Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

IBPS PO SPECIAL PHASE - I-319 (SOLUTION)

REASONING

(1-5) :

1. (5)
2. (2)

3
4. (4)
5. (3)
(6-10) :

6. (2)
7. (5)
8. (4)
9. (5)
10. (3)
11. (5) Given statement :
$\mathrm{S} \geq \mathrm{T}=\mathrm{U} \leq \mathrm{W}<\mathrm{Z}$
$\mathrm{K}>\mathrm{L}>\mathrm{M}=\mathrm{Z}$
Combining all statements
$\mathrm{S} \geq \mathrm{T}=\mathrm{U} \leq \mathrm{W}<\mathrm{Z}=\mathrm{M}<\mathrm{L}<\mathrm{K}$
I. $\mathrm{K}>\mathrm{T} \rightarrow$ True
II. $\mathrm{U}<\mathrm{M} \rightarrow$ True

Hence, both conclusion I and II are true.
12. (5) Given statement :
$C \geq P=Q \geq T$
$\mathrm{R}>\mathrm{C}$
S = T
Combining all statements
$\mathrm{R}>\mathrm{C} \geq \mathrm{P}=\mathrm{Q} \geq \mathrm{T}=\mathrm{S}$
I. $\mathrm{R}>\mathrm{Q} \rightarrow$ True
II. $\mathrm{P} \geq \mathrm{S} \rightarrow$ True

Hence, both conclusion I and II are true.
13. (2) Given statements:
$\mathrm{B} \leq \mathrm{N}<\mathrm{K}=\mathrm{L}$
$\mathrm{M}=\mathrm{T} \geq \mathrm{N}$
Combining all statements
$\mathrm{M}=\mathrm{T} \geq \mathrm{N}<\mathrm{K}=\mathrm{L}$
I. $\mathrm{L} \leq \mathrm{M} \rightarrow$ False
$\mathrm{B} \leq \mathrm{N} \leq \mathrm{T}=\mathrm{M}$
II. $\mathrm{T} \geq \mathrm{B} \rightarrow$ True

Hence, Only conclusion II is true.
14. (4) Given statements :
$\mathrm{W}>\mathrm{D}=\mathrm{E} \geq \mathrm{J}=\mathrm{A}$
$\mathrm{U}=\mathrm{D}$
$\mathrm{J} \leq \mathrm{R}$
Combining all statements
$\mathrm{W}>\mathrm{U}=\mathrm{D}=\mathrm{E} \geq \mathrm{J}=\mathrm{A} \leq \mathrm{R}$
I. $\mathrm{R} \geq \mathrm{E} \rightarrow$ False
II. $\mathrm{U}>\mathrm{A} \rightarrow$ False

Hence, neither conclusion I nor II is true.
15. (1) Given statements :

V $>\mathrm{X} \leq \mathrm{H}<\mathrm{R}=\mathrm{L} \geq \mathrm{I} \ldots \ldots$. (i)
$\mathrm{P} \geq \mathrm{Q}=\mathrm{V}$
Combining all statements
$\mathrm{P} \geq \mathrm{Q}=\mathrm{V}>\mathrm{X} \leq \mathrm{H}<\mathrm{R}=\mathrm{L} \geq \mathrm{I}$
I. $\mathrm{P}>\mathrm{X} \rightarrow$ True
II. I $\leq \mathrm{Q} \rightarrow$ False

Hence, Only conclusion I is true.
16. (5)

I. False II. False
III. True
IV. False
Hence, Only II follows.
17. (1)

I. True
II. False
III. True
IV. False

Hence, I and III follows.
18. (5)

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
I. False
II. False
III. False
IV. True

Hence, Only IV follows.
19.(5)12345678910

D I S C L AIMER
First, second, sixth and tenth letters are D, I, A R
Meaningful world RAID, RIAD
20.

$\mathrm{AE}=\mathrm{AB}+\mathrm{BE}=\mathrm{AB}+\mathrm{CD}=20+5=25 \mathrm{~m}$ (21-23) :

21. (4)
22. (3)
23. (5)
24. (3)
25. (3)

There are two case - TU \& VA
(26-30) :

Floor	Person	Fruits
7	P	Banana
6	Y	Mango
5	X	Apple
4	N	Grapes
3	M	Guava
2	O	Orange
1	Z	Papaya

26. (3)
27. (1)
28. (3)
29. (5)
30. (2)

(31-35) :

31.(1) Let all the numbers are arranged in descending order from left to right, we get: 924816725563485
725 is in the middle position after rearrangement.
Product of first and second digit of $725=$ $7 \times 2=14$
32.(3) Let all the digits in each of the numbers are arranged in ascending order, we get: 257249458168356 ; clearly 458 is the highest number which was originally: 485
33.(4) Let the positions of the first and the third digits of each or the numbers are interchanged, we get:
527429584618 365;
Clearly 527, 429 and 365 (three numbers) are odd numbers.
34.(3) Let we add one to the middle digit of each of the numbers, we get:
735934495826 573, in these numbers let we divide them with 3
$735 / 3=245 ; 934 / 3=311.33$;
$495 / 3=165 ; 826 / 3=275.33 ;$
$573 / 3=191$; therefore four numbers (735, 495 and 573 are divisible by 3) and remaining two numbers are not divisible by three.
35.(2) From the given numbers (725 924485 $816563) 924$ is highest and 485 is lowest number. Let we multiply first digit of highest number with third digit of lowest number, we get $9 \times 5=45$

Maths

36.(3) $98=97+1^{3}$
$90=98-2^{3}$
$117=90+3^{3}$
? $=117-4^{3}$, i.e. $=53$
$178=53+53$
37.(1) $11=8+3^{1}$
$20=11+3^{2}$
$47=20+3^{3}$
? $=47+3^{4}$, i.e. $?=128$
$371=128+3^{5}$
38.(2)

39.(3) $14=5 \times 3-1$
$41=14 \times 3-1$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$122=41 \times 3-1$
? $=122 \times 3-1$, i.e. ? $=365$
$1094=365 \times 3-1$
40.(4) $18 \times 0.5=9$
$9 \times 1=9$
$9 \times 1.5=13.5$
$13.5 \times 2=$?, i.e. ? $=27$
$27 \times 2.5=67.5$
41.(4) Suppose the number is x.
$\because \mathrm{x} \times \frac{3}{5} \times \frac{60}{100} \times \frac{40}{100}=504$
$\therefore \frac{504 \times 5 \times 100 \times 100}{3 \times 60 \times 40}=3500$
$\therefore \mathrm{x} \times \frac{2}{5} \times \frac{25}{100}=3500 \times \frac{2}{5} \times \frac{25}{100}$
$[\because \mathrm{x}=3500]$
$=350$
42.(4) Let Tanvi's age be x years.
\therefore Tarun's age $=\frac{\mathrm{x}}{2}$
\therefore Vishal's age is $\frac{\mathrm{x}}{4}$ years
After four years,
$(x+4)=\left(\frac{x}{4}+4\right) 2.5$
or, $x+4=\frac{2.5 x}{4}+10$
or, $4 \mathrm{x}+16=2.5 \mathrm{x}+40$
or, $1.5 \mathrm{x}=24$
or, $x=\frac{24}{1.5}=16$
43.(3) Suppose waste pipe can drain the cistern in x min.
Then,
$\frac{1}{24}+\frac{1}{40}-\frac{1}{x}=\frac{1}{60}$
$\frac{1}{x}=\frac{1}{24}+\frac{1}{40}-\frac{1}{60}$
$\frac{1}{x}=\frac{5+3-2}{120}$
$\frac{1}{x}=\frac{6}{120}=\frac{1}{20}$
$\mathrm{x}=20 \mathrm{~min}$
\because Waste pipe can drain of $30 \mathrm{~L} / \mathrm{min}$.

Hence, capacity of the cistern $=30 \times 20=$ 600 L
44.(1) $\mathrm{L}=50 \mathrm{~km}$
$\mathrm{T}_{1}=2 \mathrm{hr}$
$\mathrm{T}_{2}=5 \mathrm{hr}$
Speed of boat $=(1 / 2) \times\left\{\left(1 / T_{1}\right)+\left(1 / T_{2}\right)\right.$
$=(50 / 2) \times\{(1 / 2)+(1 / 5)=17.5 \mathrm{~km} / \mathrm{hr}$
Distance covered $=3 \times 17.5 \mathrm{~km}$
$=52.5 \mathrm{~km}$
45.(4) According to the question,
$A_{1}-A_{2}=5000-200$
$\left(\mathrm{P}+\frac{\mathrm{P} \times 12 \times \mathrm{T}}{100}\right)-\left(\mathrm{P}+\frac{\mathrm{P} \times 4 \times \mathrm{T}}{100}\right)$
$=5000-2000$
$\Rightarrow \frac{8 \mathrm{PT}}{100}=300$
$\Rightarrow \mathrm{PT}=\frac{3000 \times 100}{8}=37500$
\Rightarrow Again, for 12% rate,
$\mathrm{SI}=\frac{\mathrm{P} \times \mathrm{T} \times \mathrm{R}}{100}=\frac{37500 \times 12}{100}$
$\Rightarrow \mathrm{SI}=$ Rs. 4500
Sum (P) = 5000-4500 = Rs. 500
We have, PT = 37500
$\mathrm{T}=\frac{37500}{\mathrm{P}}=\frac{37500}{500}=75$ years
46.(5) Average $=$ Sum of observations/Number of observations
Given, average wage of a worker during a fortnight comprising 15 consecutive working days was Rs. 95 per day.
Total wage he received in the fortnight
$=15 \times 95=$ Rs. 1425
Also, during the first 7 days, his average was Rs. 92 per day and the average wage during the last 7 days was Rs. 97 per day. Total wage received in the fortnight excluding the $8^{\text {th }}$ day $=92 \times 7+97 \times 7$
\Rightarrow Total wage received in the fortnight excluding the $8^{\text {th }}$ day $=1323$
Wage on the 8th day = Rs. $1425-1323$
= Rs. 102
47.(4) Given, ratio of efficiency of P and Q i.e. 3 : 1 so, total efficiency of $(P+Q)=4$
Then, Ratio of time taken by P and Q is 1 : 3
Let time taken by P is X days
So time taken by Q is 3 X days

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Time taken by $\mathrm{P}=$ time taken by $\mathrm{Q}-60$ days
$\mathrm{X}=3 \mathrm{X}-60$
$2 \mathrm{X}=60$
$\mathrm{X}=30$ days
Eff. $_{P+Q} \times T_{P+Q}=$ Eff. $_{P \times T P}$
$4 \times \mathrm{T}_{\mathrm{P}+\mathrm{Q}}=3 \times 30$
$\mathrm{T}_{\mathrm{P}+\mathrm{Q}}=90$ days
$T_{P+Q}=\frac{90}{4}$ days
$\mathrm{T}_{\mathrm{P}+\mathrm{Q}}=22 \frac{1}{2}$ days
48.(3) Let l be the numerator and m be the denominator of a fraction F
$\mathrm{F}=\frac{l}{m}$
Let l is increased by 150% so it would become $250 \times \frac{l}{100}=\frac{5 l}{2}$
Let m is increased by 350% so it would
become $450 \times \frac{m}{100}=\frac{9 m}{2}$
Hence new fraction $=\frac{51}{9 m}=\frac{25}{51}$
$\frac{1}{m}=\frac{15}{17}$
49.(1) Suppose, the monthly salary of Ms. Deepti is x rupees.
$\Rightarrow \mathrm{x} \times \frac{11}{100}=5236$
$\Rightarrow \mathrm{x}=\frac{5236 \times 100}{11}$
$\Rightarrow \mathrm{x}=₹ 47600$
\therefore Total annual amount invested by Ms.
Deepti $=47600\left(\frac{11}{100}+\frac{19}{100}+\frac{7}{100}\right) \times 12$
$=47600 \times \frac{37}{100} \times 12=₹ 211344$
50.(4) Let the cost price of 1 kg item be x .

So cost price of 600 g item $=0.6 \mathrm{x}$.
According to the question the Selling Price of 600 g of item $=$ Cost price of 1 kg item $=\mathrm{x}$.

So, Profit $\%=\frac{x-0.6 x}{0.6 x} \times 100=66.7 \%$.
51.(2) No. of employees working in legal deptt. = $48+54+36+30+53=221$
and no. of employees working in H.R. $=$ $1050+1015+976+888+1004=4933$

Required \% $=\frac{221 \times 100}{4933}=4(\mathrm{App})$
52.(2) Average number of people working in marketing deptt. $=1326.2$
Average number of people working in production deptt. $=1557.4$
Required Difference $=1557.4-1326.2$ = 231 (app.)
53.(5) No. of employees working in organisation $\mathrm{A}=1050+1017+1382+1542+786+48$ $=5825$
No. of employees working in organization $\mathrm{E}=1004+963+1290+1580+735+53$ = 5625
Required ratio $=5825: 5625=233: 225$
54.(3) Total no. of employees from all the departments $=5825+5703+5424+5613$ + $5625=28190$
55.(4) Required $\%=\frac{960 \times 100}{5703}=17$ (app.)
56.(1) $73.96-18.19+17.47=?+10.91$
? $=73.96-18.19+17.47-10.91$
? $=55.77+6.56$
$?=62.33$
57.(1) ? $=345+20-11$
? $=354$
58.(4) 26% of $450=\frac{26 \times 450}{100}=26 \times 4.5=117.0$
12% of $150=12 \times \frac{150}{100}=12 \times 1.5=18.0$
Hence, 26% of $450-?=12 \%$ of $150 \rightarrow 117$

- ? $=18 \rightarrow$?
$=117-18=99$
59.(4) $\frac{36 \times 650}{100}-\frac{14 \times 560}{100}$
$=234-78.40=155.6$
60.(3) $135+167-32=$? -113
$=>$? $=270+113=383$
61.(4) $7878-4545+5454=?+4444$
$=>8787=?+4444$
$=>$? $=8787-4444=4343$
62.(3) $264 \div \sqrt{576}+(11) 2+12=(x)^{2}$
$(x)^{2}=\frac{264}{24}+121+12=144$
$\mathrm{x}=\sqrt{144}=12$

Campus
 KD Campus

IBPS PO SPECIAL PHASE - I - 319 (ANSWER KEY)

1. (5)
2. (2)
3. (4)
4. (4)
5. (3)
6. (2)
7. (5)
8. (4)
9. (5)
10. (3)
11. (5)
12. (5)
13. (2)
14. (4)
15. (1)
16. (5)
17. (1)
18. (5)
19. (5)
20. (3)
21. (4)
22. (3)
23. (5)
24. (3)
25. (3)
26. (3)
27. (1)
28. (3)
29. (5)
30. (2)
31. (1)
32. (3)
33. (4)
34. (3)
35. (2)
36. (3)
37. (1)
38. (2)
39. (3)
40. (4)
41. (4)
42. (4)
43. (3)
44. (1)
45. (4)
46. (5)
47. (4)
48. (3)
49. (1)
50. (4)
51. (2)
52. (2)
53. (5)
54. (3)
55. (4)
56. (1)
57. (1)
58. (4)
59. (4)
60. (3)
61. (4)
62. (3)
63. (3)
64. (3)
65. (4)
66. (4)
67. (2)
68. (1)
69. (5)
70. (2)
71. (3)
72. (4)
73. (2)
74. (2)
75. (3)
76. (4)
77. (2)
78. (5)
79. (1)
80. (2)
81. (3)
82. (1)
83. (1)
84. (2)
85. (4)
86. (5)
87. (5)
88. (1)
89. (2)
90. (4)
91. (4)
92. (1)
93. (1)
94. (3)
95. (3)
96. (3)
97. (2)
98. (5)
99. (4)
100.(1)
