(\sqrt{6}-\sqrt{2}) \mathrm{m}$
68. (C)

Slope of line passing through the points A $(5,-3)$ and $B(-2,1)$
$=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{1-(-3)}{-2-5}$
$=\frac{1+3}{-7}=\frac{-4}{7}$
69. (D) The number divides 399, 434 and 537 leaving the remainder 8,9 and 10 .

So, that number will divede $(399-8),(434-9)$ and $(537-10)$ completely.
Now, the greatest number that will divide 391, 425 and 527 completely is the HCF of these numbers.

HCF of 391, 425 and 527
$391=17 \times 23$
$425=5 \times 5 \times 17$
$527=17 \times 31$
$\therefore \quad$ Required $\mathrm{HCF}=17$
70. (A) A invest $\frac{1}{3}^{\text {rd }}$ of capital.

B invest $\frac{1}{5}^{\text {th }}$ of capital.

C invest $=1-\left(\frac{1}{3}+\frac{1}{5}\right)=\frac{7}{15}$ of capital

Ratio of their profit $=\frac{1}{3} \times \frac{1}{3}: \frac{1}{5} \times \frac{1}{5}: 1 \times \frac{7}{15}$
$=\frac{1}{9}: \frac{1}{25}: \frac{7}{15}=25: 9: 105$
Total profit = ₹ 25020
$\therefore \quad$ Profit of $B=\frac{25020}{(9+25+105)} \times 25=\frac{25020}{139} \times 25=₹ 4500$
71. (C) Speed of the boat in still water on Tuesday $=\frac{40+20}{2}=\frac{60}{2}=30 \mathrm{~km} / \mathrm{h}$

Speed of the boat in still water on Thursday $=\frac{68+32}{2}=\frac{100}{2}=50 \mathrm{~km} / \mathrm{h}$
\therefore Required ratio $=30: 50=3: 5$
72. (A) Speed of the boat in still water on Sunday $=\frac{44+28}{2}=\frac{72}{2}=36 \mathrm{~km} / \mathrm{h}$
\therefore Required time $=\frac{162}{36}=4.5$ hours
73. (D) Time taken by boat upstream on Monday $=\frac{448}{32}=14$ hours

Time taken by boat downstream on Monday $=\frac{448}{56}=8$ hours
\therefore Required total time $=14+8=22$ hours
74. (D) Speed of the boat in still water on Wednesday $=\frac{55+25}{2}=\frac{80}{2}=40 \mathrm{~km} / \mathrm{h}$

Speed of the stream $=40-25=15 \mathrm{~km} / \mathrm{h}$
New speed of the boat in still water $=40 \times \frac{130}{100}=52 \mathrm{~km} / \mathrm{h}$
Speed of the boat upstream $=52-15=37 \mathrm{~km} / \mathrm{h}$
\therefore Required time $=\frac{74}{37}=2$ hours
75. (B) Speed of the stream on Thursday $=\frac{68-32}{2}=\frac{36}{2}=18 \mathrm{~km} / \mathrm{h}$

Speed of the stream on Sunday $=\frac{44-28}{2}=\frac{16}{2}=8 \mathrm{~km} / \mathrm{h}$
$\therefore \quad$ Required percentage $=\left(\frac{15}{8} \times 100\right) \%=187.5 \%$

MEANINGS IN ALPHABETICAL ORDER

Amateur	a person who engages in a pursuit, especially a	प्र T^{*} की न ठ यवि त
	sport, on an unpaid rather than a professional basis	
Conducive	making a certain situation or outcome	अनु कू ल
	likely or possible	
Consensus	a general agreement	आ म स
Curious	eager to know or learn something	ज्ञा 1
Fatigue	extreme tiredness resulting from mental or phy	का न
	exertion or illness	
Hindering	create difficulties for (someone or something),	निरा` धक
	resulting in delay or obstruction	
Humanist	an advocate or follower of the principles of humanis	मा नवता वा दी
Humanitarian	concerned with or seeking to promote human welfar	मा नवी य
Implement	a tool, utensil, or other piece of equipment, especiall	ला गू
	as used for a particular purpose	
Intent	intention or purpose	इ रा दा
Layman	a nonordained male member of a Church	सा ध रप ठ यक त
Maestro	a distinguished musician, especially a conductor of classical music	क्ला का र
Malicious	characterized by malice; intending or intended to do harm	
Novice	a person new to or inexperienced in a field or situation	नाँ सिख ए
Peculiar	strange or odd; unusual	अजै ब
Philanthropist	a person who seeks to promote the welfare of others, especially by the generous donation of money to good causes	लॉ का फ़्त रक
Philosoph	a person engaged or learned in philosophy, especially as an academic discipline	दा प ${ }^{\text {f }}$ निक
Prophesy	say that (a specified thing) will happen in the future	\% ¢ विष्यक्रा प १
Reclusive	avoiding the company of other people; solitary	एक तप्रि य
Sumptuous	splendid and expensive-looking	वै $\% \mathrm{~T}$ वश T ली
Umbilical	relating to or affecting the navel or umbilical cord	ना ल

SSC MOCK TEST - 295 (ANSWER KEY)

1. (D)	26. (B)
2. (C)	27. (B)
3. (D)	28. (D)
4. (D)	29. (D)
5. (C)	30. (B)
6. (C)	31. (D)
7. (D)	32. (C)
8. (C)	33. (C)
9. (C)	34. (A)
10. (D)	35. (D)
11. (D)	36. (D)
12. (B)	37. (D)
13. (C)	38. (D)
14. (C)	39. (A)
15. (D)	40. (D)
16. (B)	41. (D)
17. (D)	42. (B)
18. (B)	43. (B)
19. (C)	44. (C)
20. (C)	45. (C)
21. (D)	46. (B)
22. (B)	47. (C)
23. (D)	48. (B)
24. (B)	49. (C)
25. (D)	50. (C)

. (A)
52. (D)
53. (B)
54. (D)
55. (C)
56. (A)
57. (A)
58. (B)
59. (A)
60. (B)
61. (A)
62. (C)
63. (B)
64. (C)
65. (D)
66. (A)
67. (B)
68. (C)
69. (D)
70. (A)
71. (C)
72. (A)
73. (D)
74. (D)
75. (B)

76. (B)
77. (A)
78. (B)
79. (A)
80. (B)
81. (A)
82. (C)
83. (B)
84. (C)
85. (A)
86. (B)
87. (C)
88. (A)
89. (A)
90. (B)
91. (D)
92. (A)
93. (C)
94. (C)
95. (C)
96. (A)
97. (D)
98. (A)
99. (A)
100. (D)
101. (B) Replace 'on' with 'in'
102. (A) Replace 'seen' with 'see' (present indefinite tense)
103. (B) The correct spelling of 'Iliterate' is 'Illiterate'.
104. (D) The correct spelling of 'Accomodation' is 'Accommodation'.
