SSC MOCK TEST - 383 (SOLUTION)

1. (2) As,
$36 \Rightarrow(36)^{2}=1296 \Rightarrow 1+2+3+6=18$
Similarly,
$47 \Rightarrow(47)^{2}=2209 \Rightarrow 2+2+0+9=13$
2. (4) Candle is made from Wax, while Paper is made from Pulp.
3. (3) Except Srilanka, others are middle east nations.
4. (4) Except Moon, others have one vowel.
5. (2) As,

Similarly,

6. (1) $17+3^{2}=26$
$26+4^{2}=42$
$42+5^{2}=67$
$67+6^{2}=103$
7. (3)

8. (2) Initial speed $=72 \mathrm{~km} / \mathrm{hr}$
$\therefore \quad$ Required average speed $=\frac{72+80+88+96+104}{5}=\frac{440}{5}=88 \mathrm{~km} / \mathrm{hr}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
9. (3) As,
$4+5+8+3+1+2+4+7+5=39$
Similarly,
$4+5+1+3+4+5+6+6+5=39$
10. (2) $\mathrm{pl} \mathbf{s p} / \mathrm{pl} \mathbf{l} \mathrm{sp} / \mathbf{p l s p} / \mathrm{pl} \mathbf{s p}$
11. (2)
12. (1) In first column,
$98-46=52 \Rightarrow 25 \times 4=100$
In second column,
$47-22=25 \Rightarrow 52 \times 4=208$

In third column,

$91-23=68 \Rightarrow 86 \times 4=344$
13. (4) $646 \div 19-746+20 \times 34=100$

After Changing the signs - and + to each other,
$646 \div 19+746-20 \times 34=100$
$34+746-680=100$
$780-680=100$
$100=100$
14. (2) 2017 was a normal year.

Number of days in $2017=365$
So, there are 52 week and one odd day
1 January 2017 was Sunday.
It means 30 December 2016 was Saturday.
So, 31 December 2017 was Sunday.
15. (4) 2. Movement \rightarrow 4. Moviemaker \rightarrow 1. Multifocal \rightarrow 3. Multinominal \rightarrow 5. Mutual Fund
16. (1)

Hence, the boy is the brother of that girl.
17. (2)

I. False
II. True
III. False

Hence, only conclusion II follows.
18. (3) 19. (2)
20. (4) $a: b=2: 3$
$c: d=5 \times 2: 3 \times 3=10: 9$
$\therefore 2 c: 5 d=2 \times 10: 5 \times 9=20: 45=4: 9$
21. (2)

There is 90° angle between North-West and North-East and 135° angle between North-East and West.
So, final direction will be West.
22. (1)
23. (4)
24. (4)
25. (4)
26. (1) In Satyarth Prakash, Swami Dayanand Saraswati propounded that the original home of the Aryans was Tibet.
29. (1) Jaugada is located near the cities of Berhampur and Purushottampur in Ganjam district of Odisha, India. Jaugada is an important archaeological and historical site. Did you know that Jaugada is the second place in Odisha where there is a major Ashokan rock edict, also known as Kalinga edict
30. (2) Tirthankara, also called Jina, in Jainism, a saviour who has succeeded in crossing over life's stream of rebirths and has made a path for others to follow.
31. (3) The authority and function of Advocate General is also specified in the Constitution of India under Article 165 and 177. The Governor of each State shall appoint a person who is qualified to be appointed as a Judge of a High Court to be Advocate General for the State.
32. (2) Osmium (Os), chemical element, one of the platinum metals of Groups 8-10 (VIIIb), Periods 5 and 6, of the periodic table and the densest naturally occurring element.
33. (4) Propane is a colourless, odourless gas with a chemical formula of C3H8 i.e 3 carbon and 8 hydrogen atoms.
34. (2) The state emblem is an adaptation from the Sarnath Lion Capital of Ashoka.
35. (1) The shape of benzene: Benzene is a planar regular hexagon, with bond angles of 120°. This is easily explained. It is a regular hexagon because all the bonds are identical. The delocalization of the electrons means that there aren't alternating double and single bonds.
36. (3) The MSME Competitive (LEAN) Scheme was launched by Union Ministry of MSME to improve the global competitiveness of Indian MSMEs.
38. (1) Celebrated on the birth anniversary of hockey wizard Dhyan Chand, the National Sports Day is also a timely reminder for the need for sporting activities in life. Question: When is National Sports Day? Answer: The National Sports Day in India is celebrated on August 29.
39. (1) The district derives its name from the eponymous headquarters town founded by Firoz Shah Tughlak in the 14 th century. He named it after his son Fateh Khan, as Fatehabad.
40. (3) Pedology is the study of soils as naturally occurring phenomena, taking into account their composition, distribution and processes of formation.
44. (4) In order to suitably implement the GST legislation, 101st resulted in the insertion, deletion and amendment of certain Articles of the Constitution.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
45. (1) Itanagar, located at an altitude of 530 meters above sea level between 93 east longitude and 27 north latitude.
46. (2) A leading luminary of the Ghadar Party, Kartar Singh Sarabha was executed at Lahore in November 1915 for his role in the Ghadar Conspiracy in February 1915.
48. (2) In the month of October the Disarmament Week use to observed. This year, the disarmament week will be starting on October 24 and continue till October 30. Disarmament Week is observed annually to promote awareness and understanding of the issues of disarmament in several countries.
50. (3) The Indian Space Research Organisation (ISRO) recently released the Landslide Atlas of India, which identifies landslide hotspots in the country.
51. (1) Circumference of the circles $=220$ meters
$2 \pi r=220$
$\mathrm{r}=\frac{220}{2 \times 22} \times 7=35 \mathrm{~cm}$
$\mathrm{d}=70 \mathrm{~cm}$
Let the side of the square be s meter.
ATQ,
$\frac{\mathrm{s}}{70}=\frac{3}{10}$
$\mathrm{s}=21$ meters
$\therefore \quad$ Area of the square $=21 \times 21=441$ sq. meters
52. (1) Let the $\mathrm{CP}=₹ 100$
$\mathrm{MP}=100 \times \frac{125}{100}=₹ 125$
$\mathrm{SP}=125 \times \frac{88}{100}=₹ 110$
ATQ,
$₹(110-100) \rightarrow ₹ 600$
$₹ 100 \rightarrow \frac{600}{10} \times 100=₹ 6000$
$\therefore \quad$ Cost price of an article $=₹ 6000$
53. (3) Let initially family's total income be ₹ 100.

Total expenses $=₹ 60$
Total saving = ₹ 40
So, A's initial income $=₹ 40$
Income of A after hike $=40 \times \frac{150}{100}=₹ 60$
New total savings $=₹ 60$
New total income $=₹ 120$
\therefore New total savings $=\left(\frac{60}{120} \times 100\right) \%=50 \%$ of the total income.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
54. (1) Let the time taken by pipe A and pipe B alone to fill the tank be $3 x$ minutes and $4 x$ minutes respectively.

ATQ,
$\frac{1}{3 x}+\frac{1}{4 x}=\frac{7}{60}$
$\frac{7}{12 x}=\frac{7}{60}$
$x=5$
\therefore Time taken by pipe A alone to fill the tank $=3 \mathrm{x}=3 \times 5=15$ minutes
55. (1) By alligation method,

$\therefore \quad$ Quantity sold at 15% profit $=\frac{1500}{2}=750 \mathrm{~kg}$
56. (4) If Ram is walking $\frac{5}{6}$ of his usual speed that means he is taking $\frac{6}{5}$ of usual time.
$\frac{6}{5}$ of usual time - usual time $=30 \mathrm{~min}$
$\frac{1}{5}$ of usual time $=30 \mathrm{~min}$
\therefore Usual time $=150$ mintues $=2$ hours 30 minutes
57. (1) $(16 \mathrm{~W} \times 16)=(36 \mathrm{C} \times 18)$
$32 \mathrm{~W}=81 \mathrm{C}$
$64 \mathrm{~W}=162 \mathrm{C}$
$\therefore \quad$ Required time $=\frac{36 \times 18}{162}=4$ days
58. (2) Capacity of tank $=60$ litres

Tap A fall the tank in 1 hour $=\frac{60}{15}=4$ litres

Tap B fill the tank in 1 hour $=\frac{60}{20}=3$ litres
In 8 hours, tap A and B fill the tank $=(4+3) \times 8=56$ litres
Now, tap A's turn and fills the remaining 4 litres in 1 hour.
\therefore Total time $=8+1=9$ hours

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
59. (4) Let the length of high speed train be 2 x m .

Length of slow speed train $=\mathrm{x} \mathrm{m}$

Relative speed $=(52+56) \times \frac{5}{18}=30 \mathrm{~m} / \mathrm{s}$

ATQ,
$\frac{2 x+x}{30}=24$
$3 x=30 \times 24$
$x=\frac{30 \times 24}{3}=240 \mathrm{~m}$

Length of high speed train $=240 \times 2=480 \mathrm{~m}$
Let the length of plateform be y m
ATQ,
$\frac{480+y}{56 \times \frac{5}{18}}=48$
$(480+y) \times 18=48 \times 56 \times 5$
$8640+18 y=13440$
$18 y=4800$
$\therefore \quad y=\frac{4800}{18}=266 \frac{2}{3} \mathrm{~m}$
60. (2) $\mathrm{CI}-\mathrm{SI}=₹ 5315.625$
$\mathrm{R}=15 \%$
$\mathrm{T}=3$ years
Now,
$\mathrm{CI}-\mathrm{SI}$ for 3 years $=\mathrm{P}\left(\frac{15}{100}\right)^{2}\left(\frac{300+\mathrm{R}}{100}\right)$
$5315.625=\mathrm{P}\left(\frac{15}{100}\right)^{2}\left(\frac{300+15}{100}\right)$
$\therefore \quad \mathrm{P}=\frac{5315.625 \times 100 \times 100 \times 100}{15 \times 15 \times 315}=₹ 75000$
61. (4)

In ABCF ,
$\angle \mathrm{AFC}=180^{\circ}-\angle \mathrm{ABC}=180^{\circ}-85^{\circ}=95^{\circ}=\angle \mathrm{AFP}$ (Opposite angles of cyclic quadrilateral)
Similarly,

$$
\angle \mathrm{FAD}=180^{\circ}-\angle \mathrm{FED}=180^{\circ}-105^{\circ}=75^{\circ}=\angle \mathrm{FAP}
$$

Now, in \triangle FAP,

$$
\angle \mathrm{APC}=\angle \mathrm{FAP}+\angle \mathrm{AFP} \quad \text { (External Angle Theorem })
$$

$\therefore \quad \angle \mathrm{APC}=75^{\circ}+95^{\circ}=170^{\circ}$
62.
(2) $\frac{2145}{x}=\frac{3003}{42}$
$\mathrm{x}=\frac{2145 \times 42}{3003}$
$\mathrm{x}=30$

Now, $\frac{\mathrm{x}}{2508}=\frac{\mathrm{y}}{11704}$

$$
\frac{30}{2508}=\frac{y}{11704}
$$

$y=\frac{30 \times 11704}{2508}$
$\therefore \mathrm{y}=140$
63. (1) $\tan \alpha+\cot \alpha=\sqrt{3}$

Cubing both sides,
$\tan ^{3} \alpha+\cot ^{3} \alpha+3(\tan \alpha+\cot \alpha)=(\sqrt{3})^{3}$
$\therefore \tan ^{3} \alpha+\cot ^{3} \alpha=3 \sqrt{3}-3(\sqrt{3})=0$
64. (3) Age of two women $=6(x+2)-(6 x-55-60)=127$ years
$\therefore \quad$ Average age of two women $=\frac{127}{2}=63.5$ years
65. (3) (Total Surface Area) $)_{\text {sphere }}$
$\overline{(\text { Total Surface Area) })_{\text {Hemisphere }}}$
$=\frac{4 \pi r^{2}}{3 \pi r^{2}}=\frac{4}{3}$
$\therefore \quad(\text { T.S.A. })_{\text {sphere }}:(\text { T.S.A. })_{\text {hemisphere }}=4: 3$
66. (2) $x+\frac{1}{x}=\sqrt{3}$

Cubing both sides,
$x^{3}+\frac{1}{x^{3}}-3 \cdot x \cdot \frac{1}{x}\left(x+\frac{1}{x}\right)=3 \sqrt{3}$
$x^{6}+1=0$
$\therefore \quad x^{60}+x^{54}+x^{47}+x^{41}+1$
$=x^{54}\left(x^{6}+1\right)+x^{41}\left(x^{6}+1\right)+1=1$
67. (4) CP for Anand $=₹ x$
$\mathrm{MP}=x+\frac{50}{100} \times x=₹ 1.5 x$
SP by Anand $=\mathrm{CP}$ of Balaji
$=1.5 x-1.5 x \times \frac{20}{100}=₹ 1.2 x$
SP by Balaji = ₹ $(1.2 x+20)$

ATQ,
$1.2 x+20=x+\frac{30}{100} \times x$
$1.2 x+20=1.3 x$
$x=20 \times 10$
$x=₹ 200$
CP of Balaji $=1.2 \times 200=₹ 240$
$\therefore \quad$ Profit percent $=\left(\frac{20}{240} \times 100\right) \%=8.33 \%$
68. (1) $1+\frac{1}{\cot ^{2} 63^{\circ}}-\sec ^{2} 27^{\circ}+\frac{1}{\sin ^{2} 63^{\circ}}-\operatorname{cosec}^{2} 27^{\circ}$
$=1+\tan ^{2} 63^{\circ}-\operatorname{cosec}^{2}\left(90^{\circ}-27^{\circ}\right)+\operatorname{cosec}^{2} 63^{\circ}-\sec ^{2}\left(90^{\circ}-27^{\circ}\right)$
$=1+\left(\sec ^{2} 63^{\circ}-1\right)-\operatorname{cosec}^{2} 63^{\circ}+\operatorname{cosec}^{2} 63^{\circ}-\sec ^{2} 63^{\circ}=0$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
69. (2) Let the distance between P and Q be D km and usual speed of the car $=x \mathrm{~km} / \mathrm{hr}$

Case-I,
$\frac{D}{x}-\frac{D}{x+10}=1$
$D=\frac{x^{2}+10 x}{10}$
Case-II,
$\frac{D}{x}-\frac{D}{x+2}=1 \frac{3}{4}$
$D=\frac{7\left(x^{2}+20 x\right)}{80}$
$\frac{x^{2}+10 x}{10}=\frac{7 x^{2}+140 x}{80}$
$x^{2}-60 x=0$
$x=60 \mathrm{kms} / \mathrm{hr}$
$\therefore \quad D=\frac{60^{2}+10 \times 60}{10}=\frac{3600+600}{10}=420 \mathrm{~km}$
70. (1) Share of wife $=\frac{84100}{2}=₹ 42050$

Share of $A=₹ x$, then share of $B=₹(42050-x)$

Now, $x \times\left(1+\frac{5}{100}\right)^{3}$
$(42050-x)\left(1+\frac{5}{100}\right)^{5}$
$\frac{x}{42050-x}=\left(1+\frac{5}{100}\right)^{2}$
$\left(\frac{21}{20}\right)^{2}=\frac{441}{400}$
$x=₹ 22050$
$\therefore \quad$ Share of B $=42050-22050=₹ 20000$

$K D$

 Campus

 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
71. (1) Let breadth $=3 x$ metres

So, length $=4 x$ metres
Area $=12 x^{2}$ metres
ATQ,
$12 x^{2}=\frac{1}{12} \times$ Hectare
$x^{2}=\frac{1}{12} \times \frac{1}{12} \times 100 \times 100$
$x^{2}=\left(\frac{100}{12}\right)^{2}$
$x=\frac{25}{3}$ metres
\therefore Breadth of lawn $=3 \times \frac{25}{3}=25$ metres
72. (2) In 1998, the production of total fruits $=100$

The Guava production in $1999=100 \times \frac{15}{100}=15$ tonnes
In $1996=10 \%$ lower than $1998=15 \times \frac{90}{100}=13.5$ tonnes
73. (1) Mangoes produced in $2001=150 \times \frac{26}{100}=39$ tonnes
25% exported earned $=39 \times \frac{25}{100}=9.75$ tonnes
\therefore Total revenue earned $=9.75 \times 1000 \times 20=1.95$ lakh
74. (3) When total fruit production is increased by 12% in 2003 , then $=175 \times \frac{112}{100}=196$ tonnes
$\therefore \quad$ Production of mangoes $=196 \times \frac{26}{100}=50.96$ tonnes
75. (3) Total fruit production in $1998=100$ tonnes

Grapes production in $1998=100 \times \frac{14}{100}=14$ tonnes
Half of grapes exported $=\frac{14}{2}=7$ tonnes
\therefore Price tonnes $=\frac{1.4 \times 100000}{7}=₹ 20000$

MEANINGS IN ALPHABETICAL ORDER

SSC MOCK TEST - 383 (ANSWER KEY)

1. (2)	26. (1)
2. (4)	27. (1)
$3 . \quad(3)$	28. (1)
4. (4)	29. (1)
5. (2)	30. (2)
6. (1)	31. (3)
7. (3)	32. (2)
8. (2)	33. (4)
9. (3)	34. (2)
10. (2)	35. (1)
11. (2)	36. (3)
12. (1)	37. (3)
13. (4)	38. (1)
14. (2)	39. (1)
15. (4)	40. (3)
16. (1)	41. (1)
17. (2)	42. (3)
18. (3)	43. (2)
19. (2)	44. (4)
20. (4)	45. (1)
21. (2)	46. (2)
22. (1)	47. (1)
23. (4)	48. (2)
24. (4)	49. (3)
25. (4)	50. (3)

51. (1)
52. (1)
53. (3)
54. (1)
55. (1)
56. (4)
57. (1)
58. (2)
59. (4)
60. (2)
61. (4)
62. (2)
63. (1)
64. (3)
65. (3)
66. (2)
67. (4)
68. (1)
69. (2)
70. (1)
71. (1)
72. (2)
73. (1)
74. (3)
75. (3)
76. (1)
77. (4)
78. (2)
79. (2)
80. (1)
81. (4)
82. (2)
83. (4)
84. (1)
85. (1)
86. (4)
87. (3)
88. (1)
89. (3)
90. (2)
91. (3)
92. (3)
93. (2)
94. (3)
95. (1)
96. (1)
97. (4)
98. (1)
99. (1)
100. (4)
