NDA (MATHS) MOCK TEST - 59 (SOLUTION)

1. (A) The equation of family of rectangular hyperbole is
$x y=c^{2}$
On differentiating, we get
$y+x \frac{d y}{d x}=0$
\therefore Degree and order of differential equation are 1 and 1 respectively.
2. (C) $\because f(x)=x^{2}-2 x$

On differentiating w.r.t. x, we get
$f^{\prime}(x)=2 x-2$
$f(x)$ is increasing, if $f(x)>0$
$2 x-2>0$
$x>1$ only.
3. (B) Let $\mathrm{I}=\int_{0}^{1} x(1-x)^{n} d x$

Put $1-x=t$ and $d x=-d t$
$\mathrm{I}=-\int_{1}^{0}(1-t) t^{n} d t$
$=\int_{0}^{1}\left(t^{n}-t^{n+1}\right) d t$
$=\left[\frac{t^{n+1}}{n+1}-\frac{t^{n+2}}{n+1}\right]_{0}^{1}$
$=\frac{1}{n+1}-\frac{1}{n+2}$
$=\frac{1}{(n+1)(n+2)}$
4. (B) By Rolle's theorem, between a and b. There exists at least one root of the polynomial equation $f^{\prime}(x)=0$.
5. (B) $3^{x}+3^{y}=3^{x+y}$

On differentiating w.r.t. x, we get
$3^{x} \log 3+3^{y} \log 3 \frac{d y}{d x}=3^{(x+y)} \log 3\left(1+\frac{d y}{d x}\right)$
$\Rightarrow 3^{x}+3^{y} \frac{d y}{d x}=3^{x+y}+3^{(x+y)} \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}\left(-3^{x+y}+3^{y}\right)=3^{x+y}-3^{x}$
$\Rightarrow \frac{d y}{d x}=\frac{3^{x}\left(3^{y}-1\right)}{3^{y}\left(1-3^{x}\right)}=\frac{3^{x-y}\left(3^{y}-1\right)}{\left(1-3^{x}\right)}$
6. (D) Let I $=\int \sec x^{\circ} d x$
$=\int \sec \frac{\pi x}{180^{\circ}} d x\left(\because 1^{\circ}=\frac{\pi}{180}\right)$
Put $\frac{\pi x}{180}=\mathrm{t}$
$\Rightarrow d x=\frac{180^{\circ}}{\pi} \mathrm{dt}$
$\therefore \mathrm{I}=\int \sec t d t \frac{180^{\circ}}{\pi}$
$=\frac{180^{\circ}}{\pi} \log \tan \left(\frac{\pi}{4}+\frac{t}{2}\right)+\mathrm{C}$
$=\frac{180^{\circ}}{\pi} \log \tan \left(\frac{\pi}{4}+\frac{\pi x}{360^{\circ}}\right)+\mathrm{C}$
7. (C) $\mathrm{P}(x)=-3500+(400-x) x \quad$ [given]

On differentiating w.r.t. x, we get
$\mathrm{P}^{\prime}(x)=400-2 x$
Put $\mathrm{P}^{\prime}(x)=0$, for maxima or minima
$400-2 x=0$
$\Rightarrow x=200$
Now, $\mathrm{P}^{\prime \prime}(x)=-2 x$
$\Rightarrow \mathrm{P}^{\prime \prime}(200)=-2<0$
$\therefore \mathrm{P}(x)$ is maximum at $x=200$
Hence, required number of items $=200$.
8. (B)
$\because s=64 t-16 t^{2} \quad$ [Given]
On differentiating w.r.t. x, we get
$\frac{d x}{d t}=64-32 t$
Put $\frac{d x}{d t}=0$, for maximum height
$64-32 t=0$
$\Rightarrow t=2$
$\therefore\left(\frac{d^{2} x}{d t^{2}}\right)_{t=2}=32<0 \quad$ (maximum)
Hence, the required time $=2 \mathrm{~s}$.
9. (D) $\because f(x)=3 x^{2}+6 x-9$

On differentiating w.r.t. x, we get
$f(x)=6 x+6$
For a decreasing function.
$f^{\prime}(x)<0 \Rightarrow 6 x+6<0 \Rightarrow \mathrm{x}<-1$
$\therefore f(x)$ is decreasing in $(-\infty,-1)$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
10. (A) $\because f(x)=\sin ^{2} x^{2}$
$f^{\prime}(x)=2 \sin x^{2} \cdot \cos x^{2} \frac{d}{d x}\left(x^{2}\right)$
$\Rightarrow f^{\prime}(x)=4 x \sin x^{2} \cos x^{2}$
11. (A) $\because f(x)=\cos x, g(x)=\log x$
$y=g \circ f(x)$
$=g\{f(x)\}=g\{\cos x\}$
$=\log (\cos x)$
$\therefore\left(\frac{d y}{d x}\right)_{a t x=0}=\tan 0=0$
12. (D) $\because f(x)= \begin{cases}3 x-4 & 0 \leq x \leq 2 \\ 2 x+\lambda & 2<x \leq 3\end{cases}$

Also, $f(x)$ is continuous at $x=2$.
$\therefore \lim _{x \rightarrow 2} f(x)=f(2)$
$\Rightarrow \lim _{x \rightarrow 2}(2 x+\lambda)=6-4$
$\Rightarrow \lim _{h \rightarrow 0} 2(2-h)+\lambda=2$
$4+\lambda \Rightarrow \lambda=-2$
13. (B) Since, slope of line $x \cos \theta+y \sin \theta=2$ is $-\cot \theta$ and slope of the line $x-y=3$ is 1 . Also, these lines are perpendicular to each other.
$\therefore(-\cot \theta)(1)=-1$
$\Rightarrow \cot \theta=1=\cot \frac{\pi}{4}$
$\Rightarrow \theta=\frac{\pi}{4}$
14. (A) Since, x-axis is a tangent to the given circle, it means the circle touches the x -axis.
$\therefore 2 \sqrt{g^{2}-k}=0$
$\Rightarrow \mathrm{g}^{2}=k$
15. (B) We know that, the sum of focal radii of any point on an ellipse is equal to length of major axis, i.e., sum of focal radii
$=(a+x)+(a-x)$
$=2 a=$ Major axis
16. (B) Equation of the first order containing one arbitrary parameter and passing through a given points represents a straight line.
17. (B) The equation of line perpendicular to the given line
$x+y-11=0$
is $-x+y+\lambda=0$
This equation passes thorugh $(2,3)$.
$\therefore-2+3+\lambda=0$
$\lambda=-1$
From Eqn (ii),
$-x+y-1=0$
$\Rightarrow y=x+1$
\therefore From Eq. (i),
$x+x+1-11=0$
$\Rightarrow 2 x=10$
$\Rightarrow x=5$ and $y=5+1=6$
Hence, coordinates of foot of perpendicular from $(2,3)$ to given line is $(5,6)$.
18. (A) We know that, the equation of x-axis is $y=0$. Thus, only statement I is correct.
19. (B) Let θ be the angle between given planes, then
$\cos \theta=\left|\frac{2 \times 1+1 \times(-1)+1 \times 2}{\sqrt{4+1+1} \sqrt{1+1+4}}\right|$
$=\frac{3}{6}=\frac{1}{2}=\cos \frac{\pi}{3}$
$\Rightarrow \theta=\frac{\pi}{3}$
20. (B) The equation of the plane passing through x-axis is $x=a$.
This also passes through $(1,2,3)$
$\therefore x=1$
$[\because a=1]$
Which is the required equation of plane.
21. (A) Let the coordinates of the points A, B, C and D be $(1,3,4),(-1,6,10),(-7,4,7)$ and $(-5,1,1)$ respectively.
$\therefore \mathrm{AB}=\sqrt{(-1-1)^{2}+(6-3)^{2}+(10-4)^{2}}$
$=\sqrt{4+9+36}=7$
$\mathrm{BC}=\sqrt{(-7+1)^{2}+(4-6)^{2}+(7-10)^{2}}$
$=\sqrt{36+4+9}=7$
$\mathrm{DA}=\sqrt{(1+5)^{2}+(3-1)^{2}+(4-1)^{2}}$
$=\sqrt{36+4+9}=7$
$\mathrm{AC}=\sqrt{(-7-1)^{2}+(4-3)^{2}+(7-4)^{2}}$
$=\sqrt{64+1+9}=\sqrt{74}$ and,
$\mathrm{CD}=\sqrt{(-5+7)^{2}+(1-4)^{2}+(1-7)^{2}}$
$=\sqrt{4+9+36}=7$

Campus

K D Campus Pvt. Ltd

$\mathrm{BD}=\sqrt{(-5+1)^{2}+(1-6)^{2}+(1-10)^{2}}$
$=\sqrt{16+25+81}=\sqrt{122}$
$\because \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
But BD $\neq \mathrm{AC}$
\therefore Points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D form a rhombus.
22.(C) We know that the number of planes passing through three non-collinear points is 1 .
23. (A) Given that,
$x+z=0, y=0$ and $20 x=15 y=12 z$
$\Rightarrow \frac{x}{1}=\frac{y}{0}=\frac{z}{-1}=$ and $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}$
Let θ be the angle between both lines.
Then, $\cos \theta=\left|\frac{(1)(3)+(0)(4)+(-1)(5)}{\sqrt{1+0+1} \sqrt{9+16+25}}\right|$
$\Rightarrow \cos \theta=\left|\frac{3+0-5}{\sqrt{2} \sqrt{50}}\right|=\left|\frac{2}{\sqrt{2} \cdot 5 \sqrt{2}}\right|=\frac{1}{5}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{1}{5}\right)$
24. (D) Latus rectum of an ellipse $=\frac{2 b^{2}}{a}$,
and minor axis $=2 b$
$\therefore \quad b=\frac{2 b^{2}}{a} \Rightarrow a=2 b \quad$ [ATQ]
Also, $e=\sqrt{1-\frac{b^{2}}{a^{2}}}$
$=\sqrt{1-\frac{b^{2}}{4 b^{2}}}=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}$
25. (D) $A=\{\{1,2\}\}=\{\{1\},\{2\},\{3\}\}$
$\Rightarrow\{1,2\} \in A$
26. (C) The relation is defined as $x R y$, iff if $3 x+4 y$

$$
=5
$$

if we take, $(\mathrm{x}, \mathrm{y})=\left(1, \frac{1}{2}\right)$ and $\left(\frac{2}{3}, \frac{3}{4}\right)$
then these pairs are satisfied by the given relation
$1 \mathrm{R} \frac{1}{2} \Leftrightarrow 3.1+4 \mathrm{y}=5$
and $\frac{2}{3} \mathrm{R} \frac{3}{4} \Leftrightarrow \frac{2}{3} \cdot 3+4 \cdot \frac{3}{4}=5$
27. (C) \because fog $(x)=25$
$\Rightarrow \mathrm{f}[\mathrm{g}(x)]=25$
$\Rightarrow \mathrm{f}\left[\mathrm{x}^{2}+7\right]=25$
$\Rightarrow 2\left(\mathrm{x}^{2}+7\right)+7=25$
$\Rightarrow 2 \mathrm{x}^{2}=2$
$\Rightarrow \mathrm{x}^{2}=4$
$\therefore \mathrm{x}= \pm \sqrt{2}$
28. (C) $4+5\left(\frac{-1}{2}+i \frac{\sqrt{3}}{2}\right)^{334}+3\left(\frac{-1}{2}+i \frac{\sqrt{3}}{2}\right)^{365}$
$=4+5(\omega)^{334}+3(\omega)^{365}$
$=4+5\left(\omega^{3}\right)^{111} \omega+3\left(\omega^{3}\right)^{121} \omega^{2}$
$=4+5 \omega+3 \omega^{2}$
$=3 \omega^{2}+3 \omega+3+2 \omega+1$
$=3\left(\omega^{2}+\omega+1\right)+2 \omega+1$
$=2 \omega+1$
$=2\left(\frac{-1}{2}+i \frac{\sqrt{3}}{2}\right)+1$
$=-1+i \sqrt{3}+1$
$=i \sqrt{3}$
29. (C) In general, rth term of the the given expression

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}}=(\mathrm{r}+1)\left(r+\frac{1}{\omega}\right)\left(r+\frac{1}{\omega^{2}}\right) \\
& =\mathrm{r}^{3}+\mathrm{r}^{2}\left(\frac{1}{\omega^{2}}+\frac{1}{\omega}+1\right)+\mathrm{r}\left(1+\frac{1}{\omega^{2}}+\frac{1}{\omega}\right)+1 \\
& =\mathrm{r}^{3}+\mathrm{r}^{2}\left(\omega+\omega^{2}+1\right)+\mathrm{r}\left(\omega+\omega^{2}+1\right)+1 \\
& =\mathrm{r}^{3}+1 \quad\left(\because 1+\omega+\omega^{2}=0\right) \\
& \therefore \mathrm{S}_{\mathrm{n}}=\sum_{r=1}^{n}\left(\mathrm{r}^{3}+1\right) \quad \\
& =\left\{\frac{n(n+1)}{2}\right\}^{2}+\mathrm{n}=\frac{n^{2}(n+1)^{2}}{4}+\mathrm{n} \\
& =\frac{n^{2}(n+1)^{2}+4 n}{4}
\end{aligned}
$$

30. (C)

2	83	
2	41	1
2	20	1
2	10	0
2	5	0
2	2	1
	1	0

$\therefore(83)_{10}=(1010011)_{2}$ Which is required binary form.

K D Campus Pvt. Ltd

31. (D) $(0.101)_{2}=2^{-1} \times 1+2^{-2} \times 0+2^{-3} \times 1$
$=\frac{1}{2}+0+\frac{1}{8}=\frac{5}{8}$
and $(0.011)_{2}=0 \times 2^{-1}+2^{-2}+1 \times 2^{-3} \times 1$
$=0+\frac{1}{4}+\frac{1}{8}=\frac{3}{8}$
Also $(11)_{2}=1 \times 2^{1}+1 \times 2^{0}=3$
and $(01)_{2}=0 \times 2^{1}+12^{0}=1$
$\frac{(0.101)_{2}^{(11)_{2}}+(0.011)_{2}^{(11)_{2}}}{(0.101)_{2}^{(10)_{2}}-(0.101)_{2}^{(01)_{2}}(0.011)_{2}^{(01)_{2}}+(0.011)_{2}^{(10)_{2}}}$
$=\frac{\left(\frac{5}{8}\right)^{3}+\left(\frac{3}{8}\right)^{3}}{\left(\frac{5}{8}\right)^{2}-\left(\frac{5}{8}\right)\left(\frac{3}{8}\right)+\left(\frac{3}{8}\right)^{2}}$
$=\frac{5}{8}+\frac{3}{8}+\frac{8}{8}=1=(1)_{2}$
32. (B) $\mathrm{T}_{\mathrm{m}}=\mathrm{S}_{\mathrm{m}}-\mathrm{S}_{\mathrm{m}-1}$
$164=3 m^{2}+5 m-\left[3(m-1)^{2}+5(m-1)\right]$
$=3 m^{2}+5 m-\left[3\left(m^{2}-2 m+1\right)+5 m-5\right]$
$=3 m^{2}+5 m-3 m^{2}+6 m-3-5 m+5$ $164=6 m+2$
$\Rightarrow \mathrm{m}=\frac{164-2}{6}=27$
33.(C) Let $\mathrm{S}_{\mathrm{n}}=\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{14}+$ \qquad also, $\mathrm{S}_{\mathrm{n}}=\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\ldots+\mathrm{a}_{\mathrm{n}-1}+\mathrm{a}_{\mathrm{n}}$
$\Rightarrow 0=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots a_{n}$
$\Rightarrow \mathrm{a}_{\mathrm{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \mathrm{n}$ terms
$a_{n}=\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{n}\right)}{1-\frac{1}{2}}=1-2^{-n}$
$\Rightarrow \mathrm{a}_{\mathrm{n}}=\frac{2^{n}-1}{2^{n}}$
$\mathrm{S}_{\mathrm{n}}=\sum 1-\sum 2^{-n}$
$=\mathrm{n}-\left\{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \mathrm{n}\right.$ terms $\}$
$=\mathrm{n}-\frac{\frac{1}{2}\left[1-\left(\frac{1}{2}\right)^{\mathrm{n}}\right]}{1-\frac{1}{2}}$
$=n-\left(1-2^{-n}\right)=n-1+2^{-n}$
33. (A) $\because a, b, c$ are in GP.

$$
\Rightarrow \mathrm{b}^{2}=\mathrm{ac}
$$

$$
\begin{aligned}
& \text { Now } \frac{1}{\mathrm{a}^{2}-\mathrm{b}^{2}}+\frac{1}{\mathrm{~b}^{2}} \\
& \Rightarrow \frac{b^{2}+a^{2}-b^{2}}{b^{2}\left(a^{2}-b^{2}\right)}
\end{aligned}
$$

$$
\Rightarrow \frac{a^{2}}{b^{2}\left(a^{2}-b^{2}\right)}=\frac{\left(\frac{b^{2}}{c}\right)^{2}}{b^{2}\left[\left(\frac{b^{2}}{c}\right)^{2}-b^{2}\right]}
$$

$$
=\frac{\frac{b^{4}}{c^{2}}}{\frac{b^{2}\left(b^{4}-b^{2} c^{2}\right)}{c^{2}}}=\frac{b^{4}}{b^{2} \times b^{2}\left(b^{2}-c^{2}\right)}
$$

$$
=\frac{1}{b^{2}-c^{2}}
$$

35. (C) $\because \frac{a+b}{2}=\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$
$\Rightarrow(\mathrm{a}+\mathrm{b})\left(\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}\right)=2\left(\mathrm{a}^{\mathrm{n}+1}+\mathrm{b}^{\mathrm{n}+1}\right)$
$\Rightarrow \mathrm{a}^{\mathrm{n}+1}+\mathrm{ab}^{\mathrm{n}}+\mathrm{a}^{\mathrm{n}} \mathrm{b}+\mathrm{b}^{\mathrm{n}+1}=2 \mathrm{a}^{\mathrm{n}+1}+2 \mathrm{~b}^{\mathrm{n}+1}$
$\Rightarrow \mathrm{ab}^{\mathrm{n}}+\mathrm{a}^{\mathrm{n}} \mathrm{b}=\mathrm{a}^{\mathrm{n}+1}+\mathrm{b}^{\mathrm{n}+1}$
$\Rightarrow \mathrm{ab}^{\mathrm{n}}-\mathrm{b}^{\mathrm{n}+1}=\mathrm{a}^{\mathrm{n}+1}-\mathrm{a}^{\mathrm{n}} \mathrm{b}$
$\Rightarrow b^{\mathrm{n}}(\mathrm{a}-\mathrm{b})=\mathrm{a}^{\mathrm{n}}(\mathrm{a}-\mathrm{b})$
$\Rightarrow\left(\frac{a}{b}\right)^{n}=1=\left(\frac{a}{b}\right)^{0}$
$\Rightarrow \mathrm{n}=0$
36. (A) $\because \mathrm{S}_{\mathrm{n}}=3 \mathrm{n}^{2}+5 \mathrm{n}$
$\therefore \mathrm{T}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}=\left(3 \mathrm{n}^{2}+5 \mathrm{n}\right)-\left[3(\mathrm{n}-1)^{2}+5(\mathrm{n}-1)\right.$
$=3 n^{2}+5 n-3 n^{2}-3+6 n-5 n+5$
$=(6 n+2)$
The nth term is a linear function in n. Hence, sequence must be an AP.
37. (D) Given, $T_{n}=5456 \Rightarrow n=5456$
$\Rightarrow 6 \mathrm{n}=5454 \Rightarrow \mathrm{n}=909$
\therefore The number 5456 is the (909)th term.

K D Campus Pvt. Ltd

38. (B) $T_{1}^{2}+T_{2}^{2}+T_{3}^{2}=(8)^{2}+(14)^{2}+(20)^{2}$
$=64+196+400=660$
39. (B) Since, α, β are the roots of $x^{2}+$
$\mathrm{x} \sqrt{\alpha}+\beta=0$, then $\alpha+\beta=-\sqrt{\alpha}$ and
$\alpha \beta=\beta$
$\Rightarrow \alpha=1, \quad \beta=-2$
40. (B) Now, $\alpha+1=1+1=2$,
$\beta+1=-2+1=-1$
Their sum $=2+(-1)=1$
Their product $=2(-1)=-2$
\therefore Required equation
$x^{2}-(1) x+(-2)=0 \Rightarrow x^{2}-x-2=0$
41. (A) First we arrange the four letters G, L, M and Y in the alternate position $=4$!
Now, rest of letters 0,0 arranged in 5 alternate positions $={ }^{5} \mathrm{C}_{2}$
\therefore Required number of ways $=4!\times{ }^{5} \mathrm{C}_{2}$
$=24 \times \frac{5 \times 4}{2}$
$=24 \times 10=240$
42. (B) Required number of ways $=2^{6}-1=64-1$ $=63$
43. (B) $\mathrm{T}_{\mathrm{r}+1}={ }^{10} C_{r} x^{\frac{10-r}{2}} \times \frac{1}{3^{\frac{10-r}{2}}} \times \frac{3^{r}}{2^{r} \cdot r^{2 r}}$

$$
\begin{aligned}
& ={ }^{10} C_{r} \frac{3^{r}}{3^{\frac{10-r}{2}}} \times \frac{1}{2^{r}} \times x^{\frac{10-r}{2}-2 r} \\
& \Rightarrow x^{\frac{10-r}{2}-2 r}=x^{0} \\
& 10-\mathrm{r}-4 \mathrm{r}=0 \quad \mathrm{r}=2 \\
& \therefore \text { coefficient }={ }^{10} C_{2} \frac{3^{2}}{3^{4}} \times \frac{1}{2^{2}} \\
& =5 \times \frac{1}{4} \\
& \quad=5 / 4
\end{aligned}
$$

44. (C) Number of terms in

$$
x+y \text { or }(a+1)^{6}-(a-1)^{6} \text { is equal to } \frac{6}{2}+1=4
$$

45. (C) Number of terms in $x-y$ or $(a+1)^{6}-(a-1)^{6}$ is equal to $\frac{6}{2}=3$.
46. (B) $x-y=(a+1)^{6}-(a-1)^{6}$

$$
\begin{aligned}
& =2\left({ }^{6} \mathrm{C}_{1} \mathrm{a}^{5}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3}+{ }^{6} \mathrm{C}_{5} \mathrm{a}\right) \\
& =2\left(6 \mathrm{a}^{4}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{2}+{ }^{6} \mathrm{C}_{5}\right) \mathrm{a}
\end{aligned}
$$

$=2(6 \times 4+20 \times 2+6) \sqrt{2}$
$=2 \sqrt{2}(24+40+6)=140 \sqrt{2}$
47. (D) Let T_{r+1} be the term independent of x in $\left(\frac{3 x^{-2}}{2}-\frac{1}{3 x}\right)^{9}$
$\therefore \mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}}\left(\frac{3 \mathrm{x}^{-2}}{2}\right)^{9-\mathrm{r}}\left(-\frac{1}{3 \mathrm{x}}\right)^{\mathrm{r}}$
$=(-1)^{\mathrm{r}}{ }^{9} \mathrm{C}_{\mathrm{r}}\left(\frac{3}{2}\right)^{9-\mathrm{r}} \cdot \frac{1}{3^{r}} x^{-18+2 \mathrm{r}-\mathrm{r}}$
For coefficient of $\mathrm{x}^{0}, \mathrm{x}^{-1}$ and x^{-2},
we get $-18+r=0,-18+r=-1$
and $-18+\mathrm{r}=-2$
which is not possible
Thus, no such term exists in the expansion of given expression.
48. (B) $\log _{x} a+\log _{x} c=2 \log _{x} b$
$\Rightarrow \mathrm{ac}=\mathrm{b}^{2}$
$\Rightarrow a, b, c$ are in GP
49. (A) Given, $X+Y=15$

The total number of ordered pairs
$=(5,10),(6,9),(7,8),(8,7),(9,6),(10,5)$
$\therefore \mathrm{n}(E)=6$
In each above pairs exactly one is even number.
$\therefore \mathrm{n}(E)=6$
\therefore Required probability $=\frac{n(E)}{n(S)}=\frac{6}{6}=1$
50. (A) Since, $(2 x+2)^{2}=x(3 x+3)$
$\Rightarrow x^{2}+5 x+4=0$
$\Rightarrow x=-1,-4$
Now, first term $a=x$
Second term, $\operatorname{ar}=2(x+1) \Rightarrow r=\frac{2(x+1)}{x}$
\therefore Fourth term $=a r^{3}=x\left(\frac{2(x+1)}{x}\right)^{3}$
Put $x=-4$, we get
$\mathrm{T}_{4}=-4\left(\frac{2(-4+1)}{-4}\right)^{3}=-4 \times\left(\frac{3}{2}\right)^{3}=-\frac{27}{2}$
51. (C) Correlation between two variables is said to be perfect, if when one variable increases, the other also increases proportionally.

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

52. (C) Both statements are true.
53. (C) $\therefore P(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
$\Rightarrow P(A \cap B)=\frac{1}{3}+\frac{3}{4}-\frac{11}{12}=\frac{1}{6}$
$\therefore P\left(\frac{B}{A}\right)=\frac{P(A \cap B)}{P(A)}=\frac{1 / 6}{1 / 3}=\frac{1}{2}$
54. (A) Given,
$(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$
$\Rightarrow 3 x^{2}-2(b+a+c) x+a b+b c+c a=0$
Now, $\mathrm{D}=\sqrt{4(a+b+c)^{2}-12(a b+b c+c a)}$
$=2 \sqrt{a^{2}+b^{2}+c^{2}-a b-b c-c a}$
$=2 \sqrt{\frac{1}{2}\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}}$
>0
Hence, roots are always real.
55. (B) $\left(\log _{x} x\right)\left(\log _{3} 2 x\right)\left(\log _{2 x} y\right)=\log _{x} x^{2}$
$\Rightarrow 1\left(\log _{3} 2 x\right)\left(\log _{2 x} y\right)=2 \quad\left(\therefore \log _{x} x=1\right)$
$\Rightarrow \log _{3} y=2$
$\Rightarrow y=3^{2}$
$\Rightarrow y=9$
56. (D) Given, $\log _{5} k \log _{k} x=3$
$\Rightarrow \log _{5} x=3$
$\Rightarrow x=5^{3}$
$\Rightarrow x=125$
57.(B) Given, series can be rewritten as

20, $\frac{77}{4}, \frac{37}{2}, \frac{71}{4}, \ldots$.
This is an AP series,
Here, $a=20, d=-\frac{3}{4}$
$\mathrm{T}_{\mathrm{n}}=a+(n-1) d$
$=20+(n-1)\left(-\frac{3}{4}\right)$
$=\frac{83}{4}-\frac{3}{4} n$
For first negative term, $T_{n}<0$
$\Rightarrow \frac{83}{4}-\frac{3}{4} n<0$
$\Rightarrow 83<3 n$
$\Rightarrow n>\frac{83}{3}$
So, n should be 28 .

Hence, 28 th term is the first negative term.
58. (B) $\sin ^{-1} x+\cot ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{2}$
$\therefore \cot ^{-1} x=\cos ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)$
$\Rightarrow \sin ^{-1} x+\cos ^{-1} \frac{1}{\sqrt{5}}=\frac{\pi}{2}=\sin ^{-1} x+\cos ^{-1} x$

$$
\left(\because \sin ^{-1} \theta+\cos ^{-1} \theta=\frac{\pi}{2}\right)
$$

On comparing
$\therefore x=\frac{1}{\sqrt{5}}$
59. (C) Let given equations have common root α. Then, $\alpha^{2}+m \alpha+1=0$ and $\alpha^{2}+\alpha+m=0$
$\Rightarrow \frac{\alpha}{m^{2}-1}=\frac{\alpha}{1-m}=\frac{1}{1-m}$
$\Rightarrow \frac{\alpha}{1-m}=\frac{1}{1-m} \Rightarrow \alpha=1$
Also, $\frac{\alpha^{2}}{m^{2}-1}=\frac{1}{1-m}$
$\Rightarrow 1-m=m^{2}-1$
$\Rightarrow m^{2}+m-2=0$
$\Rightarrow(\mathrm{m}+2)(\mathrm{m}-2)=0$
$\Rightarrow \mathrm{m}=1$ and -2
60.(D) In $\triangle A B D, \tan 30^{\circ}=\frac{A D}{A B}=\frac{20}{A B}$

$\Rightarrow \mathrm{AB}=20 \sqrt{3} \mathrm{~m}$.
In $\triangle D C F, \tan 60^{\circ}=\frac{h}{D C}=\sqrt{3}$
$\begin{array}{ll}\Rightarrow \mathrm{h}=\sqrt{3} \cdot 20 \sqrt{3} & (A B=D C=20 \sqrt{3}) \\ \Rightarrow \mathrm{h}=60 \mathrm{~m} & \text { [From Eq. (i)] }\end{array}$

K D Campus Pvt. Ltd

\therefore Height of tower, $B F=60+20=80 \mathrm{~m}$

$$
(\because B F=\mathrm{h}+20)
$$

61.(A) $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}=\frac{\sqrt{3}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}}$

$$
\begin{aligned}
& =2\left(\frac{\frac{\sqrt{3}}{2} \cos 20^{\circ}-\frac{1}{2} \sin 20^{\circ}}{\sin 20^{\circ} \cos 20^{\circ}}\right) \\
& =2\left(\frac{\sin 60^{\circ} \cdot \cos 20^{\circ}-\cos 60^{\circ} \cdot \sin 20^{\circ}}{\sin 20^{\circ} \cdot \cos 20^{\circ}}\right) \\
& =\frac{2\left[\sin \left(60^{\circ}-20^{\circ}\right)\right]}{\frac{1}{2} \sin 40^{\circ}} \\
& =\frac{4 \sin 40^{\circ}}{\sin 40^{\circ}}=4
\end{aligned}
$$

62. (B) a. $\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \cdot \tan 30^{\circ}}$

$$
\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}
$$

$$
=\frac{3+1-2 \sqrt{3}}{2}=2-\sqrt{3}
$$

b. $\tan 75^{\circ}=\tan \left(45^{\circ}+30^{\circ}\right)$

$$
=\frac{\tan 45^{\circ}+\tan 30^{\circ}}{1-\tan 45^{\circ} \tan 30^{\circ}}
$$

$$
=\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}=2+\sqrt{3}
$$

c. $\tan \left(105^{\circ}\right)=\tan \left(60^{\circ}+45^{\circ}\right)$
$=\frac{\tan 60^{\circ}+\tan 45^{\circ}}{1-\tan 60^{\circ} \cdot \tan 45^{\circ}}$
$=\frac{\sqrt{3}+1}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}}$
$=\frac{4+2 \sqrt{3}}{-2}=-2-\sqrt{3}$
63. (D) Given, $a+b=3(1+\sqrt{3})$
and $a-b=3(1-\sqrt{3})$
On solving, we get $a=3, b=3 \sqrt{3}$
By using sine rule, $\frac{a}{\sin A}=\frac{b}{\sin B}$
$\Rightarrow \frac{3}{\sin 30^{\circ}}=\frac{3 \sqrt{3}}{\sin B}$
$\Rightarrow \sin B=\sqrt{3} \times \frac{1}{2}=\sin 60^{\circ}$
$\Rightarrow B=60^{\circ}$
64. (C) Given,
$\therefore N_{a}=\{a x \mid x \in N\}$
$N_{12}=\{12,24,36,48, \ldots\}$
and $N_{8}=\{8,16,24, \ldots\}$
$\therefore N_{8} \cap N_{12}=\{24,48, \ldots\}=\mathrm{N}_{24}$
65. (B) $\mathrm{X}=\left\{\left(4^{n}-3 n-1\right) n \in N\right\}$
and $Y=\{9(n-1) \mid n \in N\}$
$\Rightarrow X=\{0,9,54 \ldots\}$
$\mathrm{Y}=\{0,9,18,27,36,54, \ldots\}$
$\therefore X \cup Y=\{0,9,18,27,36,54, \ldots\}$ $=Y$
66. (D) The total number of elements common in $(\mathrm{A} \times \mathrm{B})$ and $(\mathrm{B} \times \mathrm{A})$ is n^{2}.
(By property)
67. (D) Given, $z+z^{-1}=1$
$\Rightarrow z^{2}-z+1=0$
$\Rightarrow z=-\omega,-\omega^{2}$
when $z=-\omega$
$\therefore z^{99}+z^{-99}=(-\omega)^{99}+(-\omega)^{-99}=-1-1=-2$
$\left(\because \omega^{3}=-1\right)$
when $z=-\omega^{2}$
$\therefore z^{99}+z^{-99}=\left(-\omega^{2}\right)^{99}+\left(-\omega^{2}\right)^{99}$
$=-1-1=-2$
68. (D) Given, $T_{m}=\mathrm{a}+(m-1) d$
$\Rightarrow \frac{1}{n}=a+(m-1) d$
and $T_{n}=a+(n-1) d$
$\Rightarrow \frac{1}{m}=a+(n-1) d$
On solving Eqs. (i) and (ii)
$a=d=\frac{1}{m n}$
$\therefore T_{m n}=\frac{1}{m n}+(m n-1) \frac{1}{m n}=1$

K D Campus Pvt. Ltd

69. (B) Number of times 3 occurs $=$ (when 3 occurs exactly at one place) + (when 3 occurs exactly at two places) + (when 3 occurs exactly at three places)
$={ }^{3} \mathrm{C}_{1} \times 9 \times 9+{ }^{3} \mathrm{C}_{2} \times 9+{ }^{3} \mathrm{C}_{3}$
$=243+27+1=271$
70. (A) I. The coefficient of middle term in the expansion of
$(1+x)^{8}={ }^{8} \mathrm{C}_{4}$
and $\left(x+\frac{1}{x}\right)^{8}={ }^{8} \mathrm{C}_{4}$
Hence, it is equal
II. The coefficient of middle term in the expansion of
$(1+x)^{8}={ }^{8} \mathrm{C}_{4}$
The coefficient of fifth term in the expansion of $(1+x)^{7}={ }^{7} \mathrm{C}_{4}$ or ${ }^{7} \mathrm{C}_{3}$
$\therefore{ }^{8} \mathrm{C}_{4}>{ }^{7} \mathrm{C}_{4}$ or ${ }^{7} \mathrm{C}_{3}$
Hence, only statement I is true and statement II is false.
71. (C) Given, $x y=a e^{x}+b e^{-x}$ \qquad
Differentiating on both sides w.r.t. x, we get.
$\Rightarrow y+x \frac{d y}{d x}=a e^{x}-b e^{-x}$
Again differntiating w.r.t. x, we get
$\Rightarrow \frac{d y}{d x}+\frac{d y}{d x}+x \frac{d^{2} y}{d x^{2}}=a e^{x}+b e^{-x}$
$\Rightarrow x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=x y \quad$ [from Eq. (i)]
Hence, it is of order two and degree one.
72. (B) Given,
$y=\left(1+x^{1 / 4}\right)\left(1+x^{1 / 2}\right)\left(1-x^{1 / 4}\right)$
$=\left(1+x^{1 / 2}\right)\left[1-\left(x^{1 / 4}\right)^{2}\right]$
$=\left(1+x^{1 / 2}\right)\left(1-x^{1 / 2}\right)$
$\Rightarrow y=1-x$
On differentiationg w.r.t. x, we get
$\frac{d y}{d x}=-1$
73. (D) The total daily income of workers, including the owner $=10 \times 110=1100$
The total daily income of workers, excluding the owner $=9 \times 76=684$
\therefore Daily income of owner
$=1100-684=₹ 416$
74. (D) $\because A, B, C$ are non-empty sets such that $\mathrm{A} \cap \mathrm{C}=\phi$.

$$
\begin{aligned}
\therefore \quad(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{B}) & =(\mathrm{A} \cap \mathrm{C}) \times \mathrm{B} \\
& =\phi \times \mathrm{B} \\
& =\phi
\end{aligned}
$$

75. (D) $\because A=\{4 n+2: n \in N\}$
$=\{6,10,14,18,22,26,30, \ldots\}$
and $B=\{3 n: n \in N\}$
$=\{3,6,9,12,15,18,21,24, \ldots\}$
$\therefore A \cap B=\{6,18,30, \ldots\}$
$=\{6+(n-1) 12] n \in N\}$
$=\{12 \mathrm{n}-6 \mid \mathrm{n} \in \mathrm{N}\}$
76. (A) $\because \mathrm{A}=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$

$$
\begin{aligned}
& \therefore \mathrm{A}^{2}=\left[\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right]\left[\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha^{2}+\beta^{2} & 2 \alpha \beta \\
2 \alpha \beta & \alpha^{2}+\beta^{2}
\end{array}\right]
\end{aligned}
$$

Now,
$\Rightarrow\left[\begin{array}{cc}\alpha^{2}+\beta^{2} & 2 \alpha \beta \\ 2 \alpha \beta & \alpha^{2}+\beta^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow \alpha^{2}+\beta^{2}=1, \quad \alpha \beta=0$
$\Rightarrow \alpha=0, \beta=1$, or $\beta=0, \alpha=1$
77.(C) The sum of the focal distances of a point of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $2 a$.
[by property]
78. (B) The given equation can be rewritten as
$\left(\frac{d^{3} y}{d x^{3}}\right)^{2}=\left(3 \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}-4\right)^{3}$
\therefore Degree of the differential equation is 2 .
79. (B) $\sqrt{3}+\frac{1}{\sqrt{3}}+\frac{1}{3 \sqrt{3}}+\ldots$
$\left(\because S_{\infty}=\frac{a}{1-r}\right)$
$=\frac{\sqrt{3}}{1-\frac{1}{3}}=\frac{3 \sqrt{3}}{2}$
80. (B) Given equation is
$y \frac{d y}{d x}+x=a$
$\Rightarrow \int y d y+\int x d x=a \int d x$

K D Campus Pvt. Ltd

$\Rightarrow \frac{y^{2}}{2}+\frac{x^{2}}{2}-a \mathrm{x}=\frac{c}{2}$
$\Rightarrow x^{2}+y^{2}-2 a x=c$
This represents a circle whose centre is on the x -axis.
81. (B) $\because \quad \mathrm{A}=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right] \Rightarrow \mathrm{A}^{2}=\left[\begin{array}{cc}\alpha & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}\alpha & 0 \\ 1 & 1\end{array}\right]$
$\Rightarrow \mathrm{A}^{2}=\left[\begin{array}{cc}\alpha^{2} & 0 \\ \alpha+1 & 1\end{array}\right]$
But $\mathrm{A}^{2}=\mathrm{B} \Rightarrow\left[\begin{array}{cc}\alpha^{2} & 0 \\ \alpha+1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
$\Rightarrow \alpha^{2}=1$ and $\alpha+1=2$
$\Rightarrow \alpha=1$
82. (C) $\because \frac{{ }^{15} P_{n-1}}{{ }^{16} P_{n-2}}=\frac{3}{4}$ (given) $\left[\because{ }^{n} P_{r}=\frac{n!}{(n-r)!}\right]$
$\Rightarrow \frac{15!}{(15-n+1)} \times \frac{(16-n+2)!}{16!}=\frac{3}{4}$
$\Rightarrow \frac{(18-n)!}{16(16-n)!}=\frac{3}{4}$
$\Rightarrow(18-n)(17-n)=12$
$\Rightarrow 306-17 n-18 n+n^{2}=12$
$\Rightarrow n^{2}-35 n+294=0$
$\Rightarrow(n-14)(n-21)=0$
$\Rightarrow n=14$
$(\because n \neq 21)$
83. (D) $\left|\begin{array}{lcc}x+1 & x+2 & x+4 \\ x+3 & x+5 & x+8 \\ x+7 & x+10 & x+14\end{array}\right|$
(use operations, $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1} ; \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$)
$=\left|\begin{array}{lll}x+1 & 1 & 3 \\ x+3 & 2 & 5 \\ x+7 & 3 & 7\end{array}\right|$
$=\left|\begin{array}{ccc}x+1 & 1 & 3 \\ 2 & 1 & 2 \\ 4 & 1 & 2\end{array}\right|$
(use operations, $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2} ; \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$)
$=(x+1)(0)-1(4-8)+3(2-4)$
$=4-6=-2$
84. (C) Given that,

$$
f(x)=x^{3}-1
$$

$\Rightarrow f^{\prime}(x)=3 x^{2}$
For increasing function $f^{\prime}(x)>0$
$\Rightarrow 3 x^{2}>0$
\therefore The function will increase, for $x \in \mathrm{R}$, i.e., the function will increase in $[-1,1]$.

The curve does not have any sign change in the interval $(-1,1)$.
$\therefore f(x)$ has no root in $(-1,1)$.
85. (B) Let $f(x)=2 x^{3}-3 x^{2}-12 x+5$
$f^{\prime}(x)=6 x^{2}-6 x-12$
For maximum value of $f(x)$
$f^{\prime}(x)=0$
$6 x^{2}-6 x-12=0$
$\Rightarrow x^{2}-x-2=0$
$\Rightarrow x^{2}-2 x+x-2=0$
$\Rightarrow x(x-2)+1(x-2)=0$
$\Rightarrow x=-1$ and 2
$f^{\prime \prime}(x)=12 x-6$
At $x=-1, f^{\prime \prime}(-1)=-18<0 \quad(\max)$
At $x=2, f^{\prime \prime}(2)=24-6=18>0 \quad$ (min)
So, $f(x)$ has maximum value at $x=-1$. where $x \in[-2,2]$
86. (B) $\mathrm{I}=\int_{0}^{\pi} \frac{d x}{1+2 \sin ^{2} x}$
$=2 \int_{0}^{\frac{\pi}{2}} \frac{d x}{1+2 \sin ^{2} x}$
$\because \int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x$
If $\{f(2 a-x)=f(x)\}$
$I=2 \int_{0}^{\frac{\pi}{2}} \frac{d x}{1+1-\cos 2 x}$
$=2 \int_{0}^{\frac{\pi}{2}} \frac{d x}{2-\cos 2 x}$
$=2 \int_{0}^{\frac{\pi}{2}} \frac{d x}{2-\left(\frac{1-\tan ^{2} x}{1+\tan ^{2} x}\right)}$
$=2 \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x}{1+3 \tan ^{2} x} d x$

Let $\sqrt{3} \tan x=t \Rightarrow \sqrt{3} \sec ^{2} x d x=d t$
$I=2 \int_{0}^{\infty} \frac{d t}{\sqrt{3}\left(1+t^{2}\right)}=\frac{2}{\sqrt{3}}\left[\tan ^{-1} t\right]_{0}^{\infty}$
$I=\frac{2}{\sqrt{3}}\left[\tan ^{-1}(\infty)-\tan ^{-1}(0)\right]$
$I=\frac{2}{\sqrt{3}}\left(\frac{\pi}{2}-0\right)=\frac{2 \pi}{2 \sqrt{3}}$
$I=\frac{\pi}{\sqrt{3}}$
87. (A) $\left|\begin{array}{lll}x & 4 & 5 \\ 7 & x & 7 \\ 5 & 8 & x\end{array}\right|=0$

Expand with respect to R1
$\Rightarrow x\left(x^{2}-56\right)-4(7 x-35)+5(56-5 x)=0$
$\Rightarrow x^{3}-56 x-28 x+140+280-25 x=0$
$\Rightarrow x^{2}-109 x+420=0$
$\Rightarrow(x-5)(x-7)(x+12)=0$
$\Rightarrow x=-12$
88. (B) If a, ar, ar^{2}, \ldots are in GP, then

According to question,
$a=\frac{1}{3}\left(a r+a r^{2}\right)$
$\Rightarrow 3=r+r^{2}$
$\Rightarrow \mathrm{r}^{2}+\mathrm{r}-3=0$
$\Rightarrow \mathrm{r}=\frac{-1 \pm \sqrt{1+4 \times 3}}{2}$
$\Rightarrow r=\frac{-1 \pm \sqrt{13}}{2}=\frac{\sqrt{13}-1}{2}(\because r>0)$
89. (B) $(1+\tan \theta)(1+\tan \phi)=2$

$$
\begin{aligned}
& \Rightarrow 1+\tan \theta+\tan \phi+\tan \theta \tan \phi=2 \\
& \Rightarrow \tan \theta+\tan \phi=1-\tan \theta \tan \phi \\
& \Rightarrow \frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}=1 \\
& \Rightarrow \tan (\theta+\phi)=\tan 45^{\circ} \\
& \Rightarrow \quad(\theta+\phi)=45^{\circ}
\end{aligned}
$$

90. (C) $\because f(x)$ is an even function.
$\therefore \int_{0}^{\pi} f(\cos x) d x=2 \int_{0}^{\frac{\pi}{2}} f(\cos x) d x$
$\because \int_{0}^{2 a} f(x)\left\{\begin{array}{cc}2 \int_{0}^{a} f(x) d x, & \text { if } f(2 a-x)=f(x), \text { (even) } \\ 0, & \text { if } f(2 a-x)=-f(x),(\text { odd })\end{array}\right.$
91. (C) $\because a_{1}=k, a_{2}=b_{1}=2, b_{2}=1, c_{1}=5, c_{2}=1$ For no solution,

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \Rightarrow \frac{k}{3}=\frac{2}{1} \Rightarrow k=6
$$

92. (D) Required number of ways $=6 \times 5=30$.
93. (D) $\log _{10} \frac{9}{8}-\log _{10} \frac{27}{32}+\log _{10} \frac{3}{4}$

$$
\begin{aligned}
& =\log _{10} \frac{9}{8} \times \frac{32}{27} \times \frac{3}{4} \\
& =\log _{10} 1=0
\end{aligned}
$$

94. (B) $\because a=\frac{1}{4},-\frac{1}{2} / \frac{1}{4}=-2$

So, the given series forms a G.P.
$\therefore \mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$\Rightarrow-128=\frac{1}{4}(-2)^{\mathrm{n}-1}$
$\Rightarrow(-2)^{9}=(-2)^{\mathrm{n}-1}$
$\Rightarrow 9=n-1$
$\Rightarrow \mathrm{n}=10$
95. (C) The possible non-zero positive integer ordered pair (x, y) satisfy the inequality $x+y \leq 4$ is $(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)$.
\therefore The number of required ordered pairs $=6$
96. (B) $a=0111=2^{4} \times 0+2^{3} \times 0+2^{2} \times 1+2^{1}$

$$
\times 1+2^{0} \times 1
$$

$$
=4+2+1=7
$$

$$
b=01110=2^{4} \times 0+2^{3} \times 1+2^{2} \times 1 \times 2^{1} \times 1
$$

$$
+2^{0} \times 0
$$

$$
=8+4+2=14
$$

$$
\frac{b}{a}=\frac{14}{7}=2
$$

97. (C) Given, the distance between the points
$(7,1,-3)$ and $(4,5, \lambda)$
$=13$
$\Rightarrow \sqrt{(4-7)^{2}(5-1)^{2}+(\lambda+3)^{2}}=13$
$\Rightarrow \sqrt{(3)^{2}+(4)^{2}+(\lambda+3)^{2}}=13$
$\Rightarrow \sqrt{9+16+(\lambda+3)^{2}}=13$
$\Rightarrow \sqrt{25+(\lambda+3)^{2}}=13$
On squaring both sides we get

K D Campus Pvt. Ltd

$\Rightarrow 25+(\lambda+3)^{2}=169$
$\Rightarrow 25+\lambda^{2}+9+6 \lambda-169=0$
$\Rightarrow \lambda^{2}+6 \lambda-135=0$
$\Rightarrow \lambda^{2}+15 \lambda-9 \lambda-135=0$
$\Rightarrow \lambda(\lambda+15)-9(\lambda+15)=0$
$\Rightarrow(\lambda+15)(\lambda-9)=0$
$\Rightarrow \lambda=9,-15$
98. (A) In $\triangle A O P$,
$\sin \alpha=\frac{z}{O P}=\frac{z}{r}$
$\Rightarrow z=r \sin \alpha$
Again in $\triangle \mathrm{AOP}$,
$\cos \alpha=\frac{x}{O P}=\frac{x}{r}$
$\Rightarrow x=r \cos \alpha$ and the y-cordinate in $x z$ plane in always zero.
\therefore The coordinate of P in $x z$-plane is $(r \cos \alpha, 0, r \sin \alpha)$.
99. (A) The point $(0,2,0)$ lie on $y z$-plane corre sponding to the point $(1,2,0)$. The distance $(1,2,0)$ and $(0,2,0)$

$$
\begin{aligned}
& =\sqrt{(1-0)^{2}+(2-2)^{2}+(0-0)^{2}} \\
& =\sqrt{1+0+0}=1
\end{aligned}
$$

100. (A)If α, β and γ are the angles that a line makes with the coordinates axes.
$\therefore l=\cos \alpha, m=\cos \beta, n=\cos \gamma$
$\because l+m^{2}+n^{2}=1$
$\Rightarrow \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \ldots$ (i)
Here, $\alpha=\beta=\gamma$ (given)
\therefore From Eq. (i),
$\cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha=1$
$\Rightarrow \quad \cos \alpha=\frac{1}{\sqrt{3}}$
(since, direction cosines of a line which is equally inclined to the positive directions of the axis so we take only positive sign)
$\therefore \cos \alpha=\cos \beta=\cos \gamma=\frac{1}{\sqrt{3}}$
or, $l=m=n=\frac{1}{\sqrt{3}}$
Hence, the required direction cosines are $\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$.
101. (A) Given lives are,

$$
\begin{aligned}
& \frac{x-2}{1}=\frac{y+1}{-2}=\frac{z+2}{1} \\
& \frac{x-1}{1}=\frac{2 y+3}{3}=\frac{z+5}{2} \\
& \frac{x-1}{1}=\frac{2\left(y+\frac{3}{2}\right)}{3}=\frac{z+5}{2} \\
& \frac{x-1}{1}=\frac{y+\frac{3}{2}}{\frac{3}{2}}=\frac{z+5}{2}
\end{aligned}
$$

If θ be the acute angle between lines (i) and (ii), then
$\cos \theta=\left|\frac{1 \times 1+(-2)\left(\frac{3}{2}\right)+1(2)}{\sqrt{1+(-2)^{2}+1^{2}} \sqrt{1^{2}+\left(\frac{3}{2}\right)+2^{2}}}\right|$
$=\left|\frac{1+(-3)+2}{\sqrt{1+4+1} \sqrt{1+\frac{9}{4}+4}}\right|$
$=\left|\frac{0}{\sqrt{6} \sqrt{\frac{29}{4}}}\right|=0$
$\therefore \cos \theta=0$
$\theta=\cos ^{-1}(0)=\frac{\pi}{2}$
102. (C) The equation of any plane parallel to the plane $3 x+4 y-5 z=0$ may be taken as $3 x+4 y-5 z+k=0$
If plane (i) passes through the point $(1,2,3)$, we get
$3(1)+4(2)-5(3)+k=0$
$3+8-15+k=0$
$-4+k=0$
$k=4$
On putting $k=4$, in Eq. (i), we get required equation
i.e., $3 x+4 y-5 z+4=0$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
103. (C) Given equations of the plane
$x=3 z+4$
$\Rightarrow \frac{x-4}{3}=\frac{z-0}{1}$
and $y=2 z-3$
$\Rightarrow \frac{y+3}{2}=\frac{z-0}{1}$
Therefore, the required equation of the line intersected by two planes (i) + (ii)
$\frac{x-4}{3}=\frac{y+3}{2}=\frac{z-0}{1}$
Hence, the direction ratio of the line (iii) is $\left(a_{1}, b_{1}, c_{1}\right)=(3,2,1)$
104. (B) The equation of the straight line passing through (a, b, c) and parallel to z-axis is
$\frac{x-a}{0}=\frac{y-b}{0}=\frac{z-c}{1}$
105. (B) Given, $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$
$=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x} \times \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1}$
[rationalization]
$=\frac{1+x-1}{x(\sqrt{1+x}+1)}=\lim _{x \rightarrow 0} \frac{1+x-1}{x(\sqrt{1+x}+1)}$
$=\lim _{x \rightarrow 0} \frac{1}{\sqrt{1+x}+1}=\frac{1}{\sqrt{1+0}+1}=\frac{1}{2}$
106. (D) Given,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{2(1-\cos x)}{x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{2\left(1-1+2 \sin ^{2} \frac{x}{2}\right)}{x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{4 \sin ^{2} \frac{x}{2}}{x^{2}}=\lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}
\end{aligned}
$$

$$
=(1)^{2}=1
$$

$$
\left(\because \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1\right)
$$

107. (B) Statement 1

Given $\lim _{x \rightarrow 0} \frac{1}{x}$ exists.
$\mathrm{LHL}=f(0-0)=\lim _{h \rightarrow 0} f(0-h)$
$=\lim _{h \rightarrow 0} e^{-\frac{1}{h}}=-\infty$
RHL $=f(0+0)=\lim _{h \rightarrow 0}(0+h)$
$=\lim _{h \rightarrow 0} e^{\frac{1}{h}}=e^{\infty}=\infty$
\because LHL \neq RHL
$\lim _{x \rightarrow 0} e^{\frac{1}{x}}$ does not exist.
Hence, only statement 2 is true.
108. (C) Given, $x^{m}+y^{m}=1$

Differentiating both sides $w r t x$, we get
$m x^{m-1}+m y^{m-1} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{m x^{m-1}}{m y^{m-1}}$
$=\frac{-x^{m-1}}{y^{m-1}}=-\left(\frac{x^{m}}{y^{m}}\right)\left(\frac{y}{x}\right)$
\Rightarrow Given, $\quad \frac{-x}{y}=\left(\frac{x^{m}}{y^{m}}\right)\left(\frac{y}{x}\right)$
$\Rightarrow x^{m-2}=y^{m-2}$
Which is true when $m=2$
109. (B) $f(x)=\frac{x^{2}}{|x|}, x \neq 0$
$f(0)=0$
or $f(x)=\left\{\begin{aligned} \frac{x^{2}}{x}=x & \text { if } x>0 \\ \frac{x^{2}}{-x}=-x & \text { if } x<0\end{aligned}\right.$
$f(0)=0$
Clearly, it is a moidulus function and modulus function is continuous everywhere.

K D Campus Pvt. Ltd

110. (B) $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{x-2}{(x+2)(x-2)}$
$=\lim _{x \rightarrow 2} \frac{1}{x+2}=\frac{1}{2+2}=\frac{1}{4}$
111. (D) Given, $\frac{d r}{d t}=3 \mathrm{~cm} / \mathrm{s}$

Since, area of circle $(\mathrm{A})=\pi r^{2}$
On differentiating it wrt time t we get
$\frac{d A}{d t}=2 \pi r \frac{d r}{d t}$
$=2 \pi \times 10 \times 3 \quad[\because r=10 \mathrm{~cm}]$
$=60 \pi \mathrm{~cm}^{2} / \mathrm{s}$
112. (B) $f^{-1}(x)=\frac{x+5}{3}$
$\Rightarrow f^{1}(y)=\frac{y+5}{3}$
$\because y=f(x)$
$\Rightarrow x=f^{1}(y)$
$\Rightarrow x=\frac{y+5}{3}$
$\Rightarrow 3 x=y+5$
$\Rightarrow y=3 x-5$
$\Rightarrow f(x)=3 x-5$
113. (C) Statement 1

Given, $y=\operatorname{In}(\sec x+\tan x)$
On differentiating it $w r t x$, we get
$\frac{d y}{d x}=\frac{1}{(\sec x+\tan x)} \frac{d}{d x}(\sec x+\tan x)$
$=\frac{1}{(\sec x+\tan x)}\left(\sec x \cdot \tan x+\sec ^{2} x\right)$
$\Rightarrow=\frac{1}{(\sec x+\tan x)} \sec x(\tan x+\sec x)$
$=\sec x$

Statement 2

Given, $y=\log (\operatorname{cosec} x-\cot x)$
$\frac{d y}{d x}=\frac{1}{(\operatorname{cosec} x-\cot x)} \frac{d}{d x}(\operatorname{cosec} x-\cot x)$
$=\frac{1}{(\operatorname{cosec} x-\cot x)}\left(-\operatorname{cosec} x \cdot \cot x+\operatorname{cosec}^{2} x\right)$
$=\operatorname{cosec} x \cdot \frac{(\operatorname{cosec} x-\cot x)}{(\operatorname{cosec} x-\cot x)}=\operatorname{cosec} x$
So, Statement 1 and 2 both are true.
114. (D) Given, $f(x)=2^{\sin x}$

On differentiating it wrt x, we get
$\frac{d}{d x} f(x)=\frac{d}{d x}\left(2^{\sin x}\right)$
$=(2)^{\sin x} \log 2 \cdot \frac{d}{d x}(\sin x)$
$=2^{\sin x} \cos x \log 2$
115. (C)

Given, $f(x)=x^{3}-3 x^{2}+6$
On differentating it wrt x, we get
$f^{\prime}(x)=3 x^{2}-6 x=3 x(x-2)$
For increasing,
$f^{\prime}(x)>0 \Rightarrow 3 x(x-2)>0$
$\therefore x \in(-\infty, 0) \cup(2, \infty)$
$\Rightarrow x>2$ or $x<0$

116. (A) Statement 1

Given, $f(x)=x^{3}$ and $g(y)=y^{3}$.
Since, both the functions are identical.
$\therefore f=g$

Statement 2

We know that, an identify function $f(x)=y=x$ is always one-one function, i.e., bijective function.

Hence, only statement 1 is true.
117. (C)

Given, $A=\{x \in R \mid x>0\}$

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$
f: A \rightarrow A, f(x)=x^{2}
$$

From adjoining figure $f(x)$ is one-one and onto, so its inverse exists.
Let $f(x)=y$
$\therefore x^{2}=y$
$\Rightarrow x=\sqrt{y}$
$\Rightarrow f^{-1}(x)=\sqrt{x}$
So, f is not its own inverse.
118. (B) $y=\operatorname{In}\left(e^{m x}+e^{-m x}\right)$

On differentiating it $w r t x$, we get
$\frac{d y}{d x}=\frac{1}{e^{m x}+e^{-m x}}\left(m e^{m x}-m e^{-m x}\right)$
$=\left[\frac{m\left(e^{m x}-e^{-m x}\right)}{e^{m x}+e^{-m x}}\right]$
$\therefore\left(\frac{d y}{d x}\right)_{\text {at } x=0}=m\left(\frac{1-1}{1+1}\right)=0$

Let $y=|x|$
$y=\left\{\begin{array}{cc}x, & x \geq 0 \\ -x & x<0\end{array}\right.$
So, the minimum value of $|x|$ is zero.
120. (C) Let $\mathrm{I}=\int a^{x} e^{x} d x$
$=a^{x} \int e^{x} d x-\int\left[\left(\frac{d}{d x} a^{x}\right) \int e^{x} d x\right] d x$
$=a^{x} \cdot e^{x}-\int a^{x} \cdot \log a \cdot e^{x} d x$
$I=a^{x} \cdot e^{x}-\log a \int a^{x} \cdot e^{x} d x$
$\mathrm{I}=a^{x} \cdot e^{x}-\log a \cdot I$
$\mathrm{I}(1+\log a)=a^{x} e^{x}$
$I(\log e+\log a)=a^{x} e^{x}$
I. $\log a e=a^{x} e^{x}+\mathrm{C} \Rightarrow \mathrm{I}=\frac{a^{x} e^{x}}{\log (a e)}+\mathrm{C}$
119. (B)

1. (A)
2. (C)
3. (B)
4. (B)
5. (B)
6. (D)
7. (C)
8. (B)
9. (D)
10. (A)
11. (A)
12. (D)
13. (B)
14. (A)
15. (B)
16. (B)
17. (B)
18. (A)
19. (B)
20. (B)
21. (A)
22. (C)
23. (A)
24. (D)
25. (D)
26. (C)
27. (C)
28. (C)
29. (C)
30. (C)
31. (D)
32. (B)
33. (C)
34. (A)
35. (C)
36. (A)
37. (D)
38. (B)
39. (B)
40. (B)
41. (A)
42. (B)
43. (B)
44. (C)
45. (C)
46. (B)
47. (D)
48. (B)
49. (A)
50. (A)
51. (C)
52. (C)
53. (C)
54. (A)
55. (B)
56. (D)
57. (B)
58. (B)
59. (C)
60. (D)
61. (A)
62. (B)
63. (D)
64. (C)
65. (B)
66. (D)
67. (D)
68. (D)
69. (B)
70. (A)
71. (C)
72. (B)
73. (D)
74. (D)
75. (D)
76. (A)
77. (C)
78. (B)
79. (B)
80. (B)
81. (B)
82. (C)
83. (D)
84. (C)
85. (B)
86. (B)
87. (A)
88. (B)
89. (B)
90. (C)
91. (C)
92. (D)
93. (D)
94. (B)
95. (C)
96. (B)
97. (C)
98. (A)
99. (A)
100. (A)
101. (A)
102. (A)
103. (C)
104. (C)
105. (B)
106. (B)
107. (D)
108. (B)
109. (C)
110. (B)
111. (B)
112. (D)
113. (B)
114. (C)
115. (D)
116. (C)
117. (A)
118. (C)
119. (B)
120. (B)
121. (C)
