Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

IBPS PO SPECIAL PHASE - I - 367 (SOLUTION)

REASONING

(1-5):

Days \longrightarrow Month \downarrow	$\mathbf{1 0}^{\text {th }}$	$\mathbf{1 1}^{\text {th }}$
January	Y	X
February	W	Q
March	Z	R
April	P	V

1. (3)
2. (4)
3. (1)
4. (4)
5. (4)
(6-10) :

6. (2)
7. (3)
8. (4)
9. (3)
10. (4)
(11-15) :
11. (1) $\mathrm{C}<\mathrm{E} \leq \mathrm{P} \leq \mathrm{S}$ and $\mathrm{C}<\mathrm{E} \leq \mathrm{P}>\mathrm{Q}$
I. $\mathrm{S}>\mathrm{C} \rightarrow$ True
II. $\mathrm{E}<\mathrm{Q} \rightarrow$ False

Hence, Only conclusion I is true.
12. (2) $\mathrm{S} \geq \mathrm{R}>\mathrm{G}=\mathrm{N}<\mathrm{L} \leq \mathrm{Q}$
I. $\mathrm{R}>\mathrm{L} \rightarrow$ False
II. $\mathrm{Q}>\mathrm{N} \rightarrow$ True

Hence, Only conclusion II is true.
13. (1) $\mathrm{S} \geq \mathrm{U}>\mathrm{V}=\mathrm{T}$
I. $\mathrm{S}>\mathrm{T} \rightarrow$ True
II. $\mathrm{N}>\mathrm{U} \rightarrow$ False

Hence, Only conclusion I is true.
14. (4) $\mathrm{D}=\mathrm{H} \geq \mathrm{P} \geq Z>\mathrm{N}$
I. $\quad \mathrm{D} \geq \mathrm{N} \rightarrow$ False
II. $\mathrm{Z}<\mathrm{D} \rightarrow$ False

Hence, Neither conclusion I nor II is true.
15. (4) $\mathrm{F} \geq \mathrm{J} \leq \mathrm{B}=\mathrm{S}<\mathrm{N}$
I. $\mathrm{S}>\mathrm{N} \rightarrow$ False
II. $\mathrm{F} \leq \mathrm{N} \rightarrow$ False

Hence, Neither conclusion I nor II is true.
(16-20) :

21. (4) $\therefore \mathrm{FZ}=\mathrm{XY}=9 \mathrm{~m}$
$\therefore \mathrm{FD}=\mathrm{FZ}+\mathrm{ZD}=9+5=14 \mathrm{~m}$
22. (3)
23. (4)
24. (5)
(25-29) :

25.	(4)	26.	(2)	27.	(3)
28.	(5)	29.	(2)	30.	(2)
31.	(1)	32.	(3)	33.	(5)
34.	(4)	35.	(2)		

Maths

36. (3) $21 \quad 26 \quad 33 \quad 44 \quad 63 \quad 98 \quad 165$

$\frac{K \searrow}{\text { Campus }}$
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
37. (2) $52 \div 2+2=26+2=28$
$28 \times 2+2=56+2=58$
$58 \div 2+2=29+9=31$
$31 \times 2+2=62+2=64$
$64 \div 2+2=32+2=34$
38. (4) $29+(18 \times 1-2)=29+16=45$
$45+(18 \times 2-2)=45+34=79$
$79+(18 \times 3-2)=79+52=131$
$131+(18 \times 4-2)=131+70=201$
39. (5)

40. (4) $185.01+60 \div(29.9 \div 8.66)=$?
$\Rightarrow 185+60 \times \frac{9}{30}=$?
\Rightarrow ? $=185+18$
\Rightarrow ? = 203
41. (1) $299.97 \div 12 \times 13.98-?=282$
$\Rightarrow \frac{300}{12} \times 14-?=282$
$\Rightarrow 25 \times 14-$? $=282$
$\Rightarrow 350-$? $=282$
$\Rightarrow 350-282=$?
\Rightarrow ? $=68$
42. (2) 88.025% of $450=(?) \%$ of 109.998
$\Rightarrow 88 \% \times 450=? \% \times 110$
$\Rightarrow 88 \times 450=? \times 110$
$\Rightarrow 8 \times 450=? \times 10$
$\Rightarrow 8 \times 45=$?
\Rightarrow ? $=360$
43. (5) I. Ratio of ages of Swati and Jyoti 6 years ago was 9:7,
i.e. $\frac{s-6}{j-6}=\frac{9}{7}$
II. Ratio of ages of Jyoti and Urvashi after 10 years will be $6: 7$,
i.e. $\frac{j+10}{u+10}=\frac{6}{7}$
III. Sum of ages of Jyoti, Rakhi, Urvashi and Swati is 91, i.e.
$j+r+u+s=91$
We can't solve the question with these three statements.
Hence, option (e) is the answer.
44. (2) Statement I and II:

Total mangoes given to men

$$
=\frac{114 \times 10}{10+5+4}=60
$$

Total mangoes given to women
$=\frac{114 \times 5}{10+5+4}=30$
Total mangoes given to children
$=\frac{114 \times 4}{10+5+4}=24$
From II: let mangoes received by 1 child is ' a ' and that of $1 \mathrm{man}=$ ' 2 a '
Hence, statement I and II together are not sufficient
Statement I and III :
Total mangoes given to men
$=\frac{114 \times 10}{10+5+4}=60$
Total mangoes given to women
$=\frac{114 \times 5}{10+5+4}=30$
Total mangoes given to children
$=\frac{114 \times 4}{10+5+4}=24$
Let mangoes received by 1 men, 1 women and 1 child is $4 x, 3 x$ and $2 x$ respectively
Ratio of men, women and child
$=\frac{60}{4 x}: \frac{30}{3 x}: \frac{24}{2 x}=15: 10: 12$
So, men $=\frac{37 \times 15}{15+10+12}=15$
Women $=\frac{37 \times 10}{15+10+12}=10$
Children $=\frac{37 \times 12}{15+10+12}=12$
Number of mangoes each man, woman and
child together receive $=\frac{60}{15}+\frac{30}{10}+\frac{24}{12}=9$
Hence, statement I and III together are sufficient

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

From I and III
Speed of train $P=\frac{Y+280}{10.4}$
Length of train $=240$ meter
Speed $=\frac{240+280}{10.4}=50 \mathrm{~m} / \mathrm{sec}$
Thus, the data given in statement I and III are sufficient to answer the question.
So option (b) is the correct answer.
45. (2) From Statement II :

Given cost price $=$ Rs. 100
From Statement I :
Say CP = X
Then, Marked price $=140 \%$ of $\mathrm{X}=1.4 \mathrm{X}$
From statement III :
Selling price $=$ Marked Price (1 - Discount\%) = Marked price ($1-21 \%$)
Now, if we combine Statement I \& statement III

Selling price $=(1.4 \mathrm{X}) \times\left(\frac{79}{100}\right)$
Profit (Gain) $=1.106 \mathrm{X}$
Gain \%=10.6\%
\therefore Statements I and III together are sufficient to answer the question.
46. (4) Initial Speed of train $B=\frac{500}{40}=\frac{25}{2} \mathrm{~m} / \mathrm{s}$

Speed of car $=70 \times \frac{5}{18}=\frac{350}{18} \mathrm{~m} / \mathrm{s}$

Relative speed $=\frac{350}{18}-\frac{25}{2}=\frac{125}{18} \mathrm{~m} / \mathrm{s}$
Time taken by car $=$
$\frac{\text { Distance }}{\text { Relative speed }}=\frac{450}{125} \times 18=\frac{18 \times 18}{5} \mathrm{sec}$
Distance covered by a car $=\frac{18 \times 18}{5} \mathrm{sec}$
$=\frac{18 \times 18}{5} \times \frac{350}{18}=1260 \mathrm{~m}$
After middle point, the relative speed
$=70-60=5 \times \frac{5}{18} \mathrm{sec}$

Time taken to completely pass the train
B from its middle point $=\frac{150}{5 \times \frac{5}{18}}=90 \mathrm{sec}$
Distance covered by car in 540 sec
$=90 \times \frac{350}{18}=1750 \mathrm{~m}$
Total distance cover by car $=1750+1260$
$=3010 \mathrm{~m}$ or 3.01 km
47. (2) The train can cover $(200+200) m$ distance in 20 seconds which means the speed of the train is $20 \mathrm{~m} / \mathrm{s}$. Relative speed of man and train is $25 \mathrm{~m} / \mathrm{s}$. To cover the distance of 200 metre, it will take 8 sec .
48. (3) Speed of train $D=\frac{550}{22} \times \frac{18}{5}=90 \mathrm{~km} / \mathrm{hr}$

Distance cover by train D in 3 hrs
$=90 \times 3=270 \mathrm{~km}$
Relative speed of both the trains $=90+$ $105=195 \mathrm{~km} / \mathrm{hr}$
Distance travel by both the trains in 2 hr
$=195 \times 2=390 \mathrm{~km}$
Total distance $=390+270=660 \mathrm{~km}$
49. (4) Speed of Train $F=\frac{(200+220)}{18} \times \frac{18}{5}$
$=84 \mathrm{~km} / \mathrm{hr}$
Average Speed
$=\frac{\text { Total Distance }}{\text { Total Time taken }}=\frac{600}{\frac{200}{84}+\frac{200}{56}+\frac{200}{21}}$
$=38 \frac{10}{13} \mathrm{kmph}$
50. (2) Speed of train $\mathrm{E}=\frac{(200+280)}{48}=20 \mathrm{~m} / \mathrm{sec}$

Distance travel by both the train is same. Then,
$\Rightarrow 15 \times(\mathrm{x}-20)=5 \times(2 \mathrm{x}-10)$
$=3 \mathrm{x}-30=2 \mathrm{x}-10$
or, $x=20 \mathrm{~m} / \mathrm{sec}$
Speed of train M in $\mathrm{Km} / \mathrm{hr}=20 \times \frac{18}{5}$
$=72 \mathrm{~km} / \mathrm{hr}$

$\frac{K \searrow}{\text { Campus }}$
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
51. (5) Let the present ages of daughter and mother be x and $(60-\mathrm{x})$ years respectively.
Then, $(60-x)-6=5(x-6)$
$\Rightarrow 54-x=5 x-30$
$\Rightarrow 6 \mathrm{x}=84$
$\Rightarrow \mathrm{x}=14$
\Rightarrow Daughter's age after 6 years $=(x+6)$
$=20$ years .
52. (4) Speed of train in $\mathrm{m} / \mathrm{sec}=72 \times \frac{5}{18}$
$=20 \mathrm{~m} / \mathrm{sec}$
Let length of train $=x$
Let length of bridge $=y$
$(x+y)=35 \times 20=700(1)$
Speed of another train in $\mathrm{m} / \mathrm{sec}$
$=54 \times \frac{5}{18}=15 \mathrm{~m} / \mathrm{sec}$
$\Rightarrow(\mathrm{x}+\mathrm{x})=(60+52) \times(20-15)$
$\Rightarrow 2 \mathrm{x}=112 \times 5$
$\Rightarrow 2 \mathrm{x}=560$
$\Rightarrow x=280$
Put value of x in equation,
$280+y=700$
$\mathrm{y}=700-280=420 \mathrm{~m}$
53. (1) Let Jyoti's salary is Rs. X per month.
$\therefore \frac{12 \mathrm{x}}{100} \times \frac{125}{100}=4800$
$\mathrm{x}=$ Rs. 32,000
54. (2) $40+\frac{2}{5} \mathrm{P}=20+\frac{2}{7} \mathrm{Q}=10+\frac{9}{17} \mathrm{R}$
$\mathrm{Q}=70+\frac{7}{5} \mathrm{P}, \mathrm{R}=\frac{510}{9}+\frac{34}{45} \mathrm{P}$
$\mathrm{P}+70+\frac{7}{5} \mathrm{P}+\frac{510}{9}+\frac{34}{45} \mathrm{P}=600$,
A = Rs. 150
55. (3) Let the original SP be x.
$\frac{7}{10}$ of the $\mathrm{SP}=\frac{7 \mathrm{x}}{10}$
Profit $=20 \%$
$C P=100 \times \frac{\left(\frac{7 x}{10}\right)}{120}=\frac{7 x}{12}$

If he sells the product at 20% less than the original SP

New SP $=80 \%$ of $x=\frac{4 x}{5}$
From (1) and (2)
Profit $\%=\left\{\left(\frac{4 \mathrm{x}}{5}-\frac{7 \mathrm{x}}{12}\right) /\left(\frac{7 \mathrm{x}}{12}\right)\right\} \times 100$
$=37 \frac{1}{7}$
56. (2) $[(29.98 \%$ of 779.95$)+(25.05 \%$ of 219.97$)]=$? $[(30 \% \times 780)+(25 \% \times 220)]$
$\sqrt{\left(\frac{30}{100} \times 780\right)+\left(\frac{25}{100} \times 220\right)}$
$\sqrt{(234+55)}=\sqrt{(289)}=17$
57. (3) $\sqrt[3]{4095.87}-(\sqrt{360.84}-12.054) \div 6.97=$?
$\Rightarrow \sqrt[3]{4096}-(\sqrt{361}-12) \div 7=?$
$\Rightarrow 16-(19-12) \div 7$
$\Rightarrow 16-7 \div 7$
$\Rightarrow 16-1=15$
58. (1) $\sqrt{1520.952} \div 25.921 \times 18.021=?-516.95$
$\Rightarrow \sqrt{1521} \div 26 \times 18=\times-517$
$\Rightarrow 39 \times \frac{18}{26}=x-517$
$\Rightarrow 27=\mathrm{x}-517$
$\Rightarrow 27+517=x$
$\Rightarrow x=544$
59. (2) 12.03% of $849.95+1499.92 \%$ of $25.95=$
$3.98 \times(?)$
$\Rightarrow 12 \% \times 850+1500 \% \times 26=4 \times x$
$\Rightarrow \frac{12}{100} \times 850+\frac{1500}{100} \times 26=4 \times x$
$\Rightarrow 102+390=4 x$
$\Rightarrow 492=4 \mathrm{x}$
$\Rightarrow x=\frac{492}{4}=123$
60. (4) $\left[(15.96)^{2}+7.5 \%\right.$ of 2840$] \div 7=$?
$?=\left(16^{2}+\frac{7.5}{100} \times 2840\right) \div 7$
$?=(256+213) \div 7$
? $=469 \div 7$
? $=67$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
61. (1) Engineers in Karnataka in 2010
$=\frac{12}{100} \times 7500=900$
Average number of engineers from
Tamilnadu in 2011, 2013 and 2014
$=\frac{1500+900+900}{3}=\frac{3300}{3}$
Average number of engineers from all the states in 2012
$=\frac{1200+1200+1800}{3}=\frac{4200}{3}$
Percentage $=\{(4200 / 3)-(3300 / 3)\} /$ (4200/3) $=21.4 \%$
62. (2) Engineers in Karnataka in 2010
$=\frac{12}{100} \times 7500=900$
Similarly, engineers in different states in different years :
Total number of engineers in 3 states in $2015=900+1200+1500=3600$
In $2015,67 \%$ are male engineers. So,
Female engineers
$=\frac{100-67}{100} \times 3600=1188$
63. (2) Number of engineers in $2010=900+1800$ $+1200=3900$
Number of engineers in $2011=1500+$ $1500+900=3900$
Number of engineers in $2012=1200+$ $1200+1800=4200$
Number of engineers in $2013=1500+$ $900+900=3300$
Number of engineers in $2014=1500+$ $900+1200=3600$
Number of engineers in $2015=900+1200$ $+1500=3600$
Therefore, number of engineers in year 2010 and 2011 are equal and number of engineers in year 2014 and 2015 are equal.
64. (1) Percentage increase in the number of engineers in Maharashtra from 2011 to $2015=(1500-900) / 900 \times 100=66.67 \%$ Percentage decrease in the number of engineers in Karnataka from 2013 to 2015
$=(1500-900) / 1500 \times 100=40 \%$
Difference $=66.67-40=26.67 \%$
65. (3) Difference of engineers from Karnataka and Tamilnadu in 2013 = 1500-900
$=600$
Difference of engineers from Maharashtra and Tamilnadu in 2010 $=1800-1200$
$=600$
Ratio $=600: 600=1: 1$
(66-70):
66. (2) I. $2 x^{2}+9 x+9=0$
$2 x^{2}+6 x+3 x+9=0$
$2 x(x+3)+3(x+3)=0$
$x=\frac{-3}{2},-3$
II. $15 y^{2}+16 y+4=0$
$15 y^{2}+10 y+6 y+4=0$
$5 y(3 y+2)+2(3 y+2)=0$
$y=\frac{-2}{5}, \frac{-2}{3}$
$x<y$
67. (4) I. $2 x^{3}=16$
$x^{3}=8$
$x=2$
II. $2 y^{2}-9 y+10=0$
$2 y^{2}-5 y-4 y+10=0$
$y(2 y-5)-2(2 y-5)=0$
$y=2, \frac{5}{2}$
$\mathrm{x} \leq \mathrm{y}$
68. (5) I. $\overline{6} x^{2}-11 x+4=0$
$6 x^{2}-8 x-3 x+4=0$
$2 x(3 x-4)-1(3 x-4)=0$
$x=\frac{1}{2}, \frac{4}{3}$
II. $3 y^{2}-5 y+2=0$
$3 y^{2}-3 y-2 y+2=0$
$3 y(y-1)-2(y-1)=0$
$\mathrm{y}=\frac{2}{3}, 1$
69. (3) I. $3 x^{2}+11 x+10=0$
$3 x^{2}+6 x+5 x+10=0$
$3 x(x+2)+5(x+2)=0$
$x=-2, \frac{-5}{3}$
II. $y^{2}+11 y+14=0$
$2 \mathrm{y}^{2}+7 \mathrm{y}+4 \mathrm{y}+14=0$
$y(2 y+7)+2(2 y+7)=0$
$\mathrm{y}=-2,-\frac{7}{2}$
$x \geq y$
70. (5) I. $12 x^{2}+11 x+2=0$
$12 x^{2}+8 x+3 x+2=0$
$4 x(3 x+2)+1(3 x+2)=0$
$\mathrm{x}=\frac{-2}{3}, \frac{-1}{4}$
II. $12 \mathrm{y}^{2}+7 \mathrm{y}+1=0$
$12 y^{2}+4 y+3 y+1=0$
$4 y(3 y+1)+1(3 y+1)=0$
$\mathrm{y}=\frac{-1}{3}, \frac{-1}{4}$

Campus
 KD Campus

IBPS PO SPECIAL PHASE - I - 367 (ANSWER KEY)

1. (3)
2. (4)
3. (1)
4. (4)
5. (4)
6. (2)
7. (3)
8. (4)
9. (3)
10. (4)
11. (1)
12. (2)
13. (1)
14. (4)
15. (4)
16. (2)
17. (3)
18. (5)
19. (5)
20. (1)
21. (4)
22. (3)
23. (4)
24. (5)
25. (4)
26. (2)
27. (3)
28. (4)
29. (2)
30. (3)
31. (5)
32. (2)
33. (2)
34. (1)
35. (3)
36. (5)
37. (4)
38. (2)
39. (3)
40. (2)
41. (4)
42. (5)
43. (4)
44. (1)
45. (2)
46. (5)
47. (2)
48. (2)
49. (4)
50. (2)
51. (5)
52. (4)
53. (1)
54. (2)
55. (3)
56. (2)
57. (3)
58. (1)
59. (2)
60. (4)
61. (1)
62. (2)
63. (2)
64. (1)
65. (3)
66. (2)
67. (4)
68. (5)
69. (3)
70. (5)
71. (3)
72. (4)
73. (1)
74. (4)
75. (5)
76. (3)
77. (1)
78. (4)
79. (3)
80. (5)
81. (2)
82. (4)
83. (2)
84. (1)
85. (5)
86. (3)
87. (1)
88. (4)
89. (4)
90. (3)
91. (2)
92. (5)
93. (1)
94. (3)
95. (2)
96. (4)
97. (1)
98. (5)
99. (2)
100. (3)
