Campus
 KD Campus

IBPS PO PRELIMS MOCK TEST - 374 (SOLUTION)

REASONING

(1-5) :

1. (3)
2. (2)
3. (4)
4. (3)
5. (1)
6. (4)
7. (5)
8. (2)
9. (4)
10. (5)
11. (1) Given statements
$\mathrm{G}<\mathrm{R}=\mathrm{A} \leq \mathrm{S}$
$\mathrm{T}>\mathrm{R}$
From (i),
I. $\mathrm{G}<\mathrm{S} \rightarrow$ True

Combining (i) and (ii) statements
$\mathrm{T}>\mathrm{R}=\mathrm{A} \leq \mathrm{S}$
II. $\mathrm{S}>\mathrm{T} \rightarrow$ False

Only conclusion I is true.
12. (3) Given statements
$\mathrm{P}=\mathrm{U}<\mathrm{M}<\mathrm{K} \leq \mathrm{I}>\mathrm{N}$
D \geq P
I $>\mathrm{C}$
Combining (i) and (iii) statements $\mathrm{M}<\mathrm{K} \leq \mathrm{I}>\mathrm{C}$
I. $\mathrm{M}<\mathrm{C} \rightarrow$ False

From (i),
II. N > U \rightarrow False
neither conclusion I or II is true.
13. (1) Given statements
$\mathrm{M}>\mathrm{A}>\mathrm{B}=\mathrm{Q}<\mathrm{P}<\mathrm{J} \leq \mathrm{Y}$
Z $>\mathrm{A}>\mathrm{X}$
From (i),
I. $\mathrm{B}<\mathrm{Y} \rightarrow$ True

Combining (i) and (ii) statements
$\mathrm{X}>\mathrm{A}>\mathrm{B}=\mathrm{Q}<\mathrm{P}<\mathrm{J} \leq \mathrm{Y}$
II. $\mathrm{X} \geq \mathrm{Y} \rightarrow$ False

Only conclusion I is true.
14. (4) Combining (i) and (ii) statements
$Z>A>B=Q$
I. $Z=Q \rightarrow$ False
II. $Z>Q \rightarrow$ True

Only conclusion II is true.
15. (5) Given statements
$\mathrm{B} \geq \mathrm{P}>\mathrm{V}<\mathrm{R}=\mathrm{Q}$
$\mathrm{B}<\mathrm{N} \leq \mathrm{M}$
$\mathrm{Q} \leq \mathrm{F} \leq \mathrm{E}$
Combining all statements
$\mathrm{M} \geq \mathrm{N}>\mathrm{B} \geq \mathrm{P}>\mathrm{V}<\mathrm{R}=\mathrm{Q} \leq \mathrm{F} \leq \mathrm{E}$
I. $\mathrm{M}>\mathrm{V} \rightarrow$ True
II. $\mathrm{E}>\mathrm{V} \rightarrow$ True

Both conclusion I and II is true.
(16-17) :

16. (5) Conclusions :
I. True
II. True
Both conclusion I and II follow.
17. (2) Conclusions :
I. Can't say II. True

Only conclusion II follows.
18. (2) Conclusions :

I. Can't say
II. True Only conclusion II follows.
(19-20) :

19. (5) Conclusion :
I. True
II. True

Both conclusion I and II follow.
20. (2) Conclusion :
I. Can't Say II. True

Only conclusion II follows.
(21-24) :

$\begin{array}{llll}\text { 21. } & \text { (5) } \\ \text { 24. } & \text { (4) }\end{array}$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
25. (3)

$\therefore \mathrm{AC}=\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}}$
$=\sqrt{35^{2}+12^{2}}=\sqrt{1225+144}$
$=\sqrt{1369}=37 \mathrm{~m}$
\therefore Required distance $=37-20=17 \mathrm{~m}$
(26-30) :

26. (3)
27. (2)
28. (4)
29. (5)
30. (2)
(31-35) :

Market	$:$	Zo
going	$:$	Pit
is	$:$	ch
all	$:$	ha
are	$:$	sit
far	$:$	jo
too	$:$	Fa
not	$:$	na
for	$:$	sa
he	$:$	la

31. (2)
32. (2)
33. (1)
34. (3)
35. (1)

MATHS

36.(3) $\approx 500+2000 \div 40 \times 50$

$$
\begin{aligned}
& \approx 500+\frac{2000}{40} \times 50 \approx 500+2500 \\
& \approx 3000
\end{aligned}
$$

37.(4) $\quad ? \approx\left[8^{2}-13^{2}+4^{3}\right]^{2}$

$$
\approx[64-169+64]^{2}
$$

$$
\approx(-41)^{2} \approx 1681
$$

\therefore Required answer $=1660$
38.(5)
$? \approx \frac{600}{50} \times \frac{400}{80} \div \frac{30}{200} \approx \frac{600}{50} \times \frac{400}{80} \times \frac{200}{30} \approx 400$
$\therefore \quad$ Required answer $=420$
39.(2) $441-233+1650=?+1226$
$\Rightarrow 1858 \approx$? +1226
$\Rightarrow ?=1858-1226 \approx 632$
$\therefore \quad$ Required answer $=630$
40.(2)
$?=\left(\frac{1000 \times 21.5}{100}\right)^{\frac{1}{3}}+\left(\frac{600 \times 43}{100}\right)^{\frac{1}{2}}$
$\approx(215)^{\frac{1}{3}}+(258)^{\frac{1}{2}} \approx 6+16 \approx 22$
41. (4) The pattern of the number series as follows:
$7 \times 2-2=12$
$12 \times 4-(2+6)=48-8=40$
$40 \times 6-(8+10)=240-18=222$
$222 \times 8-(18+14)=1736-32=1744 \neq$ 1742
$1744 \times 10-(32+18)=17440-50$
$=17390$
42. (3) The pattern of the number series as follows:
$6 \times 7+7^{2}=42+49=91$
$91 \times 6+6^{2}=546+36=582 \neq 584$
$582 \times 5+5^{2}=2910+25=2935$
$2935 \times 4+4^{2}=11740+16=11756$
$11756 \times 3+3^{2}=35268+9=35277$
43. (2) The series is $\times 11, \times 7, \times 5, \times 3, \times 1$
the wrong no. is $34650 ; 17325 \times 3=51975$
44. (1) The series is
$+2^{2},+3^{2},+4^{2},+5^{2}, 6^{2},+7^{2}$
The wrong no. is $56 ; 32+5^{2}=32+25$
$=57$
45. (3) The series is $\times 1+1, \times 2+2, \times 3+3, \times 4+4$, $\times 5+5, \times 6+6$.
The wrong no. is $38 ; 12 \times 3+3=36+3=$ 39
46. (3) According to question, work done by

Rahim in 4 days $=\frac{4}{8}=\frac{1}{2}$
Net work done by (Rahim + Karim) in 1
day $=\left(\frac{1}{8}-\frac{1}{3}\right)=\frac{-5}{24}$
Work done by (Rahim + Karim) in 2 days
$=\frac{-5}{24} \times 2=\frac{-5}{12}$
\therefore Work done in 6 days $=\frac{1}{2}+\left(-\frac{5}{12}\right)$
$=\frac{1}{12}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
\therefore Remaining $\frac{11}{12}$ of the wall is built by
Rahim in $\frac{8 \times 11}{12}=\frac{88}{12}=\frac{22}{3}=7 \frac{1}{3}$ days
47. (1) Let investment time of B was for x months Ratio of their investment $=$ Ratio of profit distribution
$5 \times 8: 6 \times x=5: 9$
$\therefore x=\frac{40 \times 9}{6 \times 5}=12$ months $=1$ year
48. (4) After selling at ₹ $15 / \mathrm{kg}$, Sunil earns a profit of 66.66\%
Hence, cost price of sweets is ₹ $9 / \mathrm{kg}$.
Now, ratio of flour and sugar is $5: 3$.
Hence,
1 kg of sweet is made up of $\frac{5}{8} \mathrm{~kg}$ of flour
and $\frac{3}{8} \mathrm{~kg}$ of sugar.
Let price of 1 kg of flour $=3 k$
Hence, profit of 1 kg of sugar $=7 \mathrm{k}$
Hence price of 1 kg of sweets is
$=\left\{\left[\left(\frac{3}{8}\right) \times 7 k\right]+\left[\left(\frac{5}{8}\right) \times 3 k\right]\right\}=9$
Hence, $k=2$
Hence, cost price of sugar $=7 k=7 \times 2$ $=₹ 14 / \mathrm{kg}$
49. (2) Let the length of train be L meters its speed be $\mathrm{S} \mathrm{m} / \mathrm{s}$
\therefore time taken to cross a pole $=\frac{L}{S}=10 \mathrm{sec}$
$\therefore \quad$ time taken to cross a 200 m long
platform $=\left(\frac{L+200}{S}\right)$
ATQ,
$\Rightarrow 20=\frac{L}{S}+\frac{200}{S}$
$\Rightarrow 20=10+\frac{200}{5}$
$\Rightarrow \frac{200}{5}=10$
$\therefore \quad \mathrm{S}=20 \mathrm{~m} / \mathrm{s}$
Now length of train $\mathrm{L}=20 \times 10$
$=200 \mathrm{~m}$
50. (4) Let C.P = ₹ 100
$\therefore \mathrm{MP}=₹ 150$
ATQ,
$\mathrm{SP}=75+25 \times \frac{75}{100}+50 \times \frac{80}{100}$
$=75+18.75+40=₹ 133.75$
\therefore Profit $\%=\left[\frac{133.75-100}{100} \times 100\right] \%$
$=33.75 \%$
51. (4) Required average
$=\frac{8500}{100} \times \frac{1}{3} \times(24+20=15) \approx 1671$
52. (1) No. of white Intex
$=8500 \times \frac{9}{100} \times \frac{40}{100}=306$
53. (5) Required $\%=\left(\frac{19}{13+9} \times 100\right) \%$
$=\left(\frac{19}{22} \times 100\right) \% \approx 86 \%$
(4) Required $\%=\left[\frac{(20-15)}{15} \times 100\right] \% \approx 33 \%$
56. (2) No. of Computer sold in $\mathrm{H}=36000 \times \frac{40}{100}$
$=14400$
\therefore Required ratio $=5000: 14400$
= 25 : 72
57. (1) No. of Computer sold in
$\mathbf{A}=5000 \times \frac{35}{100}=1750$
$\mathbf{B}=15000 \times \frac{40}{100}=6000$
$\mathbf{C}=32500 \times \frac{35}{100}=11375$
$\mathbf{D}=24000 \times \frac{35}{100}=8400$
Required answer is A
58. (5) No. of Computer sold in $F=40000 \times \frac{25}{100}$ $=10000$
and the no. of Computer sold in G
$=24000 \times \frac{35}{100}=8400$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\therefore \quad$ Required $\%=\left[\frac{(10000-8400)}{10000} \times 100\right] \%$ = 16%
59. (2) Required average
$=\frac{24000 \times \frac{35}{100}+36000 \times \frac{40}{100}}{2}=11400$
60. (1) No. of Computer sold in C
$=25000 \times \frac{30}{100}=7500$
Required $\%=\left(\frac{7500}{15000} \times 100\right) \%=50 \%$
61. (4) I. $x^{2}-19 x+84=0$
$x^{2}-7 x-12 x+84=0$
$(x-7)(x-12)=0$
$\therefore x=7,12$
II. $y^{2}-25 y+156=0$
$y^{2}-13 y-12 y+156=0$
$(y-13)(y-12)=0$
$\therefore x \leq y$
62. (2) I. $x^{3}-468=1729$
$x^{3}=2197$
$\therefore x=13$
II. $y^{2}-1733+1564$
$y^{2}=169$
$y= \pm 13$
$\therefore x \geq y$
63. (5)
I. $\frac{9}{\sqrt{x}}+\frac{19}{\sqrt{x}}=\sqrt{x}$
$9+19=\sqrt{x} \times \sqrt{x}$
$\therefore x=28$
II. $y^{2}-\frac{(2 \times 14)^{11 / 2}}{\sqrt{y}}=0$
$y^{5} \sqrt{\mathrm{y}}-(2 \times 14)^{11 / 2}=0$
$y^{11 / 2}=(2 \times 14)^{11 / 2}$
$y=2 \times 14=28$
$\therefore x=y$
64. (1) I. $\sqrt{784} x+1234=1486$
$\sqrt{784} x=252$
$28 x=252$

$$
\therefore x=9
$$

II. $\sqrt{1089} y+2081=2345$
$33 y=264$
$\therefore x>y$
65.
(1) I. $\frac{12}{\sqrt{x}}-\frac{23}{\sqrt{x}}=5 \sqrt{x}$
$12-23=5 \sqrt{x} \times \sqrt{x}$
$\therefore \quad x=\frac{-11}{5}=-2.2$
II. $\frac{\sqrt{y}}{12}-\frac{5 \sqrt{y}}{12}=\frac{1}{\sqrt{y}}$
$\sqrt{y}\left(\frac{1}{12}-\frac{5}{12}\right)=\frac{1}{\sqrt{y}}$
$y\left(\frac{-4}{12}\right)=1$
$y=\frac{-12}{4}=-3$
66. (1) Given that $a=20 \mathrm{~km} / \mathrm{h}, \mathrm{b}=4 \mathrm{~km} / \mathrm{h}$ $\mathrm{t}_{1}=30 \mathrm{~min}, \mathrm{t}_{2}=10 \mathrm{~min}$
According to the formula
Required Distance $=\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)(a+b) \frac{20}{4}$
$=\frac{(30-10)}{60}(20+4) \frac{20}{4}$
$=\frac{20}{60} \times 24 \times \frac{20}{4}$
$=40 \mathrm{~km}$
67. (4) Total failed candidates
$=25 x+40 x-19 x=46 x$
Passed in both subjects $=100 x-46 x$ $=54$
Total no. of appeared candidates $=100 x$
$\because 54 x=972$
$\therefore 100 x=\frac{972}{54 x} \times 100 \mathrm{x}=1800$
68. (5) Required ratio $=4 v_{1} d_{1}=7 v_{2} d_{2}=\frac{7 v_{1} d_{1}}{d_{2}}$: $7 v_{2}$
where d is the density and v is the volume of liquids.
Given, $117 d_{1}=151 d_{2}$
$\therefore \quad \frac{d_{1}}{d_{2}}=\frac{151}{117}$
Now, with $7 v_{2}$ of sencond liquid, $4 v_{1}$ of first liquid is used in place of $4 v_{1} \times \frac{151}{117}$

IBPS PO PRELIMS MOCK TEST - 374 (ANSWER KEY)

1. (3)
2. (2)
3. (4)
4. (3)
5. (1)
6. (4)
7. (5)
8. (2)
9. (4)
10. (5)
11. (1)
12. (3)
13. (1)
14. (4)
15. (5)
16. (5)
17. (2)
18. (2)
19. (5)
20. (2)
21. (5)
22. (2)
23. (3)
24. (4)
25. (3)
26. (3)
27. (2)
28. (4)
29. (5)
30. (2)
31. (2)
32. (2)
33. (1)
34. (3)
35. (1)
36. (3)
37. (4)
38. (5)
39. (2)
40. (2)
41. (4)
42. (3)
43. (2)
44. (1)
45. (3)
46. (3)
47. (1)
48. (4)
49. (2)
50. (4)
51. (4)
52. (1)
53. (5)
54. (4)
55. (3)
56. (2)
57. (1)
58. (5)
59. (2)
60. (1)
61. (4)
62. (2)
63. (5)
64. (1)
65. (1)
66. (1)
67. (4)
68. (5)
69. (4)
70. (5)
71. (3)
72. (4)
73. (2)
74. (2)
75. (2)
76. (3)
77. (2)
78. (3)
79. (3)
80. (1)
81. (4)
82. (1)
83. (1)
84. (3)
85. (3)
86. (3)
87. (2)
88. (5)
89. (4)
90. (1)
91. (2)
92. (1)
93. (5)
94. (5)
95. (4)
96. (1)
97. (2)
98. (5)
99. (1)
100. (3)
