BPS PO SPECIAL PHASE - I MOCK TEST - 361 (SOLUTION

REASONING

1. (2)

I. Doubt
II. True

Only conclusion II follows.
2. (2)

Only Conclusion II follows.
3. (1)

I. True
II. False

Only Conclusion I follows.
4.
(3)

I. Doubt ${ }^{\text {II. Doubt }}$ or

Either conclusion I or II follow.
5.
(5)

Both conclusion I and II follow.
(6-10) :
create your own ideas \rightarrow ri cso bi sa
(i)
always create new ideas \rightarrow ka hte sa bi
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(ix)
(x)
(xi)

From (iii), (v), (viii) and (x), better \rightarrow loc
From (iv) and (x),
think/insights \rightarrow sit/pet
6. (2)
7. (1)
8. (4)
9. (4)

KD Campus

(11-13):

11. (4) $\mathrm{FC} \| \mathrm{AB}$
$\mathrm{FC}=\mathrm{AB}=9 \mathrm{~m}$
$\mathrm{FD}=\mathrm{FC}+\mathrm{CD}=9+5=14 \mathrm{~m}$
12. (3)
13. (4)
(14-16) :

14. (2)
15. (4)
16. (1)
(17-21) :

17. (1)
18. (3)
19. (1)
20. (3)
21. (4)
(22-26) :

Floor	Person	Watch
7	C	Rado
6	O	Fastrack
5	N	Titan
4	A	Sonata
3	Q	Rolex
2	D	Casio
1	P	Optima

22. (1)
23. (2)
24. (3)
25. (4)
26. (3)
27. (1) Given statements :
$\mathrm{W}>\mathrm{Z} \geq \mathrm{J}=\mathrm{Y}<\mathrm{K}<\mathrm{Q}$
D $>\mathrm{Z}=\mathrm{N}$
Combining both the statements, we get
D $>\mathrm{Z}=\mathrm{N} \geq \mathrm{J}=\mathrm{Y}<\mathrm{K}<\mathrm{Q}$

Again, from (i) and (ii), we get
D > Z = N < W
Hence, conclusion ($\mathrm{W} \leq \mathrm{D}$) is not true.
28. (4) Given statements :
$\mathrm{Q} \geq \mathrm{P}=\mathrm{Y}>\mathrm{J}<\mathrm{L}>\mathrm{B}$
$\mathrm{R} \leq \mathrm{L}=\mathrm{A}<\mathrm{H}$
Combining both the statements, we get
$\mathrm{Q} \geq \mathrm{P}=\mathrm{Y}>\mathrm{J}<\mathrm{L}=\mathrm{A}<\mathrm{H}$
Thus, we can' t compare Q and H .
Hence conclusion $I(Q \geq H)$ is not true.
Again, combining (i) and (ii), we get
$\mathrm{Q} \geq \mathrm{P}=\mathrm{Y}>\mathrm{J}<\mathrm{L} \geq \mathrm{R}$
Thus, we can't compare Y and R.
Hence, II $(Y=R)$ is not true.
29. (5) Given statements:
$A<S=U \leq V \ldots$ (i)
$\mathrm{T}<\mathrm{R}=\mathrm{V} \ldots$... (ii)
Combining both the statements, we get
A $<\mathrm{S}=\mathrm{U} \leq \mathrm{V}=\mathrm{R}>\mathrm{T}$
Thus, $S \leq R$. Hence conclusion $I(R>S)$ is true.
Again, A $<\mathrm{R}$ is true. Hence both conclusion I and II are true.
30. (2) Given statements:
$\mathrm{B} \geq \mathrm{C}>\mathrm{E} \leq \mathrm{G}<\mathrm{H}=\mathrm{N}$
$\mathrm{P}=\mathrm{R} \geq \mathrm{T} \geq \mathrm{C}$
Combining both the statements, we get
$\mathrm{P}=\mathrm{R} \geq \mathrm{T} \geq \mathrm{C}>\mathrm{E} \leq \mathrm{G}<\mathrm{H}=\mathrm{N}$
We can't compare R and N.
Hence, $\mathrm{I}(\mathrm{N}>\mathrm{R})$ is not true.
Again, $\mathrm{P}>\mathrm{E}$ or $\mathrm{E}<\mathrm{P}$ is true.
Hence, conclusion II is true.

(31-35) :

31. (1)
(1) $32 .(5)$
(2) $\frac{7441}{34} \times 12-110=? \times 9$
$\frac{2626.23-110}{9}=$?
? $=279.5 \approx 280$
37. (3) $\frac{989}{34} \times \frac{869}{65} \times \frac{515}{207}=$?
38. (5) $(32)^{2}+(24)^{2}-(17)^{2} \approx$?
$1024+576-289=$?
$?=1311 \approx 1310$
39. (3) ? $\approx 74 \times 46 \div 22$
$?=154.72 \approx 160$
40. (1) $\frac{67}{100} \times 800-231 \approx ?-\frac{23}{100} \times 790$
$536-231+181.7=$?
$\therefore \quad ?=486.7 \approx 490$
(41-45) :
Speed of Vehicle A on 1 st day $=\frac{832}{16}=52 \mathrm{kmph}$
Speed of Vehicle A on 2 nd day $=\frac{864}{16}=54 \mathrm{kmph}$
Speed of Vehicle B on 1st day $=\frac{516}{12}=43 \mathrm{kmph}$
Speed of Vehicle B on 2nd day $=\frac{774}{18}=43 \mathrm{kmph}$
Speed of Vehicle C on 1st day $=\frac{693}{11}=63 \mathrm{kmph}$
Speed of Vehicle C on 2 nd day $=\frac{810}{18}=45 \mathrm{kmph}$
Speed of Vehicle D on 1 st day $=\frac{552}{12}=46 \mathrm{kmph}$
Speed of Vehicle D on 2nd day $=\frac{765}{15}=51 \mathrm{kmph}$
Speed of Vehicle E on 1st day $=\frac{935}{17}=55 \mathrm{kmph}$

Speed of Vehicle E on 2 nd day $=\frac{546}{14}=39 \mathrm{kmph}$
Speed of Vehicle F on 1st day $=\frac{703}{19}=37 \mathrm{kmph}$
Speed of Vehicle F on 2nd day $=\frac{636}{12}=53 \mathrm{kmph}$
41. (4) The speed of Vehicle B on both the days is 43 kmph
42. (3) Speed of A on 1 st day $=52 \mathrm{kmph}$

Speed of C on 1 st day $=63 \mathrm{kmph}$
\therefore Difference $=63-52=11 \mathrm{kmph}$
43. (5) Speed of Vehicle C on 2 nd day $=45 \mathrm{kmph}=45 \times \frac{5}{18}=2.5 \times 5=12.5 \mathrm{~m} / \mathrm{s}$
44. (5) Required $\%=\frac{636}{703} \times 100=90.46 \approx 90 \%$
45. (2) Required Ratio $=\frac{\text { Speed of Vehicle D on day } 2}{\text { Speed of Vehicle E and on day } 2}=\frac{51}{39}=\frac{17}{13}=17: 13$
46. (3) The given number series is based on the following pattern.
$20+2^{2}=24$
$24+3^{2}=33$
$33+4^{2}=49$
$49+5^{2}=74$
$74+6^{2}=110$
$\therefore \quad ?=110+7^{2}=110+49=159$
47. (5) The given number series is based on the following pattern.
$529=23 \times 23$
$841=29 \times 29$
$961=31 \times 31$
$1369=37 \times 371521=39 \times 39$
$1681=41 \times 41$
$2025=45 \times 45$
$\therefore \quad$? $=47 \times 47=\mathbf{2 2 0 9}$
Here, the numbers are formed by squaring the prime numbers greater than 23.
48. (4) The given number series is based on the following pattern.
$16 \times 1.5=24$
$24 \times 2=48$
$48 \times 2.5=120$
$120 \times 3=360$
$360 \times 3.5=1260$
$\therefore \quad ?=1260 \times 4=\mathbf{5 0 4 0}$
49. (1) The given number series is based on the following pattern.
$8 \times 4-1=32-1=31$
$31 \times 4-2=124-2=122$
$122 \times 4-3=488-3=485$
$485 \times 4-4=1940-4=1936$
$1936 \times 4-5=7744-5=7739$
$\therefore \quad ?=7739 \times 4-6=30956-6=\mathbf{3 0 9 5 0}$
50. (2) The given number series is based on the following pattern.
$499+1 \times 123=622$
$622+2 \times 123=868$
$868+3 \times 123=1237$
$1237+4 \times 123=1729$
$1729+5 \times 123=2344$
$\therefore \quad ?=2344+6 \times 123=2344+738=\mathbf{3 0 8 2}$
51. (4) Initially, let x g of water and Acid was taken. Initially 1st process

First test tube $=(x-20) g$
Second test tube $=(x+20) g$
2nd process
First test tube $=(x-20)+(x+20) \times \frac{2}{3}$
Second test tube $=(x+20) \times \frac{1}{3}$

$$
\begin{aligned}
& (x-20)+\frac{2}{3}(x+20)=4 \times \frac{1}{3}(x+20) \\
& x-20=\frac{2}{3}(x+20) \\
& 3 x-60=2 x-40 \\
& x=100 g
\end{aligned}
$$

52. (1) Total actual weight of all girl $=47 \times 75-45+25=3525-20=3505 \mathrm{~kg}$.
\therefore Average weight $=\frac{3505}{75}=46.73 \mathrm{~kg}$
53. (2) Amount $=\operatorname{Principal}\left(1+\frac{\text { Rate }}{100}\right)^{\text {Tine }}=20000\left(1+\frac{10}{100}\right)^{2}\left(1+\frac{20}{100}\right)$
(Rate of interest for the first year $=10 \%$, Time $=2$ half years)
$=₹\left(20000 \times \frac{11}{10} \times \frac{11}{10} \times \frac{6}{5}\right)=₹ 29040$
\therefore C.I. $=₹(29040-20000)=₹ 9040$
54. (4) From statement I,

Speed of car $=\frac{\text { Distance covered }}{\text { Time taken }}=\frac{135}{3}=45 \mathrm{kmph}$
From statement II,
Speed of car $=\frac{270}{6}=45 \mathrm{kmph}$
55. (3) From statements I and II,

Let the number be $10 y+x$
where $x>y$
$x y=72$
$x-y=1$
$(x+y)^{2}=(x-y)^{2}+4 x y$
$(x+y)^{2}=1+4 \times 72$
$(x+y)^{2}=1+288=289$
$x+y= \pm 17 \quad \ldots$. (iii) (ingore - ve value)
From equations (ii) and (iii),
$x=9$ and $y=8$
$\therefore \quad$ Number $=89$
56. (1) From statement I,

Number of boys $=2500 \times \frac{40}{100}=1000$
Number of girls $=2500-1000=1500$
\therefore Required ratio $=1500: 1000=3: 2$
Statement B is superfluous.
57. (1) For a right angled triangle,

Hypotenuse $=\sqrt{6^{2}+8^{2}}=\sqrt{36+64}=\sqrt{100}=10 \mathrm{~cm}=$ Largest side
$\therefore \quad$ Side of square $=3 \times 10=30 \mathrm{~cm}$
Dignonal of square $=\sqrt{2} \times 30=30 \sqrt{2} \mathrm{~cm}$
58. (2) If total maximum marks be x,

Then,
$\frac{x \times 64}{100}=2240-128=2112$
$?=\frac{2112 \times 100}{64}=3300$
Marks obtained by 54 unite $=2240-907=1333$
Required percentage $=\frac{1333}{3300} \times 100 \approx 40 \%$
59. (1) Let the distance between villages A and B be $x \mathrm{~km}$.
$\frac{x}{40}-\frac{x}{60}=2 \Rightarrow \frac{3 x-2 x}{120}=2$
$x=2 \times 120=240 \mathrm{~km}$
60. (3) If the number of ₹ 2 coins be x, then number of $₹ 5$ coins $=x-5$
$2 x+5(x-5)=50-26$
$2 x+5 x-25=24$
$7 x=24+25=49$
$x=\frac{49}{7}=7$
61. (5) Total number $=\frac{90000}{100}\left[\frac{14.3 \times 7}{18}+\frac{16.2 \times 5}{9}+\frac{18.4 \times 3}{10}+\frac{16.8 \times 3}{9}+\frac{12.6 \times 2}{5}+\frac{21.7 \times 2}{10}\right]$
$=5005+8100+4968+5040+4536+3906=31555$
62. (1) $\mathrm{T}_{\mathrm{O}}=90000 \times \frac{16.8}{100} \times \frac{4}{9}=6720$
$\mathrm{T}_{\mathrm{P}}=90000 \times \frac{12.6}{100} \times \frac{2}{5}=4536$
\therefore Differene $=6720-4536=2184$
63. (5) $\mathrm{M}_{1-\mathrm{O}}=90000 \times \frac{16.8}{100} \times \frac{4}{9} 6720$
$M_{3-L}=90000 \times \frac{14.3}{100} \times \frac{4}{18}=2860$
$\therefore \quad$ Required $\%=\frac{6720}{2860} \times 100=234.96 \% \approx 235 \%$
64. (5) $\operatorname{Total}_{\mathrm{Q}}=\frac{90000}{100} \times 21.7=19530$
$\operatorname{Total}_{M}=\frac{90000}{100} \times 16.2=14580$
$\therefore \quad$ Required $\%=\left(\frac{19530-14580}{14580}\right) \times 100=\frac{495000}{14580}=33.95 \% \approx 34 \%$
65. (2) $\operatorname{Total}_{\mathrm{N}}=\frac{90000}{100} \times 18.4=16560$
$M_{2-\mathrm{o}}=\frac{90000}{100} \times 16.8 \times \frac{3}{9}=5040$
$\therefore \quad$ Ratio $=\frac{16560}{5040}=\frac{23}{7}=23: 7$
66. (1) $7 x+6 y+4 z=122$
$4 x+5 y+3 z=88$
$9 x+2 y+z=78$
By equation (iii) $\times 3-$ equation (ii),
$27 x+6 y+3 z=234$
$4 x+5 y+3 z=88$
$-$
$23 x+y=146$
By equation (iii) $\times 4$ - equation (i),
$36 x+8 y+4 z=312$
$7 x+6 y+4 z=122$

| $-\quad-\quad-$ | - |
| :--- | :--- | :--- |
| $29 x+2 y$ | $=190$ |

By equation (iv) $\times 2-$ equation (v)
$46 x+2 y=292$
$29 x+2 y=190$

- - -

$17 x=102$
$x=6$
From equation (iv),
$23 \times 6+y=146$
$y=146-138=8$
From equation (iii),
$9 \times 6+2 \times 8+z=78$
$54+16+z=78$
$z=78-70=8$
Clearly, $x<y=z$
67. (3) By equation II $\times 2$ - equation (I)
$8 x+6 y=118$
$7 x+6 y=110$

- - - .
$x=8$
From equation (I),
$7 \times 8+6 y=110$
$6 y=110-56=54$
$y=9$
From equation (III),
$8+z=15$
$z=7$
Clearly, $x<y>z$

KD Campus

68. (4) I. $x=\sqrt{(36)^{\frac{1}{2}} \times(1296)^{\frac{1}{4}}}=\sqrt{6 \times 6}=6$

By equation II $\times 3-$ equation III
$6 y+9 z=99$
$6 y+5 z=71$

- - - .
$4 z=28$
$z=7$
From equation II,
$2 y+3 \times 7=33$
$2 y=33-21=12$
$y=6$
$x=y<z$

69. (2) By equation $\mathrm{I} \times 5-\mathrm{II} \times 8$
$40 x+35 y=675$
$40 x+48 y=792$
\qquad
$-13 y=-117$
$y=9$
From equation I,
$8 x+7 \times 9=135$
$8 x=135-63=72$
$x=9$
From equation III,
$9 \times 9+8 z=121$
$8 z=121-81=40$
$z=5$
Clearly, $x=y>z$
70. (5) I. $(x+y)^{3}=1331$
$x+y=11$
$y=11-x$
From equation III,
$x(11-x)=28$
$11 x-x^{2}=28$
$x^{2}-11 x+28=0$
$x^{2}-7 x-4 x+28=0$
$x(x-7)-4(x-7)=0$
$(x-7)(x-4)=0$
$x=7$ or 4
From equation I
$y=4$ or 7
From equation II
$7-4+z=0$
$z=-3$
$4-7+z=0$
$z=3$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009		
Words	Meaning in English	Meaning in Hindi
Deflect	Prevent the occurrence of, obviate	हट T ना, मु ड. ना
Flee	Run away quickly	प रा रहा' ना , छा' ड .
Mischievous	Deliberately causing harm	नु कस न पुु चा ने वा ल
Elaborate	Make more complex, intricate	जट ल बना ना, उ ल ¢ झा
Nebulous	Lacking definite limits	उस पटट
Vaguely	Not clearly expressed	अस पट
Morphed	Cause to change shape in a computer animation	स्पबद लना, आ का र बदलना
Spurious	Plausible but false	मिथ य, अवै ध
Wrongheaded	Ideas based on false judgement	दु रा ग्र ही
Absurd	meaningless	निरथ ${ }^{\circ}$ का बे तु का
Parody	A composition that imitates somebody	नकल करना,
Ridiculous	Inspiring scornful pity, irrelevant	मु ख ता पू प「
Parodists	Mimics literary musical style for comic effect	पै रा' ड \dagger का र
Precedent	An example that is used to justify similar occurrences at a later time	उ दा हरप, मिसा ल
Renaissance	The revival of learning and culture	पु नजึ गरप, नवयु ग
Iridescent	Full of colour	चमकदा र
Jeopardize	Put at risk, endanger	ज' खि म में ड T लना
Irreversible	Incapable of being reversed	अर्परवर्त नी य
Impertinent	Improperly forward	असं गत, गु ₹ ता ख, धु ठठ

IBPS PO SPECIAL PHASE - I MOCK TEST
 361 (ANSWER KEY)

1. (2)
2. (2)
3. (1)
4. (3)
5. (5)
6. (2)
7. (1)
8. (4)
9. (4)
10. (5)
11. (4)
12. (3)
13. (4)
14. (2)
15. (4)
16. (1)
17. (1)
18. (3)
19. (1)
20. (3)
21. (4)
22. (1)
23. (2)
24. (3)
25. (4)
26. (3)
27. (1)
28. (4)
29. (5)
30. (2)
31. (1)
32. (5)
33. (2)
34. (4)
35. (2)
36. (2)
37. (3)
38. (5)
39. (3)
40. (1)
41. (4)
42. (3)
43. (5)
44. (5)
45. (2)
46. (3)
47. (5)
48. (4)
49. (1)
50. (2)
51. (4)
52. (1)
53. (2)
54. (4)
55. (3)
56. (1)
57. (1)
58. (2)
59. (1)
60. (3)
61. (5)
62. (1)
63. (5)
64. (5)
65. (2)
66. (1)
67. (3)
68. (4)
69. (2)
70. (5)
71. (4)
72. (3)
73. (2)
74. (1)
75. (4)
76. (3)
77. (3)
78. (2)
79. (3)
80. (2)
81. (1)
82. (3)
83. (2)
84. (5)
85. (4)
86. (3)
87. (2)
88. (5)
89. (2)
90. (5)
91. (2)
92. (1)
93. (3)
94. (4)
95. (5)
96. (4)
97. (4)
98. (3)
99. (4)
100.(2)
