SSC MOCK TEST - 335 (SOLUTION)

1. (A) Honey is related to Bee, while Larva is related to Bug.
2. (C) As,
$9^{2}+9 \rightarrow 90$
Similarly,

$$
20^{2}+20 \rightarrow \mathbf{4 2 0}
$$

3. (D) Smoke cause Pollution, while War cause Destruction.
4. (C) (A)

(B)

(C)

(D)

5. (D) Plash, Lotus and Red Jasmine are State flower of Uttar Pradesh, Haryana and Goa respectively, but Lily is not a state flower of any state of India.
6. (C) (A) $\mathrm{D} \stackrel{\text { opposite }}{\longleftrightarrow} \mathrm{W}$
$\mathrm{C} \stackrel{\text { opposite }}{ } \mathrm{X}$
(B)

$\mathrm{H} \stackrel{\text { opposite }}{ } \mathrm{S}$
(C)

(D)
$V \stackrel{\text { opposite }}{ } \mathrm{E}$
$\mathrm{U} \longleftrightarrow \stackrel{\text { opposite }}{\longrightarrow} \mathrm{F}$
7. (C) 2. Anniversary \rightarrow. Annoy $\rightarrow 3$. Annually $\rightarrow 5$. Another $\rightarrow 4$. Anxious
8. (D)

Here the gender of J is not known.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
9. (C) 43

10. (D)

11. (D)

$\& \stackrel{\text { opposite }}{\longleftrightarrow}$?
© $\stackrel{\text { opposite }}{\longleftrightarrow}$ (
12. (B) From I ${ }^{\text {st }}$ figure,
$5^{2}=25 \xrightarrow{2+5} 7$
From II $^{\text {nd }}$ figure,
$7^{2}=49 \xrightarrow{4+9} 13$
From III $^{\text {rd }}$ figure,
$9^{2}=81 \xrightarrow{8+1} \mathbf{9}$
13. (D)

14. (D) As,
$16 \times 4 \Rightarrow 64+16=80$
Similarly,

$$
13 \times 5 \Rightarrow 65+13=78
$$

15. (C) As,

Similarly,

16. (C)
17. (C) $\underline{\mathbf{w}} \mathbf{v u t} / \underline{\mathbf{v}} \underline{\mathbf{u}} \mathrm{ts} / \mathrm{ut} \underline{\mathbf{t}}$
18. (B)

Total number of rectangle $=1,2,3,4,(1$ and 2$),(3$ and 4$),(1$ and 3$),(2$ and 3$)(1,2,3$ and 4$)$
\therefore Total number of triangles $=9$
19. (A)

Hence, she is in South-west direction with respect to point.
20. (B) The day on 15 August 2020 was Saturday and also year 2020 a is leap year.

Odd day in $2020=2$
Odd day in $2019=1$
Odd day in $2018=1$
\therefore Saturday -4 days $=$ Wednesday
21. (B) $731 \div 13+450-25 \times 43=142$

After changing the signs, we have
$731 \div 43+450-25 \times 13=142$
$17+450-325=142$
$467-325=142$
$142=142$
22. (A)

Similarly,

23. (C)
24. (C)
25. (C)
26. (D) The rivers are arranged in the descending order of their erosional activity.
27. (C) Atala Mosque by Shiriquis of Jaunpur, Bara Sona Mosque by Khaljis of Bengal, Quwat-ulIslam Mosque by Khalji's of Delhi.
28. (B) Weight is mass g Since mass is constant and g is only th of that on the earth. The weight on the moon is only th oi that on the earth. Therefore 2 N ie (B) is the answer.
30. (A) At Equator one can see stars rising perpendicular to the horizon.
33. (A) Bhangra is a form of Indian folk dance. It originated in Sialkot, Punjab. It is associated with the harvest festival of Baisakhi celebrated in the region. Note - Chhau of Mayurbhanj is a form of martial dance.
34. (A) Alauddin Hasan Bahaman Shah (1347-58 AD) was also known as Hasan Gangu and whose original name was Ismail Mukh, founded the Bahmani Kingdom with its capital at Gulbarga (first capital).
38. (B) The United Nations (UN) has six main organs. Five of them - the General Assembly, the Security Council, the Economic and Social Council, the Trusteeship Council and the Secretariat - are based at UN Headquarters in New York. The sixth, the International Court of Justice, is located at The Hague in the Netherlands.
39. (C) UNESCO has 195 Members and 8 Associate Members and is governed by the General Conference and the Executive Board. The Secretariat, headed by the Director-General, implements the decisions of these two bodies. The Organization has more th 50 field offices around the world and its headquarters are located in Paris.
41. (D) Sulphuric acid is called the King of Chemicals because it is used in the preparation of a very large number of other useful chemicals such as hydrochloric acid, nitric acid, dyes, drugs etc. In fact the annual production of sulphuric acid in a country is a measure of the economy of the country.
42. (C) The Barrah dacoity was the first major venture of the revolutionary terrorists of the freedom movement in 1908, in Dhaka district of East Bengal. Pulin Behari Das organized the dacoity which was conducted in the day light, when revolutionaries attacked the residence of the Zamindar of Barrah.
43. (B) NIF scouts, supports and spawns' grassroots innovations developed by individuals and local communities in any technological field, helping in human survival without any help from formal sector.
46. (A) Gold Mines in India are located mainly in Kolar. It had produced tonnes and tonnes of gold. It includes the township of the same name, viz. K.G.F, where reside mainly the families of the employees of Bharat Gold Mines Limited (BGML) and BEML (formerly Bharat Earth Movers Limited).
47. (A) The duration of the day and night is always equal at the Equator. The equator receives equal day and night throughout the year because it does not tilt in relation to the sun's location. Since the equator stays in the same place relative to the sun, the level of sunlight received throughout the year is nearly constant.

$K D$

 Campus

 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
51. (D)

Let total Efficiency capacity

$\mathrm{A} \rightarrow 8$			
$\mathrm{~B} \longrightarrow 4$	24	$\begin{array}{c}3 \\ 6 \\ \mathrm{C} \longrightarrow 6\end{array}$	
-4	(as C is emptying pipe)		

Now $(A+B+C) 1 \mathrm{hr}$ work $=(3+6-4)=5$ unit
Required time to fill the tank by all the pipes together $=\frac{24}{5} \mathrm{hr}=4 \mathrm{hr} 48 \mathrm{~min}$
52. (A) HCF of $\frac{12}{7}, \frac{15}{16}, \frac{21}{4}=\frac{\operatorname{HCF} \text { of }(12,15,21)}{\operatorname{LCM} \operatorname{fof}(7,16,4)}=\frac{3}{112}$
53. (A) Let income of $B=100$

A's income $=75$
C's income $=75 \times \frac{116}{100}=87$
A B
C
75100 87
C's income is more than A's income.
$\therefore \quad$ Required more percentage $=\frac{87-75}{75} \times 100=\frac{12 \times 100}{75}=16 \%$ more
54. (B) As $(x+3)$ is a father of $F(x)=x^{3}+3 x^{2}+2 x+K$
$\mathrm{F}(-3)=0$
$\mathrm{F}(-3)=(-3)^{3}+3(-3)^{2}+2(-3)+\mathrm{K}=0$
$-27+27-6+K=0$
$K=6$
55. (B) $x^{2}-2 x+1=0$
$x^{2}+1=2 x$
Dividing both side by x ,
$\left(x+\frac{1}{x}\right)=2$
Now, $\left(x^{2}+\mathrm{x}^{-2}\right)\left(\mathrm{x}^{3}+\mathrm{x}^{-3}\right)$
$\left(x^{2}+\frac{1}{x^{2}}\right)\left(x^{3}+\frac{1}{x^{3}}\right)$
Squaring both side of equation (i),

$$
\begin{aligned}
& x^{2}+\frac{1}{x^{2}}+2 \times x \times \frac{1}{x}=4 \\
& x^{2}+\frac{1}{x^{2}}=4-2=2
\end{aligned}
$$

Cubing both sides of equation (i) we get,
$\mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}+3 \times \mathrm{x} \times \frac{1}{\mathrm{x}}\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)=8$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$x^{3}+\frac{1}{x^{3}}+6=8$
$x^{3}+\frac{1}{x^{3}}=2$
$\therefore\left(\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}\right)\left(\mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}\right)=2 \times 2=4$
56. (B) Let C.P fo article $=₹ x$

According to question,
$\frac{x-36}{x} \times 100=\frac{84-x}{x} \times 100$
$100 \mathrm{x}-3600=8400-100 \mathrm{x}$
$200 x=8400+3600$
$200 x=12000$
$\mathrm{x}=60$
$\therefore \quad \mathrm{C} . \mathrm{P}=₹ 60$
S.P = ₹ 36
$\operatorname{Loss} \%=\frac{24}{60} \times 100=40 \%$
57. (A) $\frac{\mathrm{P}}{\mathrm{SI}}=\frac{12}{5}$

Let principle $=12$
S.I for 5 years $=5$
S.I for 1 years $=\frac{5}{5}=1$

Rate $=\frac{\text { S.I }}{\text { Principle }} \times 100=\frac{1}{12} \times 100=\frac{25}{3} \%=8 \frac{1}{3} \%$
58. (A)

Let O be the centre of circle

$$
\begin{aligned}
& \angle \mathrm{PQR}=106^{\circ} \\
& \angle \mathrm{PQR}+\angle \mathrm{PSR}=180^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \angle \mathrm{PSR}=180^{\circ}-106^{\circ}=74^{\circ} \\
& \angle \mathrm{POR}=2 \angle \mathrm{PSR} \\
& \angle \mathrm{POR}=2 \times 74=148^{\circ} \\
& \angle \mathrm{POR}+\angle \mathrm{PXR}=180^{\circ} \\
& \angle \mathrm{P} \times \mathrm{R}=180^{\circ}-148^{\circ}=32^{\circ}
\end{aligned}
$$

59．（D）

$\sin \theta=0.8=\frac{8}{10}=\frac{4}{5}=\frac{P}{H}$
According to question，
$\mathrm{P}=4, \mathrm{H}=5, \mathrm{~B}=3$
$B=\sqrt{(H)^{2}-(P)^{2}}=\sqrt{(5)^{2}-(4)^{2}}=\sqrt{25-16}=\sqrt{9}=3$
$\frac{8 \operatorname{cosec} \theta-5 \cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{8 \times \frac{5}{4}-5 \times \frac{3}{5}+1}{\frac{4}{5}+\frac{3}{5}-1}$
$=\frac{10-3+1}{\frac{4+3-5}{5}}=\frac{8}{\frac{2}{5}}=\frac{8 \times 5}{2}=20$
60．（C） $95+93+91+89+$ \qquad $+1$
After 1，next term will be $-1,-3,-5$ and so on．So，it will decrease the sum．
$1+3+5+$ $.+89+91+93+95$
It is sum of odd number up to 95 ．
Sum of odd numbers $=n^{2}$
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \times \mathrm{d}$
$95=1+(n-1) \times 2$
$\frac{94}{2}=n-1$
$\mathrm{n}=48$
Sum of first 48 odd numbers $=48^{2}=2304$

Alternate method：

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) \times d] \\
& =\frac{48}{2}[2 \times 1+(48-1) \times 2]=24 \times 96=2304
\end{aligned}
$$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
61. (C) Let the maximum marks of each subject be 100 .

Total maximum marks of 4 subjects $=(4 \times 100)=400$
The marks obtained by the student $=70 \%$ of $400=280$
Marks obtained by student in $I^{\text {st }}$ subject $=280 \times \frac{5}{5+4+3+2}=100$
Marks obtained by student in $2^{\text {nd }}$ subject $=280 \times \frac{4}{5+4+3+2}=80$
Marks obtained by student in $3^{\text {rd }}$ subject $=280 \times \frac{3}{5+4+3+2}=60$
Marks obtained by student in $4^{\text {th }}$ subject $=280 \times \frac{2}{5+4+3+2}=40$
Passing marks of each subject $=42 \%$ of $100=42$
Hence, he pass the examination in 3 subjects.
62. (B) Let the number be x, y and z respectively.

ATQ,
$\frac{x+y}{2}+z=186$
$\frac{y+z}{2}+x=158$
$\frac{x+z}{2}+y=160$
Adding equation (i), (ii) and (iii),
$\frac{x+z}{2}+z+\frac{y+z}{2}+x+\frac{z+x}{2}+y=186+158+160$
$2(\mathrm{x}+\mathrm{y}+\mathrm{z})=504$
$x+y+z=252$
Average of x, y and $z=\frac{x+y+z}{3}=\frac{252}{3}=84$
63. (C) Speed of train $=45 \mathrm{~km} / \mathrm{h}$
$=45 \times \frac{5}{18}=\frac{25}{2} \mathrm{~m} / \mathrm{s}$
Total distance travelled by train $=(212+188)=400 \mathrm{~m}$
Time $=\frac{\text { Distance }}{\text { Speed }}=\frac{400 \times 2}{25}=32$ seconds
64. (C) Let the sum be ₹ x .
S.I $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{\mathrm{x} \times 4 \times 1}{100}=₹ \frac{\mathrm{x}}{25}$

When interest is compounded half yearly
Rate $=6 \%$ p.a $=\frac{6}{2} \%$ half yearly $=3 \%$ half yearly

K D Campus Pvt. Ltd

Time $=1$ year $=(1 \times 2)$ half year $=2$ half year
C. $I=P\left[\left(1+\frac{R}{100}\right)^{t}-1\right]$
$=x\left[\left(1+\frac{3}{100}\right)^{2}-1\right]$
$=x\left[\frac{10609}{10000}-1\right]=₹ \frac{609 x}{10000}$
ATQ,
$\frac{609 x}{10000}-\frac{x}{25}=104.50$
$\frac{209 x}{10000}=104.50$
$\mathrm{x}=\frac{10450 \times 100}{209}=₹ 5000$

Short trick:

When interest is compounded half yealry, then effective rate of interest
$=\left(\frac{6}{2}+\frac{6}{2}-\frac{\frac{6}{2} \times \frac{6}{2}}{100}\right) \%=6.09 \%$
Difference of rate of interest $=(6.09-4) \%=2.09 \%$
2.09% = ₹ 104.50
$\therefore \quad 100 \%=\frac{104.50}{2.09} \times 100=₹ 5000$
65. (C)

Days Total work Efficiency

12.5 days work of Ram $=(12.5 \times 4)=50$

Remaining work $=120-50=70$
Combined efficiency of Ram and Shyam $=(4+3)=7$
Time taken by Ram and Shyam to complete 70 works $=\frac{70}{7}=10$ days
Hence, Shyam worked for 10 days.
66. (B) Let the x liters of water should be added.

In 30 litres mixture,
Quantity of milk $=30 \times \frac{7}{7+3}=21$ litres
Quantity of water $=(30-21)=9$ litres

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
ATQ,
$\frac{21}{9+x}=\frac{3}{7}$
$147=27+3 x$
$3 \mathrm{x}=120$
$\therefore \quad \mathrm{x}=40$ litres

Short trick:

Milk : Water Milk : Water

Firstly	$(7$	$:$	$3) \times 3$	21	$:$
After mixing	$(3$	$:$	$7) \times 7$	21	$:$
A	49				

$(21+9)$ units $=30$ litres
40 units $=\left(\frac{30}{3} \times 40\right)$ litres $=40$ litres
67. (A) We know that,
$a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$ or $a^{3}+b^{3}+c^{3}-3 a b c=0$
$x+y+z=3.4125-5.6236+2.2111=5.6236-5.6236=0$
Then,
$\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}=0$
68. (B) $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4$
$\cos \theta\left[\frac{1-\sin \theta+1+\sin \theta}{1-\sin ^{2} \theta}\right]=4$
$\frac{\cos \theta \times 2}{\cos ^{2} \theta}=4$
$\frac{2}{\cos \theta}=4$
$\cos \theta=\frac{1}{2}=\cos 60^{\circ}$
$\theta=60^{\circ}$
$\tan \theta+\operatorname{cosec} \theta=\tan 60^{\circ}+\operatorname{cosec} 60^{\circ}=\left(\sqrt{3}+\frac{2}{\sqrt{3}}\right)$
$=\left(\frac{3+2}{\sqrt{3}}\right)=\frac{5}{\sqrt{3}}=\frac{5 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{5 \sqrt{3}}{3}$
69. (B) Number of sphere $=\frac{\text { Volume of bigger sphere }}{\text { Volume of smaller sphere }}=\frac{\frac{4}{3} \pi \times 8 \times 8 \times 8}{\frac{4}{3} \pi \times 4 \times 4 \times 4}=8$
70. (B) Difference between SI and CI for 2 years $=\mathrm{P} \times\left(\frac{\mathrm{R}}{100}\right)^{2}$
$18=\mathrm{A}\left(\frac{12}{100}\right)^{2}$
$18=\frac{9 A}{625}$
$A=\frac{18 \times 625}{9}=₹ 1250$
71. (A) Length of cuboid $=(6 \times 5)=30 \mathrm{~cm}$

Breadth of cuboid $=6 \mathrm{~cm}$
Height of cuboid $=6 \mathrm{~cm}$
Total surface area of cuboid $=2(\mathrm{lb}+\mathrm{lh}+\mathrm{bh})$
$=2(30 \times 6+30 \times 6+6 \times 6) \mathrm{cm}^{2}$
$=2(180+180+36) \mathrm{cm}^{2}$
$=2 \times(396) \mathrm{cm}^{2}$
$=792 \mathrm{~cm}^{2}$
72. (A) Percentage of students in EC $=19 \%$

Ratio = boys and girls = 9:10
Percentage of boys in EC $=\left(19 \times \frac{9}{19}\right) \%=9 \%$
Percentage of girls in $\mathrm{EC}=\left(19 \times \frac{10}{19}\right) \%=10 \%$
Difference in percentage $=\left(\frac{10-9}{19} \times 100\right) \%=5.26 \%$
Percentage of students in CS = 18\%
Ratio of boys and girls $=4: 5$
Percentage of boys in CS $=\left(18 \times \frac{4}{9}\right) \%=8 \%$
Percentage of girls in $\mathrm{CS}=\left(18 \times \frac{5}{9}\right) \%=10 \%$
Difference in percentage $=\left(\frac{10-8}{18} \times 100\right) \%=11.11 \%$
Percentage of students in IT $=21 \%$
Ratio of boys and girls = $3: 4$
Percentage of boys in IT $=\left(21 \times \frac{3}{7}\right) \%=9 \%$
Percentage of girls in IT $=\left(21 \times \frac{4}{7}\right) \%=12 \%$

Difference in percentage $=\left(\frac{12-9}{21} \times 100\right) \%=14.28 \%$
Percentage of students in $\mathrm{ME}=22 \%$
Ratio of boys and girls $=6: 5$
Percentage of boys in ME $=\left(22 \times \frac{6}{6+5}\right) \%=12 \%$
Percentage of girls in ME $=\left(22 \times \frac{5}{6+5}\right) \%=10 \%$
Difference in percentage $=\left(\frac{12-10}{22} \times 100\right) \%=9.09 \%$
Hence difference in the percentage of boys and girls in EC is minimum.
73. (C) From above solution:

Percentage of boys in EC $=9 \%$
Percentage of girls in EC $=10 \%$
Percentage of boys in CS $=8 \%$
Percentage of girls in CS = 10\%
Percentage of boys in IT $=9 \%$
Percentage of girls in IT $=12 \%$
Percentage of boys in ME $=12 \%$
Percentage of girls in $\mathrm{ME}=10 \%$
Percentage of boys in $\mathrm{CE}=20 \% \times \frac{3}{3+2}=12 \%$
Percentage of girls in CE $=20 \%-12 \%=8 \%$
Total percentage of boys in college $=9 \%+8 \%+9 \%+12 \%+12 \%=50 \%$
Total percentage of girls in college $=(100-50) \%=50 \%$
Required ratio $=50 \%: 50 \%=1: 1$
74. (C) From above solution:

Percentage of girls in college $=50 \%$
Percentage of girls in ME $=10 \%$
Required central angle $=\left(\frac{10 \%}{50 \%} \times 360^{\circ}\right)=72^{\circ}$
75. (C) Percentage of students studying in $\mathrm{CS}=18 \%$

Percentage of students studying in IT $=21 \%$
Ratio of student studying CS and IT $=18 \%: 21 \%=6: 7$

MEANINGS IN ALPHABETICAL ORDER

Apathy
Complacent
Discrete
Gloomy
Grim
Illicit
Jubilant
Laudable

Paucity

Prodigious
Rectify
Reiterate
Serenity
Severity
Superiority
Vitality
Zeal
lack of interest, enthusiasm, or concern
self-satisfied
individually separate and distinct
dark or poorly lit
forbidding or uninviting
forbidden by law, rules, or custom
feeling or expressing great happiness
(of an action, idea, or goal) deserving praise and commendation
the presence of something only in small or insufficient quantities great in extent, size, or degree put (something) right repeat or say again the state of being calm, peaceful, and untroubled the fact or condition of being severe the state of being superior
the state of being strong and active
great energy or enthusiasm in pursuit of a cause
or an objective

उ दा से नता
आ $\overline{\text { г }}$ मस तु ष्ट
अलग
अं धरा
निष्ठु र
अवै ध
प्र स नfित
प्र श सी य

क्मी

बहु तबड. \dagger
सं श $\mathrm{T}^{\text {' }}$ ध करना
दा' हरा ना
प्र ${ }^{\text {® }}$ ति
ती व्र ता
श्रे ठठ ता
जो वन- प वि त
उ ₹ सा ह

SSC MOCK TEST - 335 (ANSWER KEY)

1.	(A)	26. (D)
2.	(C)	27. (C)
3.	(D)	28. (B)
4.	(C)	29. (B)
5.	(D)	30. (A)
6.	(C)	31. (A)
7.	(C)	32. (C)
8.	(D)	33. (A)
9.	(C)	34. (A)
10.	(D)	35. (B)
11.	(D)	36. (C)
	(B)	37. (D)
	(D)	38. (B)
	(D)	39. (C)
15.	(C)	40. (C)
	(C)	41. (D)
	(C)	42. (C)
	(B)	43. (B)
	(A)	44. (D)
20.	(B)	45. (B)
	(B)	46. (A)
22.	(A)	47. (A)
	(C)	48. (A)
24.	(C)	49. (B)
25.	(C)	50. (D)

51. (D)
52. (A)
53. (A)
54. (B)
55. (B)
56. (B)
57. (A)
58. (A)
59. (D)
60. (C)
61. (C)
62. (B)
63. (C)
64. (C)
65. (C)
66. (B)
67. (A)
68. (B)
69. (B)
70. (B)
71. (A)
72. (A)
73. (C)
74. (C)
75. (C)
76. (C)
77. (A)
78. (D)
79. (A)
80. (C)
81. (C)
82. (C)
83. (D)
84. (A)
85. (A)
86. (B)
87. (C)
88. (C)
89. (A)
90. (A)
91. (B)
92. (D)
93. (D)
94. (D)
95. (D)
96. (A)
97. (D)
98. (B)
99. (C)
100. (C)
