SSC MOCK TEST - 318 (SOLUTION)

1. (A) As,

$$
\begin{aligned}
& 48 \times \frac{5}{12}=20 \\
& \text { Similarly, } \\
& 36 \times \frac{5}{12}=15
\end{aligned}
$$

2. (C) Poem is related Rhyme, while Movie is related to Scene.
3. (D) Except Car, others are operated with the help of electricity.
4. (D) Except ROSE, others have two vowels of same letter
5. (A) As,

Similarly,

6. (D) $13+6^{1}=19$
$19+6^{2}=55$
$55+6^{3}=271$
$271+6^{4}=1567$
$1567+6^{5}=9343$
7. (B)

8. (C)

Hence, H is the father of E .
9. (A) As,
$32 \Rightarrow 32+23=55$
$55 \Rightarrow 55+55=110$
Similarly,
$68 \Rightarrow 68+86=154$
$154 \Rightarrow 154+451=605$
10. (C) $\underline{\mathbf{c} l d \underline{k} r / c l \underline{d} k r / c l} \underline{l}^{2} \underline{\mathbf{r}}$
11. (D)
12. (C) In the first column,
$52+18-45=25$

In the second column,

$19+73-61=31$
In the third column,
$18+84-25=77$
13. (D) $52+25 \times 4-8 \div 6 \times 4$ of $3=217$

After Changing the 52 and 25 with each other,
$25+52 \times 4-8 \div 6 \times 4$ of $3=217$
$25+208-8 \div 6 \times 12=217$
$25+208-\frac{8}{6} \times 12=217$
$233-16=217$
14. (D) 5. Solitude \rightarrow 1. Solution $\rightarrow 2$. Solvent $\rightarrow 3$. Someone $\rightarrow 6$. Summon \rightarrow 4. Surmounted
15. (C) Let the total number of students be 3a.

Number of students in class $\mathrm{X}=\mathrm{a}$
Number of students in class $Y=3 a$
ATQ,
$a+20=\frac{3 a}{2}$
$2 a+40=3 a$
$\mathrm{a}=40$
Total number of students $=40 \times 3=120$
Required $\%=\left(\frac{20}{120} \times 100\right) \%=16 \frac{2}{3} \%$
16. (C)
17. (B) Angle made by hour hand in hours $=360^{\circ}$

Angle made by hour hand in 5 hours 10 minutes, i.e. $\frac{31}{6}$ hours
$=\left(\frac{360}{12} \times \frac{31}{6}\right)^{\circ}=155^{\circ}$
18. (A)

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
19. (C)

Ekta

Hence, Ekta is facing to South direction.
20. (C) Yesterday

Today is Tuesday. So, after 7 days, it will be Tuesday and after 3 days of Tuesday will be Friday.
21. (D) $5 \xrightarrow{\times 2} 10 ; ~ 23 \xrightarrow{x 4} 92$;

(S)
\downarrow
Monday
\downarrow

Monday Tuesday
22. (D)
23. (D)
24. (B)

186
\qquad
28. (C) Under the original Constitution of $J \& K$ (1957), the head of the state and the head of the government were designated as Sadar-i-Riyasat (President) and WazirH-Azam (Prime Minister) respectively. In 1965, they were redesignted as Governor and Chief Minister respectively. Also, the head of the state was to be elected by the state assembly.
31. (B) Historians divide the ancient history of Egypt into three periods: the Old Kingdom, the Middle Kingdom and the New Kingdom. The Old Kingdom is called the Age of the Pyramids.
34. (D) The correct answer is Radiocarbon dating. The advent of radiocarbon dating has been used to fix the date of the Harappan Civilization
36. (B) The centripetal force having been removed the body cannot execute the curved path.
37. (B) Aryabhatta, the first Indian space satellite, was launched for India on April 19, 1975. Later, Bhasker-I, an Earth observation satellite, was launched for India on June 7, 1979.
39. (C) The Narmada rises near Amarkantak. The Narmada is the largest of all the west flowing rivers of the Peninsular India. It rises from the western flanks of Amarkantak plateau about $20^{\circ} 40^{\prime} \mathrm{N}$ at an elevation of 1057 m in Shahdol district of Madhya Pradesh and flows westwards through a rift valley (formed due to faulting) between the Vindhyan Range on the north and the Satpura Range on the south. Its total length from its source in Amarkantak to its estuary in the Gulf of Khambhat is 1310 km . On its way to the sea, the Narmada creates many picturesque locations. The 'Marble Rocks', near Jabalpur where the Narmada flows through a deep gorge, and the 'Duandhar Falls' (cloud of mist), where the river plunges over steep rocks are some of the notable ones. All the tributaries of the Narmada are very short and most of these join the main stream at right angles. Narmada basin covers parts of Madhya Pradesh and Gujarat.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
41. (B) Namdeva (1426-1506 AD) was the first in Maharashtra to preach against caste, imageworship and rituals and ceremonies. He laid emphasis on the true devotion and worship of god. The only way of salvation is the worship of true name. Namdeva preached the oneness of Godhood. According to him the God of the Hindus and the Muslims as well as the Brahmanas and the Chandals is one and the same and so all are equal.
42. (D) The group of small pieces of rock revolving around the sun between the orbits of mars and Jupiter are called asteroids.
43. (C) The basis for vaccination began in 1796 when the English doctor Edward Jenner noticed that milkmaids who had gotten cowpox were protected from smallpox.
44. (A) Diarthroses. Most joints in the adult body are diarthroses, or freely movable joints. The singular form is diarthrosis. In this type of joint, the ends of the opposing bones are covered with hyaline cartilage, the articular cartilage, and they are separated by a space called the joint cavity.
45. (C) By the late 1830s, botanist Matthias Schleiden and zoologist Theodor Schwann were studying tissues and proposed the unified cell theory. The unified cell theory states that: all living things are composed of one or more cells; the cell is the basic unit of life; and new cells arise from existing cells.
48. (A) Geosynchronous Satellite Launch Vehicle (GSLV): It is equiped with a cryogenic engine. It is capable of carrying communication satellites that are about one tonne heavier.
51. (A) Let the total work $=120$ units

Total work done by K and R in 30 days $=\left(\frac{120}{60}+\frac{120}{120}\right) \times 30=90$ units
Remaining work done by $\mathrm{S}=120-90=30$ units
Percentage of work done by $S=\left(\frac{30}{120} \times 100\right) \%=25 \%$
$\therefore \quad$ Share of $S=4800 \times \frac{25}{100}=₹ 1200$
52. (C) Ratio of their profit $=(8000 \times 12):(6400 \times 4+5600 \times 8):(2400 \times 4+2000 \times 8)$
$=96000: 70400: 25600=240: 176: 64$
$\therefore \quad$ Share of $B=\frac{9120}{480} \times 176=₹ 3344$
53. (B) Let the quantity of $A=3 x$

Quantity of $B=5 x$
Qunatity of $A=\frac{32}{8} \times 3=12$ litres
Qunatity of $B=\frac{32}{8} \times 5=20$ litres
After removing the mixture and replaced by A.
ATQ,
$\frac{3 x-12+32}{5 x-20}=\frac{5}{3}$
$\frac{3 x+20}{5 x-20}=\frac{5}{3}$
$9 x+60=25 x-100$
$16 x=160$
$\mathrm{x}=10$ litres
\therefore Total capacity $=3 x+5 x$
$=8 x=8 \times 10=80$ litres

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
54. (A) Let the total distance be 3d km.

Now,
$\mathrm{x} \times \frac{5}{2}=2 \mathrm{~d}$
$5 \mathrm{x}=4 \mathrm{~d}$
Again,
$(x+2) \times \frac{50}{60}=\mathrm{d}$
$5(x+2)=6 d$
On dividing (ii) by (i), we get
$\frac{[5(\mathrm{x}+2)]}{5 \mathrm{x}}=\frac{6 \mathrm{~d}}{4 \mathrm{~d}}$
$\frac{x+2}{x}=\frac{3}{2}$
$2 \mathrm{x}+4=3 \mathrm{x}$
$\mathrm{x}=4$
Put the value of x in equation (i),
$5 \times 4=4 d$
$\mathrm{d}=5$
\therefore Total distance $=3 \mathrm{~d}=3 \times 5=15 \mathrm{~km}$
55. (C)

a = side of octagon
$\mathrm{x}=$ part cut from the side,
Now,
$\mathrm{x}^{2}+\mathrm{x}^{2}=\mathrm{a}^{2}$
$2 x^{2}=a^{2}$
$x=\frac{a}{\sqrt{2}}$
Also, $2 \mathrm{x}=25-\mathrm{a}$
$2 \times \frac{\mathrm{a}}{\sqrt{2}}=25-\mathrm{a}$
$\sqrt{2} a+a=25$
$a(\sqrt{2}+1)=25$
$a=\frac{25}{\sqrt{2}+1}=25(\sqrt{2}-1) \mathrm{cm}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
56. (B) $68-4(2+24 \div 4 \times 5-3 \times 7)+9$
$=68-4(2+6 \times 5-3 \times 7)+9$
$=68-4(32-21)+4$
$=68-44+9$
$=77-44=33$
57. (D) Required marked price $=\frac{63000}{70} \times 100 \times \frac{100}{90}=₹ 100000$
58. (A) $\mathrm{P}=₹ 768$
$\mathrm{A}=₹ 972$
$\mathrm{R}=12.5 \%$

Now, $A=P\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}$
$972=768\left(1+\frac{12.5}{100}\right)^{\mathrm{T}}$
$\frac{972}{708}=\left(\frac{9}{8}\right)^{\mathrm{T}}$
$\frac{81}{64}=\left(\frac{9}{8}\right)^{T}$
$\left(\frac{9}{8}\right)^{2}=\left(\frac{9}{8}\right)^{\mathrm{T}}$

T = 2 years
59. (B) $\sin q+\operatorname{cosec} q=2$

$$
\begin{aligned}
& \sin \theta+\frac{1}{\sin \theta}=2 \\
& \sin ^{2} q+1=2 \sin q \\
& \sin ^{2} q+1-2 \sin q=0 \\
& \left(\sin ^{2} q-1\right)=0 \\
& \sin q=1 \\
\therefore \quad & \sin ^{2} q+\operatorname{cosec}^{2} q
\end{aligned}
$$

$=\sin ^{2} \theta+\frac{1}{\sin ^{2} \theta}$
$=1+1=2$

$K D$ Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
60. (D)

Given, $A P$ is perpendicular to $B C$, and $A Q$ is the bisector of angle PAC.
In $\triangle \mathrm{ABP}$,
$\angle \mathrm{APB}=90^{\circ}$
$\angle \mathrm{ABP}=60^{\circ}$
So, $\angle \mathrm{BAP}=180^{\circ}-\left(90^{\circ}+60^{\circ}\right)=30^{\circ}$
Now in $\triangle \mathrm{ABC}$,
$\angle \mathrm{ABC}=60^{\circ}, \angle \mathrm{ACB}=30^{\circ}$
So, $\angle \mathrm{BAC}=180^{\circ}-\left(60^{\circ}+30^{\circ}\right)=90^{\circ}$
And $\angle \mathrm{BAC}=\angle \mathrm{BAP}+\angle \mathrm{PAQ}+\angle \mathrm{QAC}$
Since, $A Q$ is the bisector of angle PAC.
So, $\angle \mathrm{PAQ}=\angle \mathrm{QAC}$
$\angle \mathrm{BAC}=\angle \mathrm{BAP}+2 \angle \mathrm{PAQ}$
$90^{\circ}=30^{\circ}+2 \angle \mathrm{PAQ}$
$2 \angle \mathrm{PAQ}=60^{\circ}$
Hence, $\angle \mathrm{PAQ}=30^{\circ}$
61. (D) Ratio of volume of tank A and $B=6: 5$

Water increase in tank $\mathrm{A}=30 \%$
Let the volume of tank A and $B=4 x$ and $5 x$
Increased volume of tank $A=$ Initial volume + Increase $=6 x+\frac{6 x \times 30}{100}=7.80 \mathrm{x}$
So, the increased volume of tank B to become same as tank $A=7.80 x-5 x=2.80 x$
So, the percentage of increased volume $=\left(\frac{2.80 \mathrm{x}}{5 \mathrm{x}} \times 100\right) \%=56 \%$
The increased volume of tank B is 56% to be equal with tank A.
62. (B) $\tan ^{2} q-3 \sec ^{2} q+3=0$
$-\left(\sec ^{2} q-\tan ^{2} q\right)-\sec ^{2} q-3=0$
$-1+3=2 \sec ^{2} q$
$2 \sec ^{2} q=2$
$\sec ^{2} q=1$
$\sec \theta \pm 1$
$\sec q=\sec 0^{\circ}$ or $\sec 180^{\circ}$
$\therefore \theta=0^{\circ} \quad\left(\right.$ since $\left.\theta \leq 90^{\circ}\right)$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
63. (C) $7 p^{2}+7 p=7 p(p+1)$, which is always divisible by 7 and 14 both. Because as we know that $p(p$ +1) is always even.

So, 7 and 14 will be the answer.
64. (C) Let the three parts be x, y and Z respectively.

ATQ,
$\frac{\mathrm{x} \times 3 \times 1}{100}=\frac{\mathrm{y} \times 4 \times 1}{100}=\frac{z \times 6 \times 1}{100}$
$0.03 x=0.04 y=0.06 z$
$\frac{x}{y}=\frac{4}{3}$ and $\frac{y}{z}=\frac{3}{2}$
$x: y: z=4: 3: 2$
\therefore Amount invested at $6 \%=\frac{2}{5} \times 11250=₹ 2500$
65. (A) $\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}-3 a b c=(a+b+c) \frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
$=(250+251+252) \frac{1}{2}\left[(250-251)^{2}+(251-252)^{2}+(252-250)^{2}\right]$
$=753 \times \frac{1}{2} \times[1+1+4]=753 \times \frac{1}{2} \times 6=2259$
66. (B) In semi-circle, the diameter is the base of the semi-circle.

To maximize the area, the height should be maximum.
And in semi-circle, maximum height is equal to the radius.
Therefore, area of the largest triangle that can be inscribed in a semi-circle of radius 4 cm.
$=\frac{1}{2} \times$ base \times heigth $=\frac{1}{2} \times(2 r) \times(r)$
$=\frac{1}{2} \times 8 \times 14=56 \mathrm{~cm}^{2}$
67. (B) Area of square $=1764$ sq. cm

Side $=\sqrt{1764}=42 \mathrm{~cm}$
Radius of circle $=42 \mathrm{~cm}$
Length of rectangle $=42 \times \frac{2}{3}=28 \mathrm{~cm}$
Breadth $=15 \mathrm{~cm}$
$\therefore \quad$ Area $=28 \times 15=420 \mathrm{~cm}^{2}$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
68. (C)

Given, $\theta_{1}+\theta_{2}=90^{\circ}$
$\mathrm{h}=27 \tan \theta_{1}$
$\frac{\mathrm{h}}{27}=\tan \theta_{1}$ From (i)
$\mathrm{h}=12 \tan \theta_{2}$
$h=12 \tan \left(90-\theta_{1}\right)$
$\mathrm{h}=12 \cot \theta_{1}$
$\frac{\mathrm{h}}{12}=\cot \theta_{1}$
$\tan \theta_{1}=\frac{12}{\mathrm{~h}}$
From (i) and (ii),
$\mathrm{h}=18 \mathrm{ft}$
69. (A) Let $\angle A O B=2 x$

The chord $A B$ subtends double the angle that is subtended by chord CD.
Then, $\angle \mathrm{COD}=\mathrm{x}$
As OA and OB are radius of the same circle.
$\mathrm{OA}=\mathrm{OB}$
$\angle \mathrm{BAO}=\angle \mathrm{ABO}=\theta$
Now in triangle AOB
$\angle \mathrm{AOB}+\angle \mathrm{ABO}+\angle \mathrm{BAO}=180^{\circ}$
$2 \mathrm{x}+\theta+\theta=180^{\circ}$
$2 \theta=180^{\circ}-2 x$
$\theta=90^{\circ}-\mathrm{x}$
We know that radius is perpendicular to the tangent at point of contact.
$\angle \mathrm{OAE}=\angle \mathrm{OBE}=90^{\circ}$

From (i) and (ii),
$\angle \mathrm{BAE}=\angle \mathrm{ABE}=\mathrm{x}$
Also, $\angle \mathrm{AEB}=2 \angle \mathrm{AOB}$
$\angle \mathrm{AEB}=4 \mathrm{x}$
In triangle AEB,
$\angle \mathrm{BAE}+\angle \mathrm{ABE}+\angle \mathrm{AEB}=180^{\circ}$
$x+x+4 x=180^{\circ}$
$6 \mathrm{x}=180^{\circ}$
$\mathrm{x}=30^{\circ}$
Hence, $\angle \mathrm{COD}=30^{\circ}$
70. (C) If 59a44b is divisible by 36 then $59 a 44 b$ must be divisible by 4 and 9 .

We know that a number X is divisible by 4 if number formed by last two digit is divisible by 4. Consider 59a44b

Number formed by last two digits $=4 b$
If 4 b is divisible by 4 then b can take values $0,4,8$
Now, We know that a number is divisible by 9 , if sum of digits is divisible by 9.
Take $\mathrm{b}=8$
Resultant number $=59 \mathrm{a} 448$
Sum of digits $=5+9+a+4+4+8=30+a$
If $\mathrm{a}=6$
$30+\mathrm{a}=30+6=36$ and 36 is divisible by 9 .
Hence, Maximum value of $3 a+2 b=24+12=36$
71. (A) Selling price of TV $=5000 \times \frac{100}{10} \times \frac{90}{100}=45000$

Marked price of laptop $=45000+15000=60000$
$\therefore \quad$ Required $\%=\left(\frac{45000}{60000} \times 100\right) \%=75 \%$
72. (C) Total cost price of all items $=5000 \times \frac{100}{10} \times \frac{90}{120}+25000+20000 \times \frac{100}{80}+40000+(45000-$ $15000)+40000=197500$

Total marked price of all items
$=5000 \times \frac{100}{10}+40000+(20000+15000)+4000 \times \frac{140}{70}+(45000+15000)+40000 \times \frac{75}{60}$
$=315000$
Profit $=315000-197500=117500$
$\therefore \quad$ Required $\%=\left(\frac{117500 \times 100}{197500}\right) \%=59.4 \%$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
73. (B) Total selling price $=5000 \times \frac{90}{100}+40000 \times \frac{80}{100}+20000+40000 \times \frac{140}{100}+45000+\frac{75}{100}$ $=228000$
74. (D) Total profit amount $=5000 \times \frac{100}{10} \times \frac{90}{120} \times \frac{20}{100}+\left(40000+\frac{80}{100}-25000\right)$
$+\left(20000-20000 \times \frac{100}{80}\right)+40000 \times \frac{40}{100}+15000-40000 \times \frac{25}{100}$
$=7500+7000-5000+16000+15000-10000=30500$
Required average $=\frac{30500}{6}=5083.3$
75. (A) Marked price of $\mathrm{AC}=40000 \times \frac{140}{70}=80000$

Marked price of Music System $40000 \times \frac{75}{60}=50000$
Required ratio $=80000: 50000=8: 5$

MEANINGS IN ALPHABETICAL ORDER

Apathy
Complacent
Discrete
Gloomy
Grim
Illicit
Jubilant
Laudable

Paucity

Prodigious
Rectify
Reiterate
Serenity
Severity
Superiority
Vitality
Zeal
lack of interest, enthusiasm, or concern
self-satisfied
individually separate and distinct
dark or poorly lit
forbidding or uninviting
forbidden by law, rules, or custom
feeling or expressing great happiness
(of an action, idea, or goal) deserving praise and commendation
the presence of something only in small or insufficient quantities great in extent, size, or degree put (something) right repeat or say again the state of being calm, peaceful, and untroubled the fact or condition of being severe the state of being superior
the state of being strong and active
great energy or enthusiasm in pursuit of a cause
or an objective

उ दा से नता
आ $\overline{\text { г }}$ मस तु ष्ट
अलग
अं धरा
निष्ठु र
अवै ध
प्र स नfित
प्र श सी य

क्मी

बहु तबड. \dagger
सं श $\mathrm{T}^{\text {' }}$ ध करना
दा' हरा ना
प्र ${ }^{\text {® }}$ ति
ती व्र ता
श्रे ठठ ता
जो वन- प वि त
उ ₹ सा ह

SSC MOCK TEST - 318 (ANSWER KEY)

1. (A)
2. (C)
3. (D)
4. (D)
5. (A)
6. (D)
7. (B)
8. (C)
9. (A)
10. (C)
11. (D)
12. (C)
13. (D)
14. (D)
15. (C)
16. (C)
17. (B)
18. (A)
19. (C)
20. (C)
21. (D)
22. (D)
23. (D)
24. (B)
25. (B)
26. (A)
27. (C)
28. (C)
29. (B)
30. (A)
31. (B)
32. (D)
33. (D)
34. (D)
35. (B)
36. (B)
37. (B)
38. (D)
39. (C)
40. (A)
41. (B)
42. (D)
43. (C)
44. (A)
45. (C)
46. (C)
47. (D)
48. (A)
49. (C)
50. (B)
51. (A)
52. (C)
53. (B)
54. (A)
55. (C)
56. (B)
57. (D)
58. (A)
59. (B)
60. (D)
61. (D)
62. (B)
63. (C)
64. (C)
65. (A)
66. (B)
67. (B)
68. (C)
69. (A)
70. (C)
71. (A)
72. (C)
73. (B)
74. (D)
75. (A)
76. (C)
77. (A)
78. (D)
79. (A)
80. (C)
81. (C)
82. (C)
83. (D)
84. (A)
85. (A)
86. (B)
87. (C)
88. (C)
89. (A)
90. (A)
91. (B)
92. (D)
93. (D)
94. (D)
95. (D)
96. (A)
97. (D)
98. (B)
99. (C)
100. (C)
