IBPS PO SPECIAL PHASE - I - 317 (SOLUTION)

Reasoning

(1-5) :

Student	Day	Time
K	Monday	$7: 00 \mathrm{AM}$
F	Monday	$10: 00 \mathrm{AM}$
M	Tuesday	$7: 00 \mathrm{AM}$
H	Tuesday	$10: 00 \mathrm{AM}$
I	Wednesday	$7: 00 \mathrm{AM}$
G	Wednesday	$10: 00 \mathrm{AM}$
J	Thursday	$7: 00 \mathrm{AM}$
E	Thursday	$10: 00 \mathrm{AM}$
L	Friday	$7: 00 \mathrm{AM}$
N	Friday	$10: 00 \mathrm{AM}$

1. (3)
2. (2)
3. (5)
4. (2)
5. (4)
6. (4) $\mathrm{P}>\mathrm{N} \geq \mathrm{E} \leq \mathrm{C}<\mathrm{G}$
I. $\mathrm{P}>\mathrm{C} \rightarrow$ False
II. $\mathrm{G} \geq \mathrm{N} \rightarrow$ False

If Neither conclusion I nor II is true.
(7-8) :
7. (2) $\mathrm{I}=\mathrm{K}<\mathrm{H}>\mathrm{Q}=\mathrm{G}>\mathrm{S}=\mathrm{L}$
I. $\mathrm{Q}<\mathrm{K} \rightarrow$ False
II. $\mathrm{H}>\mathrm{I} \rightarrow$ True

If only conclusion II is true.
8. (4) I. I $\geq \mathrm{K} \rightarrow$ False
II. $\mathrm{K} \leq \mathrm{S} \rightarrow$ False

If neither conclusion I nor II is true.
9. (1) $\mathrm{T}=\mathrm{R}>\mathrm{U}=\mathrm{M} \leq \mathrm{D}<\mathrm{F}$
I. $\mathrm{D} \geq \mathrm{U} \rightarrow$ True
II. $\mathrm{T}>\mathrm{F} \rightarrow$ False

Only conclusion I is true.
10. (5) $\mathrm{W} \geq \mathrm{R}>\mathrm{T}=\mathrm{D}>\mathrm{V} \geq \mathrm{Z}$
I. $\mathrm{W}>\mathrm{V} \rightarrow$ True
II. $Z<R \rightarrow$ True

Both conclusion I and II is true.

Campus
 KD Campus

(11-15) :

11. (2)
12. (1)
13. (5)
14. (3)
15. (2)
16. (2) Twelfth to the left of the twenty second from the left end is $(22-12=) 10$ th from the left, i.e @.
17. (4)
18. (1) New arrangement becomes:

F \% D A © I B @ R H E * N \$ U W P T 9V \# Z Q.
Hence sixteenth from the right end is @.
19. (2)
20. (2)
(21-22) :

21. (3) $\mathrm{SV}=\mathrm{VQ}+\mathrm{SQ}=25+30=55 \mathrm{~m}$
22. (2) Northeast
(23-27):

Floor	Person
8	Q
7	P
6	Z
5	O
4	X
3	Y / N
2	M
1	$\mathrm{~N} / \mathrm{Y}$

23. (5) 24. (3)
24. (1)
25. (4)
26. (5)
(28-29) :

27. (1) 29. (5)

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
(30-34):
The machine rearranges words and numbers in such a way that numbers are arranged from the left side with the smallest number coming first and moving subsequently so that in the last st©ep numbers are arranged in descending order. While the words are arranged from the right side as they appear in English alphabetical order.

Input: $\quad 75$ wild show 1942 never break heart for 5921 value 6899
Step I: 1975 wild show 42 never heart for 5921 value 6899 break
Step II: 211975 wild show 42 never heart 59 value 6899 break for
Step III: 42211975 wild show never 59 value 6899 break for heart
Step IV: 5942211975 wild show value 6899 break for heart never
Step V: 685942211975 wild value 99 break for heart never show
Step VI: 756859422119 wild 99 break for heart never show value
Step VII: 99756859422119 break for heart never show value wild
30. (5)
31. (3)
32. (4)
33. (2)
34. (4)
35. (3)

Maths

36. Total girls $=420$

Total boys $=810$
Let the number of boys in Xavier $=x$
So, the number of girls in Xavier $=\frac{2}{3} \mathrm{x}$
Let the number of boys in Vijaya $=y$
So, the number of girls in Vijaya $=\frac{2}{5} y$
Given,
$x+y=810$
$\Rightarrow \frac{2}{3} x+\frac{2}{5} y=420$
$\Rightarrow \frac{x}{3}+\frac{y}{5}=210$
$\Rightarrow \frac{810-y}{3}+\frac{y}{5}=210$
$\Rightarrow 270-\frac{y}{3}+\frac{y}{5}=210$
So,
$60=\frac{2 y}{15} ;$
$y=450$
So, the number of boys in Vijaya $=y=450$
So, the number of girls in Vijaya $=\frac{2}{5} y=180$
Let the number of boys in Xavier $=x=810-y=810-450=360$

So, the number of girls in Xavier $=\frac{2}{3} x=240$
So,
$180=\frac{x}{100} \times 240$
$\mathrm{x}=180=\frac{\mathrm{x}}{100} \times 240=75$
37. The number of boys in Vijaya $=450$

And, the number of girls in Vijaya $=180$
Also, the number of boys in Xavier $=360$
And, the number of girls in Xavier $=240$
Number of girls in X college $=640-240=400$
Total students in Xavier $=600$
So, total students in $\mathrm{X}=600 \times \frac{125}{100}=750$
Number of boys in X college $=750-400$
$=350$
38. The number of boys in Vijaya $=450$

And, the number of girls in Vijaya $=180$
Also, the number of boys in Xavier $=360$
And, the number of girls in Xavier $=240$
So, required difference $=630-600=30$
So, option (d) is the correct answer.
39. The number of boys in Vijaya $=450$

And, the number of girls in Vijaya $=180$
Also, the number of boys in Xavier $=360$
And, the number of girls in Xavier $=240$
Number of boys in Y College
$=\frac{13}{9} \times 450=650$
Number of girls in Y College $=180 \times \frac{80}{100}=144$
Total students $=650+144=794$
40. The number of boys in Vijaya $=450$

And, the number of girls in Vijaya $=180$
Also, the number of boys in Xavier $=360$
And, the number of girls in Xavier $=240$
\therefore Required percentage $=\frac{450-360}{360} \times 100=25 \%$
41. $15 \mathrm{M} \times \mathrm{x}=21 \mathrm{~W} \times(\mathrm{x}-4)$
$35 \mathrm{M} \times \mathrm{y}=63 \mathrm{~W} \times(\mathrm{y}-4)$
So, $21(x-4)=63(y-4)$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$x=3 y-8$
$15 x=35 y$
$3 x=7 y$
So, $\mathrm{y}=\frac{3 \mathrm{x}}{7}$
So, $x=3 \times \frac{3 x}{7}-8$
$\frac{2 x}{7}=8 \quad x=28$
42. Let, CP of $\mathrm{B}=\mathrm{x}$
$C P$ of $A=2 x$
Total CP $=3 x$
$\mathrm{MP}=3 \mathrm{x} \times \frac{120}{100}=3.6 \mathrm{x}$
Discount $=9$
SP $=3.6 x-9$
Profit $\%=\frac{3.6 x-9-3 x}{3 x} \times 100=17$
$\Rightarrow \frac{3.6 x-9}{3 x}=1.17$
So, $x=100$
CP of article A = 200
43. Two cases are possible
(1) $\frac{{ }_{4}^{4} \mathrm{C} \times{ }_{1}^{5} \mathrm{C}}{{ }_{5}^{9} \mathrm{C}}$
(2) $\frac{{ }_{3}^{4} \mathrm{C} \times{ }_{2}^{5} \mathrm{C}}{{ }_{5}^{9} \mathrm{C}}$
\therefore Required Probability $=\frac{{ }_{4}^{4} \mathrm{C} \times{ }_{1}^{5} \mathrm{C}}{{ }_{5}^{9} \mathrm{C}}+\frac{{ }_{3}^{4} \mathrm{C} \times{ }_{2}^{5} \mathrm{C}}{{ }_{5}^{9} \mathrm{C}}$

$$
=\frac{\left(1 \times \frac{5}{1}+\frac{4}{3} \times \frac{3}{2} \times \frac{2}{1} \times \frac{5}{2} \times \frac{4}{1}\right)}{\frac{9}{5} \times \frac{8}{4} \times \frac{7}{3} \times \frac{6}{2} \times \frac{5}{1}}
$$

$$
=\frac{5+40}{126}=\frac{45}{126}=\frac{5}{14}
$$

44. Let the length of the train $=\mathrm{L}$

And, the length of the platform $=P$
So, $25 \times \frac{5}{18} \times \frac{\mathrm{L}+\mathrm{P}}{18}$
$L+P=125$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
And, $30 \times \frac{5}{18}=\frac{L}{12}$
$\mathrm{L}=100$
$\mathrm{P}=25$
Required difference $=100-25=75$
45. Satish: Bhavya: Abhishek
$15000 \times 12: 18000 \times(12-\mathrm{x}): 24000 \times(12-\mathrm{x})=10: 9: 12$
So,
$\Rightarrow \frac{15000 \times 12}{(18000 \times(12-x))}=\frac{10}{9}$
$\Rightarrow 90=120-10 x$
$\Rightarrow 10 \mathrm{x}=30 ; \quad \mathrm{x}=3$
46. Let the age of Sakshi 6 years ago $=x$

Present age of Sakshi $=5 / 4 \mathrm{x}$
So, $\frac{5}{4} x=x+6$
So, $x=24$
So present age of Sakshi $=30$
Present age of her son $=\frac{1}{5} x=\frac{30}{5}=6$
Age of Sakshi after 10 years $=\frac{5}{4} x+10=40$
Age of her son after 10 years $=16$
So, required ratio $=\frac{40}{16}=\frac{5}{2}$
47. SI in scheme $\mathrm{A}=\frac{18000 \times 2 \times 15}{100}=5400$
$C I$ in scheme $B=15000\left(\left(\frac{118}{100} \times \frac{118}{100}\right)-1\right)$
$=5886$
\therefore Required difference $=5886-5400=486$
48. In 1 st alloy,

Copper $=40 \%$
Aluminum $=60 \%$
So, ratio $=2: 3$
In 2 nd allow,
Ratio $=2: 7$
Final mixture ratio $=5: 3$
So, total amount of copper
$=\frac{2}{5} \times 5 x+\frac{2}{9} \times 3 x=2 x+\frac{2}{3} x=\frac{8 x}{3}$

And, total amount of aluminum $=\frac{3}{5} \times 5 x=3 x$
\therefore Required percentage
$=\frac{\left(3 x-\frac{8 x}{3}\right)}{\frac{8 x}{3}} \times 100=\frac{9 x-8 x}{8 x} \times 100$
$=\frac{100}{8}=\frac{25}{2}=12.5 \%$
49. Relative speed of train $=15$

Distance between them $=20 \mathrm{~km}$
Time taken to cover that distance $=\frac{20}{15}$
$=\frac{4}{3}$ hours
So, They will collide in 80 minutes

So, distance covered in 79 minutes
$=15 \times \frac{79}{60}=\frac{79}{4}$

Distance left $=20-\frac{79}{4}=\frac{80-79}{4}=\frac{1}{4} \mathrm{~km}$
50. $\pi r^{2} h=616 m^{3}$
$2 \pi \mathrm{rh}=352 \mathrm{~m}^{3}$
So, $\frac{\pi r^{2} h}{2 \pi r h}=\frac{616}{352}$
$\frac{\mathrm{r}}{2}=1.75$
$r=3.5$
$\pi r^{2} h=616 m^{3}$
$h=\frac{616}{\pi r^{2}}=16$
$T S A=2 \pi r(h+r)$
$\mathrm{TSA}=2 \times \frac{22}{7} \times 3.5(16+3.5)=429 \mathrm{~m}^{2}$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
51. Let the amount of mixture taken from 1 st allow $=x$

And, the amount of mixture from the second allow $=y$
So, $\left[\frac{\left(\frac{x}{3}+\frac{2 y}{5}\right)}{\frac{2 x}{3}+\frac{3 y}{5}}\right]=\frac{5}{8}$
$=\frac{5 x+6 y}{10 x+9 y}=\frac{5}{8}$
$40 x+48 y=50 x+45 y$
$10 \mathrm{x}=3 \mathrm{y}$;
$\frac{x}{y}=\frac{3}{10}$
52. 3 men of the first group do as much work in 2 hour
as 4 men of the second group do in 3 hours
So, $3 \times$ M1 $\times 2=4 \times \mathrm{M} 2 \times 3$
So, M1 $=2$ M2
Men Hours Days Work \qquad .?
$40 \mathrm{M} 1 \times 8 \times 15 \times 2=60 \mathrm{M} 2 \times 4 \times \mathrm{x}$
$x=\frac{80 \mathrm{M} 2 \times 8 \times 15 \times 2}{(60 \mathrm{M} 2 \times 4)}=80$ days
53. Let the speed of boat and stream be u and v respectively;
$(u+v)=\frac{75}{t}$
and, $(u-v)=\frac{60}{t}$
so, $\frac{75}{u+v}=\frac{60}{u-v}$
$75 u-75 v=60 u+60 v$
So, $u=9 v$
\therefore Required percentage $=\frac{10 \mathrm{v}}{9 \mathrm{v}} \times 100$
$=111 \frac{1}{9} \%$
54. A train crosses a pole in 24 sec

Let, Speed of the train $=\mathrm{s}$
So, length of the train (L) $=\mathrm{s} \times 24$
A second train of same length crosses a platform in 30 sec with a speed 20% more than the first train.

$K D$
 Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
Let, the length of the platform $=p$
$\frac{120}{100} \mathrm{~s}=\frac{24 \mathrm{~s}+\mathrm{p}}{30}$
$\frac{6 s}{5}=\frac{4 s}{5}+\frac{p}{30}$
$\frac{2 s}{5}=\frac{p}{30}$
The ratio of length of train and length of platform $=\frac{s}{p}=\frac{5}{60}=\frac{1}{12}$
So, $s=\frac{p}{12}=\frac{L}{24}=\frac{P}{12} ; \frac{L}{p}=\frac{2}{1}$
55. A and B can fill the tank in 36 minutes

Let the time taken by pipe A to fill the tank $=x$
minutes
Ans, the time taken by pipe B to fill the tank $=y$
minutes
So, $\frac{1}{x}+\frac{1}{y}=\frac{1}{36}$
So, part filled in 30 minutes $=\frac{30}{36}=\frac{5}{6}$
Remaining part $=1-\frac{5}{6}=\frac{1}{6}$
So, $1 / 6^{\text {th }}$ part is filled by A alone in 10 minutes
So total time taken by A to fill the tank $=60$ minutes
And, time taken by B to fill
$=\frac{1}{36}-\frac{1}{60}=\frac{10}{360}-\frac{6}{360}=\frac{4}{360}=\frac{1}{90}$
So, pipe B can fill the tank in 90 minutes.
56. $(421.98+478.21) \div ?=60.029$
$\Rightarrow(422+478) \div ? \simeq 60$
$\Rightarrow \frac{900}{?} \simeq 60$
$\Rightarrow ?=15$
57. $\sqrt{256} \times 19.17+8.15 \times 13.78=$?
$\Rightarrow \sqrt{256} \times 19+8 \times 14=$?
\Rightarrow ? $\simeq 16 \times 19+8 \times 14=416$
58. $16.217 \times 23.88+$? $=18.98 \times 32.12$
$\Rightarrow 16 \times 24+$? $\simeq 19 \times 32$
\Rightarrow ? $=608-384=224$

$K D$
 Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
59. $27.897 \times 16.21=$? $\times 13.98+69.87$
$\Rightarrow 28 \times 16 \simeq ? \times 14+70$
$\Rightarrow 448 \simeq ? \times 14+70$
\Rightarrow ? = $37814=27$
60. $272.112+189.98+84.101=? \times 12.89 \times 6.11$
$\Rightarrow 272+190+84 \simeq ? \times 13 \times 6$
\Rightarrow ? $\simeq 13 \times 6546=7$
61. $117.5-\frac{1}{2}=117$;
$\Rightarrow 117+2=119$;
$\Rightarrow 119-8=111$;
$\Rightarrow 111+32=143$;
$\Rightarrow 143-128=15$
62. $15 \times 1-3=12$
$12 \times 3-5=31$
$31 \times 5-7=148$
$148 \times 7-9=1027$
63. $1 \times 7+6=13$;
$13 \times 6+5=83$;
$83 \times 5+4=419$;
$419 \times 4+3=1679$;
$1679 \times 3+2=\mathbf{5 5 3 9}$
64. $12 \times 2+1=25$
$25 \times 2-1=48$
$48 \times 2+3=99$
$99 \times 2-4=194$
$194 \times 2+5=393$
$393 \times 2-6=780$
65. $1^{3}+2=3$
$2^{3}+3=11$
$3^{3}+4=31$
$4^{3}+5=68$
$5^{3}+6=131$
$6^{3}+7=223$
66. Required Ratio $=\frac{60 \times \frac{2}{5}+68 \times \frac{9}{17}}{60 \times \frac{3}{5}+72 \times \frac{4}{9}}=\frac{15}{17}$
67. Number of female who bought ticket from C2 and C4 Theater together $=70 \times \frac{4}{7}+66 \times \frac{5}{11}$
$=70$
Number of males who bought ticket from C5 theatre $=72 \times \frac{5}{9}=40$
Required Percentage $=\frac{70-40}{40}=75 \%$

Campus
 KD Campus

68. Total revenue earned by theatre C4
$=150 \times 14+200 \times 36+250 \times 30=16800$
69. Number of male who bought ticket from C1
$=65 \times \frac{6}{13}=30$
Number of male who bought ticket from C2
$=70 \times \frac{3}{7}=30$
Number of male who bought ticket from C3
$=60 \times \frac{2}{5}=24$
$=30+30+24=84$
\therefore Required average $=\frac{84}{3}=28$
70. Number of males who bought ticket from C4, C5 and C6 together $=66 \times \frac{6}{11}+72 \times \frac{5}{9}+68 \times \frac{8}{17}$ $=36+40+36=112$

Number of females who bought ticket from C4, C5 and C6 together $=66 \times \frac{5}{11}+72 \times \frac{4}{9}+68 \times$ $\frac{8}{17}=30+32+32=94$
\therefore Required difference $=112-94=18$

Campus
 KD Campus

IBPS PO SPECIAL PHASE - I - 317 (ANSWER KEY)

1. (3)
2. (2)
3. (5)
4. (2)
5. (4)
6. (4)
7. (2)
8. (4)
9. (1)
10. (5)
11. (2)
12. (1)
13. (5)
14. (3)
15. (2)
16. (2)
17. (4)
18. (1)
19. (2)
20. (2)
21. (3)
22. (2)
23. (5)
24. (3)
25. (1)
26. (4)
27. (5)
28. (1)
29. (5)
30. (5)
31. (3)
32. (4)
33. (2)
34. (4)
35. (3)
36. (3)
37. (4)
38. (4)
39. (2)
40. (5)
41. (3)
42. (2)
43. (4)
44. (2)
45. (4)
46. (2)
47. (4)
48. (5)
49. (3)
50. (1)
51. (2)
52. (3)
53. (1)
54. (1)
55. (4)
56. (5)
57. (4)
58. (2)
59. (3)
60. (2)
61. (3)
62. (5)
63. (2)
64. (1)
65. (4)
66. (2)
67. (4)
68. (3)
69. (2)
70. (1)
71. (3)
72. (4)
73. (1)
74. (3)
75. (4)
76. (2)
77. (1)
78. (4)
79. (5)
80. (2)
81. (1)
82. (5)
83. (3)
84. (5)
85. (2)
86. (3)
87. (5)
88. (1)
89. (4)
90. (1)
91. (1)
92. (1)
93. (4)
94. (2)
95. (4)
96. (3)
97. (1)
98. (2)
99. (4)
100. (5)
