NDA (MATHS) MOCK TEST - 66 (SOLUTION)

1. (B) The given equation represents a real sphere, if
$u^{2}+v^{2}+w^{2}>d \quad[$ by defination $]$
2. (A) From option (a),

Let $\mathrm{d}=5 i-j-5 k \Rightarrow|\mathrm{~d}|=\sqrt{51}$
Then, $\cos \theta_{1}=\frac{a . b}{|a||d|}$

$$
\begin{aligned}
& =\left|\frac{\frac{(i-2 j+2 k)}{3} \cdot(5 i-j-5 k)}{1 \cdot \sqrt{51}}\right| \\
& =\left|\frac{\frac{5}{3}+\frac{2}{3}-\frac{10}{3}}{\sqrt{51}}\right|=\frac{1}{\sqrt{51}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\cos \theta_{2} & =\frac{b \cdot d}{|b||d|} \\
& =\left|\frac{\frac{(-4 i-3 k)}{5} \cdot(5 i-j-5 k)}{1 \cdot \sqrt{51}}\right| \\
& =\left|\frac{-4+3}{\sqrt{51}}\right|=\frac{1}{\sqrt{51}}
\end{aligned}
$$

And, $\cos \theta_{3}=\frac{c . d}{|c||d|}$

$$
\begin{aligned}
& =\left|\frac{j .(5 i-j-5 k)}{1 . \sqrt{51}}\right| \\
& =\left|\frac{-1}{\sqrt{51}}\right|=\frac{1}{\sqrt{51}}
\end{aligned}
$$

Here, $\theta_{1}=\theta_{2}=\theta_{3}=\cos ^{-1}\left(\frac{1}{\sqrt{51}}\right)$
So, the vector $5 i-j-5 k$ makes an equal angles with three vectors a, b and c.
3. (B) We know that,

$$
\begin{array}{rlrl}
& & |a \times b|^{2}+|a \cdot b|^{2} & =\left(|a|^{2} \times|b|^{2}\right) \\
\therefore & 64+|a \cdot b|^{2}=(4 \times 25) \\
\Rightarrow & & |a \cdot b|^{2}=36
\end{array}
$$

$$
\Rightarrow \quad a \cdot b=6
$$

4. (B) $\because|a+b|=|a-b|$

$$
\begin{aligned}
& \Rightarrow|a+b|^{2}=|\mathrm{a}-\mathrm{b}|^{2} \\
& \Rightarrow|a|^{2}+|b|^{2}+2|a| \cdot|b| \\
& \quad=|a|^{2}+|b|^{2}-2|a| \cdot|b| \\
& \Rightarrow 4|a| \cdot|b|=0 \\
& \Rightarrow \quad \quad a \perp b \\
& \Rightarrow a \text { is perpendicular to } b .
\end{aligned}
$$

5. (B) $\because a=i-2 j+5 k$

$$
\begin{aligned}
b=2 i & +j-3 k \\
\therefore \quad b-a & =2 i+j-3 k-i+2 j-5 k \\
& =i+3 j-8 k
\end{aligned}
$$

and $(3 a+b)=(3 i-6 j+15 k)+(2 i+j-$ 3k)

$$
=5 i-5 j+12 k
$$

Hence, $(b-a) \cdot(3 a+b)=(i+3 j-8 k) .(5 i-$

$$
\begin{aligned}
& =5-15-96 \\
& =-106
\end{aligned}
$$

6. (D)Points A, B and C are collinear, if

$$
(a \times b)+(b \times c)+(c \times a)=0
$$

[by property]
7. (D) Since, $a=i+j+k$

$$
\begin{aligned}
& b=i-j+k \\
& c=i+j-k
\end{aligned}
$$

$\therefore a \times(b+c)+b \times(c+a)+c \times(a+b)$

$$
\left(\begin{array}{rl}
\because \quad a \times b & =-b \times a \\
b \times c & =-c \times b \\
c \times a & =-a \times c
\end{array}\right)
$$

$=a \times b+a \times c+b \times c+b \times a+c \times a+c \times$ b
$=\mathrm{a} \times \mathrm{b}-\mathrm{c} \times \mathrm{a}+\mathrm{b} \times \mathrm{c}-\mathrm{a} \times \mathrm{b}+\mathrm{c} \times \mathrm{a}-\mathrm{b} \times \mathrm{c}=$ 0
8. (B) Required even $=A \cap B \cap \bar{C}$.
9. (C) Month 1, $\quad \mathrm{CV}=\frac{\sigma}{\bar{x}} \times 100$

$$
=\frac{2}{30} \times 100=6.67
$$

Month 2, $\quad \mathrm{CV}=\frac{3}{57} \times 100=5.26$
Month 3, CV $=\frac{4}{82} \times 100=4.88$
Month 4, CV $=\frac{2}{28} \times 100=7.14$
Hence, month 3, the sales are most consistent.
10. (D) We know that by Baye's theorem conditional probability is calculated.
11. (B) $\because \quad \mathrm{P}(\mathrm{A})=\frac{1}{3}, \mathrm{P}(\mathrm{B})=\frac{1}{4}, \mathrm{P}\left(\frac{A}{B}\right)=\frac{1}{6}$

But $\mathrm{P}\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}$
$\Rightarrow \quad \frac{1}{6}=\frac{P(A \cap B)}{\frac{1}{4}}$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{24}$
$\mathrm{P}\left(\frac{\mathrm{B}}{A}\right)=\frac{P(A \cap B)}{P(A)}$

$$
=\frac{\frac{1}{24}}{\frac{1}{3}}=\frac{1}{8}
$$

12. (B) Since, A and B are mutually exclusive and exhaustive events, therefore

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \quad=0, \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=1
$$

We know that

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) \quad=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& \Rightarrow \quad 1=\mathrm{P}(\mathrm{~A})+3 \mathrm{P}(\mathrm{~A}) \\
& {[\because \mathrm{P}(\mathrm{~B})=3 \mathrm{P}(\mathrm{~A})]} \\
& \Rightarrow \quad \mathrm{P}(\mathrm{~A})=\frac{1}{4} \\
& \therefore \quad \mathrm{P}(\mathrm{~B})=\frac{3}{4} \quad[\because \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})=1]
\end{aligned}
$$

Hence, $P(\bar{B})=1-P(B)$

$$
=1-\frac{3}{4}=\frac{1}{4}
$$

13. (D) $\because \mathrm{n}(\mathrm{S})=36$
$\mathrm{E}=$ Sum of the faces equals or exceeds.
$=\{(5,5),(4,6),(6,4),(5,6),(6,5),(6,6)\}$
$\therefore \mathrm{n}(\mathrm{E})=6$
Hence, $\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{6}{36}=\frac{1}{6}$
14. (D) $\because \mathrm{np}=4$ and $\mathrm{npq}=\frac{4}{3} \quad$ [given]

$$
\therefore \quad 4 q=\frac{4}{3} \Rightarrow q=\frac{1}{3}
$$

$\therefore \quad \mathrm{p}=1-\frac{1}{3}=\frac{2}{3}$
$(\because p+q=1)$
$\Rightarrow \mathrm{n}=\frac{4 \times 3}{2}=6$
Now, $\mathrm{P}(\mathrm{X} \geq 5)={ }^{6} \mathrm{C}_{5} \mathrm{p}^{5} \mathrm{q}^{1}+{ }^{6} \mathrm{C}_{6} \mathrm{p}^{6} \mathrm{q}^{0}$

$$
\begin{aligned}
& ={ }^{6} \mathrm{C}_{5}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)+{ }^{6} \mathrm{C}_{6}\left(\frac{2}{3}\right)^{6} \\
& =\frac{6 \times 32}{3^{6}}+\frac{64}{3^{6}}=\frac{256}{3^{6}}=\frac{2^{8}}{3^{6}}
\end{aligned}
$$

15. (C) $\because \mathrm{H}=21.6$ and $\mathrm{a}=27$

We know that

$$
\begin{aligned}
& \mathrm{H}=\frac{2 a b}{a+b} \Rightarrow 21.6=\frac{2 \times 27 \times b}{27+b} \\
\Rightarrow & 583.2=54 b-21.6 b \\
\Rightarrow & \quad b=\frac{583.2}{32.4}=18
\end{aligned}
$$

16. (B) Average marks of A

$$
\begin{aligned}
& =\frac{71+56+55+75+54+49}{6} \\
& =\frac{360}{6}=60
\end{aligned}
$$

and SD

$$
\begin{gathered}
\sqrt{\frac{121+16+25+225+36+121}{6}} \\
=\sqrt{\frac{544}{6}}=9.52
\end{gathered}
$$

Also, average of marks B

$$
\begin{aligned}
& =\frac{55+74+83+54+38+52}{6} \\
& =\frac{356}{6}=59.33 \cong 59
\end{aligned}
$$

and SD

$$
\begin{aligned}
& \sqrt{\frac{16+225+576+25+441+49}{6}} \\
& =\sqrt{\frac{1532}{6}}=\sqrt{255} \cong 16
\end{aligned}
$$

Now, $C_{\text {A }}=\frac{9.52}{60} \times 100=15.87$
and $\mathrm{CV}_{\mathrm{B}}=\frac{16}{59} \times 100=27.12$
Thus, the average scores of A and B are not same but A is consistent.
17. (D) $n=50, x=3550, n_{1}=30, x_{1}=4050$ and $\mathrm{n}_{2}=20$.
We know that

$$
\mathrm{nx}=\mathrm{n}_{1} \mathrm{x}_{1}+\mathrm{n}_{2} \mathrm{x}_{2}
$$

$$
\Rightarrow 50 \times 3550=30 \times 4050+20 x_{2}
$$

$$
\Rightarrow 177500-121500=20 x_{2}
$$

$$
\Rightarrow \quad x_{2}=2800
$$

Hence, average salary of women $=₹ 2800$.
18. (D) $\because \bar{x}=\frac{7+9+11+13+15}{5}=\frac{55}{5}=11$

Now,

$$
\begin{gathered}
\mathrm{SD}=\sqrt{\frac{(7-11)^{2}+(9-11)^{2}+(11-11)^{2}+(13-11)^{2}+(15-11)^{2}}{5}} \\
\because \mathrm{SD}=\sqrt{\frac{(x-\bar{x})^{2}}{n}}
\end{gathered}
$$

$$
=\sqrt{\frac{16+4+0+4+16}{5}}
$$

$$
=\sqrt{8}=2.8 \text { (Aprox) }
$$

19. (B) $\because n(S)=52$ and $n(E)=4$

$$
\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{4}{52}=\frac{1}{13}
$$

20. (B) Since, monthly salary $=₹ 15000$ and sector angle of expenses $=15^{\circ}$
\therefore Amount $=\frac{15^{\circ}}{360^{\circ}} \times 15000$
$=$ Rs. 625
21. (C) $\because \sum_{i=1}^{n}\left(x_{i}-2\right)=110$

$$
\begin{aligned}
\therefore & \mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}-2 \mathrm{n}=110 \\
\Rightarrow & \mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}=2 \mathrm{n}+110
\end{aligned}
$$

and $\quad \sum_{i=1}^{n}\left(x_{1}-5\right)=20$
$\Rightarrow \quad x_{1}+x_{2}+\ldots+x_{n}-5 n=20$
$\Rightarrow \quad x_{1}+x_{2}+\ldots+x_{n}=5 n+20$
From Eqs. (i) and (ii), we get

$$
\begin{aligned}
& 5 \mathrm{n}+20=2 \mathrm{n}+110 \\
\Rightarrow \quad & 3 \mathrm{n}=90 \\
\Rightarrow & \mathrm{n}=30
\end{aligned}
$$

Now, mean $=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}$

$$
=\frac{5 \times 30+20}{30}=\frac{170}{30}=\frac{17}{3}
$$

22. (C) $\because f(x)=x|x|$

If $f(x)_{1}=f\left(x_{2}\right)$
$\Rightarrow x_{1}\left|x_{1}\right|=x_{2}\left|x_{2}\right|$
$\Rightarrow \quad x_{1}=x_{2}$
$\therefore f(x)$ is one-one.
Also, range of $f(x)=$ co-domain of $f(x)$.
$\therefore f(x)$ is onto.
Hence, $f(x)$ is both one-one and onto.
23. (A) $\because f(x)=\frac{x}{1+|x|}$

$$
\begin{aligned}
&= \begin{cases}\frac{x}{1-x}, & x<0 \\
\frac{x}{1+x} & x \geq 0\end{cases} \\
& \begin{aligned}
& \therefore \quad \text { LHD }=f\left(0^{\sim}\right)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h} \\
&=\lim _{h \rightarrow 0} \frac{\frac{-h}{1+h}-0}{-h} \\
&=\lim _{h \rightarrow 0} \frac{1}{1+h}=1 \\
& \text { RHD }=f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
&=\lim _{h \rightarrow 0} \frac{h}{1+h}-0 \\
& h
\end{aligned} \\
&=\lim _{h \rightarrow 0} \frac{1}{1+h}=1
\end{aligned}
$$

$\because \quad$ LHD $=$ RHD
$\therefore f(x)$ is differentiable at $x=0$.
Hence, $f(x)$ is differentiate in $(-\infty, \infty)$.
24. (A) $\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=\left(\frac{d y}{d x}\right)$ at $x=0$

$$
=\left(\frac{d}{d x}\left(a x^{n}\right)\right)_{\text {at } x=0}\left(\text { an } x^{n-1}\right)_{\text {at } x=0}=0
$$

25. (C) We know that
$(A B)^{n}=A^{n} B^{n}$ is true only when $A B=B A$
26. (A) $(A B A)^{T}=A^{T} B^{T} A^{T}=A B A$
$\left(\because A^{T}=A, \quad B^{T}=B\right)$
27. (A) $(\mathrm{A}+\mathrm{B})^{2}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{B})$
$=A^{2}+A B+B A+B^{2}$
$=A^{2}+2 A B+B^{2}(\because A B=B A)$
28. (A) Given that, A and B are two non singular square matrices.
So, its inverse i. e, A^{-1} and B^{-1} must be exist. we have, $\mathrm{AB}=\mathrm{A}$
$\left(\mathrm{A}^{-1}\right)$ operating in left side on both sides, we get
$\mathrm{A}^{-1}(\mathrm{AB})=\left(\mathrm{A}^{-1}\right)(\mathrm{A})$
$\Rightarrow\left(A^{-1} A\right) B\left(A^{-1} A\right)\left(\because A A^{-1}=I\right.$ and $\left.B I=B\right)$
$\Rightarrow \mathrm{IB}=\mathrm{I}$
$\Rightarrow B=I=$ Identity matrix
29. (D) $\because 3 A^{3}+2 A^{2}+5 A+I=0$
$\Rightarrow 3 \mathrm{~A}^{3} \mathrm{~A}^{-1}+2 \mathrm{~A}^{2} \mathrm{~A}^{-1}+5 \mathrm{AA}^{-1}+\mathrm{IA}^{-1}=0$
$\Rightarrow 3 \mathrm{~A}^{2}+2 \mathrm{~A}+5 \mathrm{I}+\mathrm{A}^{-1}=0$
$\Rightarrow A^{-1}=-\left(3 A^{2}+2 A+5 I\right)$
30. (C) $\frac{d}{d x} \Delta_{1}=\left|\begin{array}{lll}1 & 0 & 0 \\ a & x & b \\ a & a & x\end{array}\right|+\left|\begin{array}{lll}x & b & b \\ 0 & 1 & 0 \\ a & a & x\end{array}\right|+\left|\begin{array}{lll}x & b & b \\ a & x & b \\ 0 & 0 & 1\end{array}\right|$

$$
=\left|\begin{array}{ll}
x & b \\
a & x
\end{array}\right|+\left|\begin{array}{ll}
x & b \\
a & x
\end{array}\right|+\left|\begin{array}{cc}
x & b \\
a & x
\end{array}\right|=3 \Delta_{2}
$$

31. (B) $\Delta_{1}=\left|\begin{array}{lll}x & b & b \\ a & x & b \\ a & a & x\end{array}\right|=x\left(x^{2}-a b\right)+b(a b-a x)+b\left(a^{2}-a x\right)$
$=x\left(x^{2}-a b\right)+a b^{2}-a b x+a^{2} b-a b x$
$=x\left(x^{2}-a b\right)+a b^{2}+a^{2} b-2 a b x$
$=x\left(x^{2}-a b\right)+a b(a+b)-2 a b x$
32. (D) If each element in a row of a determinant is multiplied by the same factor r, then the value of the determinant is multiplied by r .
33.(B)

$$
\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|=\lambda
$$

$\Rightarrow a b c\left|\begin{array}{ccc}\frac{1}{a}+1 & \frac{1}{a} & \frac{1}{a} \\ \frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1\end{array}\right|=\lambda$
Applying $\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \rightarrow \mathrm{R}_{1}$
$\operatorname{abc}\left|\begin{array}{ccc}1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & 1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & 1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \\ \frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1\end{array}\right|=\lambda$

$$
\Rightarrow a b c\left|\begin{array}{ccc}
1+0 & 1+0 & 1+0 \\
\frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1
\end{array}\right|=\lambda
$$

$$
\Rightarrow a b c\left|\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 1 & \frac{1}{b} \\
0 & -1 & \frac{1}{c}+1
\end{array}\right|=\lambda
$$

$\operatorname{abc}\left|\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right|=\lambda$
$a b c=\lambda$
34. (B) $\mathrm{A}=\left|\begin{array}{ccc}2 a & 3 r & x \\ 4 b & 6 s & 2 y \\ -2 c & -3 t & -z\end{array}\right|=\lambda\left|\begin{array}{lll}a & r & x \\ b & s & y \\ c & t & z\end{array}\right|$
$=2 \times 3\left|\begin{array}{ccc}a & r & x \\ 2 b & 2 s & 2 y \\ -c & -t & -z\end{array}\right|=\lambda\left|\begin{array}{ccc}a & r & x \\ b & s & y \\ c & t & z\end{array}\right|$
$=2 \times 3 \times 2 \times-1\left|\begin{array}{lll}a & r & x \\ b & s & y \\ c & t & z\end{array}\right|=\lambda\left|\begin{array}{lll}a & r & x \\ b & s & y \\ c & t & z\end{array}\right|$
$\lambda=-12$
35. (B) $\tan \left(-585^{\circ}\right)$
$=\tan \left(-585^{\circ}+720^{\circ}\right)$
$=\tan 135^{\circ}$
$=\tan \left(90^{\circ}+45^{\circ}\right)$
$=-\tan 45^{\circ}$
$=-\underline{1}$
36. (C) $\sec \theta+\tan \theta=4 \ldots$ (i)

As we know that,
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow \sec \theta-\tan \theta=\frac{1}{4}$
On adding Eqs. (i) and (ii), we get

$$
\begin{aligned}
& 2 \sec \theta=4+\frac{1}{4}=\frac{17}{4} \\
\therefore & \sec \theta=\frac{17}{8} \\
\Rightarrow & \cos \theta=\frac{8}{17}=\frac{b}{h} \\
p= & \sqrt{289-64} \\
= & \sqrt{225}=15 \\
& \sin \theta=\frac{p}{h}=\frac{15}{17}
\end{aligned}
$$

Solutions (Q. Nos. 37-39)

Given that, $\sin (A+B)=1$, where A, B

$$
\begin{equation*}
\in\left[0, \frac{\pi}{2}\right] \tag{i}
\end{equation*}
$$

$\Rightarrow \sin (A+B)=\sin \frac{\pi}{2} \Rightarrow A+B=\frac{\pi}{2}$
and $\sin (\mathrm{A}-\mathrm{B})=\frac{1}{2} \Rightarrow \sin (\mathrm{~A}-\mathrm{B})=\sin \frac{\pi}{6}$
$\Rightarrow \mathrm{A}-\mathrm{B}=\frac{\pi}{6}$
37. (B) On adding Eqs. (i) and (ii), we get
$2 \mathrm{~A}=\frac{2 \pi}{3} \Rightarrow \mathrm{~A}=\frac{\pi}{3}$ and $\mathrm{B}=\frac{\pi}{6}$
38. (C) Now, $\tan (A+2 B) \cdot \tan (2 A+B)$
$=\tan \left(\frac{\pi}{3}+\frac{\pi}{3}\right) \cdot \tan \left(\frac{2 \pi}{3}+\frac{\pi}{6}\right)$
$=\tan \left(\frac{2 \pi}{3}\right) \cdot \tan \left(\frac{5 \pi}{6}\right)$
$=\tan \left(\frac{\pi}{2}+\frac{\pi}{6}\right) \cdot \tan \left(\frac{\pi}{2}+\frac{\pi}{3}\right)$
$=\left(-\cot \frac{\pi}{6}\right)\left(-\cot \frac{\pi}{3}\right)$
$=(\sqrt{3}) \cdot \frac{1}{\sqrt{3}}=1$
39. (B) Now
$\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}=\sin ^{2}(\pi / 3)-\sin ^{2}(\pi / 6)$
$=\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}=\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$
40. (D) $\cos \left(\frac{\pi}{9}\right)+\cos \left(\frac{\pi}{3}\right)+\cos \left(\frac{5 \pi}{9}\right)+\cos \left(\frac{7 \pi}{9}\right)$ $=\cos \left(20^{\circ}\right)+\cos \left(60^{\circ}\right)+\cos \left(100^{\circ}\right)+\cos$ $\left(140^{\circ}\right)$
$=\cos 20^{\circ}+\frac{1}{2}+2 \cos 120^{\circ} \cos 20^{\circ}$
$=\cos 20^{\circ}+\frac{1}{2}-2 \sin 30^{\circ} \cos 20^{\circ}$
$=\cos 20^{\circ}+\frac{1}{2}-\cos 20^{\circ}=\frac{1}{2}$
41. (B) Given, $(\sin x+\operatorname{cosec} x)^{2}+(\cos x+\sec x)^{2}$ $=\mathrm{k}+\tan ^{2} \mathrm{x}+\cot ^{2} \mathrm{x}$
$\Rightarrow \sin ^{2} x+\operatorname{cosec}^{2} x+2+\cos ^{2} x+\sec ^{2} x+2$
$=\mathrm{k}+\tan ^{2} \mathrm{x}+\cot ^{2} \mathrm{x}$
$\Rightarrow 1+\operatorname{cosec}^{2} \mathrm{x}-\cot ^{2} \mathrm{x}+\sec ^{2} \mathrm{x}-\tan ^{2} \mathrm{x}+4=$ k
$\Rightarrow 1+1+1+4=\mathrm{k} \Rightarrow \mathrm{k}=7$
42. (C) $\cos 2 \phi-1=\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi}-1=\frac{-2 \tan ^{2} \phi}{1+\tan ^{2} \phi}$

$$
\begin{aligned}
& =\frac{-\left(\tan ^{2} \theta-1\right)}{1+\frac{\tan ^{2} \theta-1}{2}} \\
& =\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} \times 2 \\
& =\cos 2 \theta .2
\end{aligned}
$$

Thus, $\cos 2 \theta=\frac{\cos 2 \phi-1}{2}$
Solutions (Q. Nos. 43-44)

$$
\begin{aligned}
\alpha & =\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=\tan ^{-1}\left[\frac{\left(\frac{1}{2}+\frac{1}{3}\right)}{1-\frac{1}{2} \times \frac{1}{3}}\right] \\
& =\tan ^{-1}\left[\frac{5}{6}\right. \\
\beta & =\cos ^{-1}\left(\frac{2}{3}\right)+\tan ^{-1}(1)=\frac{\pi}{4} \\
& =\cos ^{-1}\left(\frac{2}{3}\right)+\sin ^{-1}\left(\frac{2}{3}\right)=\frac{\pi}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=\sin ^{-1}\left[\sin \left(\frac{2 \pi}{3}\right)\right]+\frac{1}{2} \cos ^{-1}\left[\cos \left(\frac{2 \pi}{3}\right)\right] \\
& =\sin ^{-1}\left[\sin \left(\pi-\frac{\pi}{3}\right)\right]+\frac{1}{2} \cos ^{-1}\left[\cos \left(\frac{2 \pi}{3}\right)\right] \\
& =\sin ^{-1}\left[\sin \left(\frac{\pi}{3}\right)\right]+\frac{1}{2} \cos ^{-1}\left[\cos \left(\frac{2 \pi}{3}\right)\right] \\
& =\frac{\pi}{3}+\frac{1}{2} \times \frac{2 \pi}{3}=\frac{\pi}{3}+\frac{\pi}{3}=\frac{2 \pi}{3}
\end{aligned}
$$

43.(B) Now, $\cos (\alpha+\beta+\gamma)$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{4}+\frac{\pi}{2}+\frac{2 \pi}{3}\right) \\
= & \cos \left(\frac{3 \pi+6 \pi+8 \pi}{12}\right)=\cos \left(\frac{17 \pi}{12}\right)
\end{aligned}
$$

44. (D) $\tan \alpha-\tan \frac{\beta}{2}+\sqrt{3} \tan \frac{\gamma}{4}=\tan \frac{\pi}{4}-\tan \frac{\pi}{4}$

$$
+\sqrt{3} \tan \frac{\pi}{6}=\sqrt{3} \times \frac{1}{\sqrt{3}}=1
$$

45. (C) $\operatorname{cosec}^{-1}(-\sqrt{2})$

$$
=\operatorname{cosec}^{-1} \operatorname{cosec}\left(-\frac{\pi}{4}\right)=-\frac{\pi}{4}
$$

46. (B)

Now, in $\Delta \mathrm{EDB}$,
$\tan 15^{\circ}=\frac{10}{x} \Rightarrow \tan \left(60^{\circ}-45^{\circ}\right)=\frac{10}{x}$
$\Rightarrow \frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{10}{x}$
$\Rightarrow \mathrm{x}=10(2+\sqrt{3})=37.3 \mathrm{~m}$
47. (A) Let $\angle A=30^{\circ}, \angle B=45^{\circ}$ and $\mathrm{AB}=\sqrt{3}+1$ Then, $\angle C=180^{\circ}-(\angle \mathrm{A}+\angle B)$
(since, the sum of inrernal angles of a triangle is 180°).
$=180^{\circ}-\left(30^{\circ}+45^{\circ}\right)=105^{\circ}$

By Sine Formula,

$$
\frac{\sin 30^{\circ}}{B c}=\frac{\sin 105^{\circ}}{\sqrt{3}+1}
$$

$$
\Rightarrow \mathrm{BC}=(\sqrt{3}+1) \times\left(\frac{2 \sqrt{2}}{\sqrt{3}+1}\right) \times \frac{1}{2}=\sqrt{2}
$$

Again, now by sine rule $\frac{\sin 45^{\circ}}{A C}=\frac{\sin 105^{\circ}}{\sqrt{3}+1}$
$\Rightarrow \mathrm{AC}=\frac{(\sqrt{3}+1)}{\sqrt{2}} \times \frac{2 \sqrt{2}}{\sqrt{3}+1}=2$
\therefore Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AC} \times \sin 105^{\circ}$

$$
\begin{aligned}
& =\frac{1}{2} \times 2 \times \sqrt{2} \times \frac{(\sqrt{3}+1)}{2 \sqrt{2}} \\
& =\frac{\sqrt{3}+1}{2} \mathrm{~cm}^{2}
\end{aligned}
$$

48. (B) P : $x^{2}-y^{2}+2 x-1=0$
$\Rightarrow x^{2}=(y-1)^{2}$
$\Rightarrow(x-y+1)(x+y-1)=0$
\therefore equation of angle bisector is
$\frac{(x+y-1)}{\sqrt{2}}= \pm \frac{(x-y+1)}{\sqrt{2}}$
$\Rightarrow x=0$ or, $y-1=0$
combined equation is
$x(y-1)=0$
$=x y-x=0$
49. (B) Given, $v=-x^{2} \log x$

On differentiating w.r.t. x, we get
$\frac{d v}{d x}=-2 x \log x-\frac{x^{2}}{x}=-2 x \log x-x$
For maximum or minimum value of velocity,
put $\frac{d v}{d x}=0 \Rightarrow-2 x \log x-x=0$
$\Rightarrow \log x=-\frac{1}{2} \Rightarrow x=\mathrm{e}^{-1 / 2}$

Now, $\frac{d^{2} v}{d x^{2}}=-\frac{2 x}{x}-2 \log x-1$
$=-3-2 \log x$
At $x=\mathrm{e}^{-1 / 2}$
$\frac{d^{2} v}{d x^{2}}=-3-2\left(-\frac{1}{2}\right)=-2$ maxima.
\therefore At $x=e^{-1 / 2}$ the velocity is maximum
50. (B) Given, $4 x-x^{2}-3=y$
$\Rightarrow-\left(x^{2}-4 x\right)=y+3$
$\Rightarrow-\left(x^{2}-4 x+4\right)=y+3-4$
$\Rightarrow(x-2)^{2}=-(y-1)$
This is a equation of parabola.

\therefore Required area $=\int_{1}^{3} y d x$
$=\int_{1}^{3}\left(4 x-x^{2}-3\right) d x$

$$
=\left[2 x^{2}-\frac{x^{3}}{3}-3 x\right]_{1}^{3}
$$

$=18-9-9-\left(2-\frac{1}{3}-3\right)=\frac{4}{3}$ sq. units
51. (D) Given, $f^{1}(x)=6-4 \sin 2 x$

On integrating both the sides, we get
$f(x)=6 x+\frac{4 \cos 2 x}{2}+C$
As $f(0)=3$
As $f(0)=3=0+2(1)+C$
$\Rightarrow C=1$
$\therefore f(x)=6 x+2 \cos 2 x+1$
52. (B) $(g \circ f) x=g(f(x))$

$$
=g\left(e^{x}\right)=\log \mathrm{e}^{x}=x
$$

On differentiating w.r.t.x, we get $(g \circ f)^{\prime}(x)=1$
53. (D) Given, $f^{\prime}(x)=g^{\prime}(x)$

On integrating both sides, we get

$$
\begin{equation*}
f(x)=g(x)+\mathrm{C} \tag{i}
\end{equation*}
$$

$\Rightarrow f(x)=x^{3}-4 x+6+C$ \qquad
$\because \quad f(1)=2 \quad$ (Given)
$\therefore 2=1-4+6+\mathrm{c} \Rightarrow \mathrm{C}=-1$ [From Eq. (i)]
$f(x)=x^{3}-4 x+5$
54. (C) Given, $f(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 2, & x=0\end{cases}$

Now, redefine the given function
$f(x)=\left\{\begin{array}{cc}1, & x>0 \\ 2, & x=0 \\ -1, & x<0\end{array}\right.$
\therefore Range of $f(x)$ is $\{-1,1,2\}$
55. (B) We know that the equation of circle, which touches both the axes, is $x^{2}+y^{2}-2 r x-2 r y+r^{2}=0$
The centre (r, r) of this circle lies on the line

$$
\begin{array}{r}
x+y=4 . \\
\therefore r+r=4 \\
r=2
\end{array}
$$

On putting the value of r in Eq. (i), we get $r^{2}+y^{2}-4 x-4 y+4=0$
which is required equation of circle.
56. (D) The equation of first circle is $x^{2}+y^{2}-2 x-$

$$
2 y=0
$$

Redius of this circle $=\sqrt{(1)^{2}+(1)^{2}}$

$$
=\sqrt{2}\left(b y \sqrt{g^{2}+f^{2}-c}\right)
$$

and equation of second circle is $x^{2}+y^{2}=1$ Radius of this circle $=1$
From above it is clear that the radius of first circle is not twice that of second circle.
57. (B) \because Foci of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are (ae, 0) and ($-\mathrm{ae}, 0$) equation of circle with centre $(0,0)$ and radius ae is
$\mathrm{x}+\mathrm{y}^{2}=(\mathrm{ae})^{2} \quad\left[\right.$ where, $\left.(\mathrm{ae})^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}\right]$ $\therefore \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$
58. (B) $e_{1}=\sqrt{1-\frac{25}{169}}=\frac{12}{13} \Rightarrow e_{2}=\sqrt{1-\frac{b^{2}}{a^{2}}}$
$\because \mathrm{e}_{1}=\mathrm{e}_{2}$ (given)

$$
\therefore \frac{12}{13}=\sqrt{1-\frac{b^{2}}{a^{2}}} \Rightarrow \frac{a}{b}=\frac{13}{5}
$$

59. (B)
60. (D) Given that, equation of straight line is
$\frac{x-x_{0}}{l}=\frac{y-y_{0}}{m}=\frac{z-z_{0}}{n}$
and equation of plane is
$a x+b y+c z+d=0$
Since, the straight line is parallel to plane i.e, normal to plane is perpendicular to the straight line.
By perpendicularity condition,
$1_{1} 1_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}=0 \Rightarrow \mathrm{al}+\mathrm{bm}+\mathrm{cn}=0$
61. (B) Direction ratios of the diagonal OP
= 2-0, 2-0.2-0 and
direction cosine $=\frac{2}{2 \sqrt{3}}, \frac{2}{2 \sqrt{3}}, \frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}$,

$$
\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}
$$

Direction ratios of diagonal AB
$=2-0,0-2,2-0=2,-2,2$
and direction cosine $=\frac{2}{2 \sqrt{3}}, \frac{-2}{2 \sqrt{3}}, \frac{2}{2 \sqrt{3}}$

$$
=\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}
$$

$(0,2,2)$

Let θ be the angle between them,
then $\cos \theta=\left(\frac{1}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{3}}\right)+\left(\frac{1}{\sqrt{3}}\right)\left(\frac{-1}{\sqrt{3}}\right)+$

$$
\left(\frac{1}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{3}}\right)
$$

$=\frac{1}{3}-\frac{1}{3}+\frac{1}{3}=\frac{1}{3} \Rightarrow \theta=\cos ^{-1}(1 / 3)$
62. (C) direction ratios of side OB
$=0-0,2-0,0-0$
and direction cosine $=\frac{0}{2}, \frac{2}{2}, \frac{0}{2}=0,1,0$
Let the angle between diagonal OP and the side $O B$ be θ_{1} then,
$\cos \theta_{1}=0 \cdot \frac{1}{\sqrt{3}}+1 \cdot \frac{1}{\sqrt{3}}+0 \cdot \frac{1}{\sqrt{3}}$
$\Rightarrow \theta_{1}=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
63. (C)
64. (A) The intersection of given plane is
$\mathrm{x}-\mathrm{y}+2 \mathrm{z}-1+\lambda(\mathrm{x}+\mathrm{y}-\mathrm{z}-3)=0$
$\Rightarrow \mathrm{x}(1+\lambda)+\mathrm{y}(\lambda-1)+\mathrm{z}(2-\lambda)-3 \lambda-1=0$
Dr's of normal to the above plane is
$(1+\lambda, \lambda-1,2-\lambda)$
Taking option (A),
$-1(1+\lambda)+3(\lambda-1)+2(2-\lambda)=0$
$\Rightarrow-1-\lambda+3 \lambda-3+4-2 \lambda=0 \Rightarrow 0=0$
65. (C) Given centre of sphere is $(6,-1,2)$
$\therefore \quad$ Radius $=\frac{2(6)-1(-1)+2(2)-2}{\sqrt{4+1+4}}=\frac{15}{3}=5$
\therefore Equation of sphere is

$$
(x-6)^{2}+(y+1)^{2}+(z-z)^{2}=5^{2}
$$

$\Rightarrow x^{2}+y^{2}+z^{2}-12 x+2 y-4 z+16=0$
66. (A) The relation given in (A),
i, e, $f(x)=g\left(\sin ^{2} x\right)$ and $g(x)=\sqrt{x}$
Satisfy the given relations,
$\mathrm{g}[\mathrm{f}(\mathrm{x})]=\mathrm{g}\left(\sin ^{2} \mathrm{x}\right)=|\sin x|$
$\mathrm{f}[\mathrm{g}(\mathrm{x})]=\mathrm{f}(\sqrt{x})=\sin ^{2} \sqrt{x}=(\sin \sqrt{x})^{2}$
67. (D) For (x) to be defined
$x+3>0 \Rightarrow x>-3$
$\therefore \mathrm{x} \in(-3, \infty)$
Also, $x^{2}+3 x+2 \neq 0 \Rightarrow(x+2)(x+1) \neq 0$,
i. e., $x \neq 1, x \neq-2$

So, the domain is $\frac{(-3, \infty)}{\{-1,-2\}}$
68.(D) $\lim _{x \rightarrow \infty}\left(\frac{x+6}{x+1}\right)^{x+4}=\lim _{x \rightarrow \infty}\left(1+\frac{5}{x+1}\right)^{\frac{x+4}{5} \frac{5}{x+1}(x+1)}$
$=\log (\operatorname{cosec} \mathrm{x}-\cot \mathrm{x})$
$=\lim _{x \rightarrow \infty}\left[\left(1+\frac{5}{x+1}\right)^{\frac{x+1}{5}}\right]^{\frac{5+4}{x+1}}$
$e^{5 \lim _{x \rightarrow \infty} \frac{1+\frac{4}{x}}{1+\frac{1}{x}}}=\mathrm{e}^{5}$
69.(B) Put $\mathrm{x}=\cos ^{2} \theta \Rightarrow \theta=\cos ^{-1} \sqrt{x}$

$$
\begin{aligned}
& \therefore \mathrm{y}=\sin ^{-1} \sqrt{1-x}+\cos ^{-1} \sqrt{x} \\
&=\sin ^{-1} \sqrt{\sin ^{2} \theta}+\cos ^{-1} \sqrt{\cos ^{2} \theta} \\
& \Rightarrow \mathrm{y}=\sin ^{-1} \sin \theta+\cos ^{-1} \cos \theta \\
& \Rightarrow \mathrm{y}=\theta+\theta=2 \theta \Rightarrow \mathrm{y}=2 \cos ^{-1} \sqrt{x} \\
& \therefore \frac{d y}{d x}=-\frac{2}{\sqrt{1-x}} \times \frac{1}{2 \sqrt{x}} \Rightarrow \frac{d y}{d x} \\
&= \frac{-1}{\sqrt{x(1-x)}}
\end{aligned}
$$

70. (B) On putting $x=\tan \theta$, we have

$$
\begin{aligned}
& \mathrm{y}=\tan ^{-1} \tan \frac{\theta}{2}=\frac{\theta}{2}=\frac{1}{2} \tan ^{-1} \mathrm{x} \\
& \therefore \frac{d y}{d x}=\frac{1}{2} \cdot \frac{1}{1+x^{2}}=\frac{1}{2} \text { at } \mathrm{x}=0
\end{aligned}
$$

Again, putting $\mathrm{x}=\sin \phi$, we get

$$
\begin{aligned}
& z=\tan ^{-1}\left(\frac{2 \sin \phi \cos \phi}{1-2 \sin ^{2} \phi}\right)=\tan ^{-1} \frac{\sin 2 \phi}{\cos 2 \phi} \\
& =\tan ^{-1} \tan 2 \phi=2 \phi=2 \sin ^{-1} \mathrm{x} \\
& \Rightarrow \frac{d z}{d x}=\frac{2}{\sqrt{1-x^{2}}}=2 \text { at } \mathrm{x}=0 \\
& \therefore \frac{d y}{d z}=\frac{d y}{d x} \frac{d x}{d z}=\frac{1 / 2}{2}=\frac{1}{4}
\end{aligned}
$$

71. (C) Statement I Given, $y=\operatorname{In}(\sec x+\tan x)$ On differentiating it w.r.t.x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{(\sec x+\tan x)} \frac{d}{d x}(\sec x+\tan x) \\
& =\frac{1}{(\sec x+\tan x)}\left(\sec x \cdot \tan x+\sec ^{2} x\right) \\
& =\frac{1}{(\sec x+\tan x)} \sec x(\tan x+\sec x) \\
& =\sec x
\end{aligned}
$$

Statement II Given, y
$\frac{d y}{d x}=\frac{1}{(\operatorname{cosec} x-\cot x)} \frac{d}{d x}(\operatorname{cosec} \mathrm{x}-\cot \mathrm{x})$
$=\frac{1}{(\operatorname{cosec} x-\cot x)} \times\left(-\operatorname{cosec} x \cdot \cot x+\operatorname{cosec}^{2} x\right)$
$=\operatorname{cosec} x \cdot \frac{(\operatorname{cosec} x-\cot x)}{(\operatorname{cosec} x-\cot x)}=\operatorname{cosec} x$
So, Statements I and II both are true.
72. (B) $3^{\mathrm{x}}+3^{\mathrm{y}}=3^{\mathrm{x}+\mathrm{y}}$

On differenting w. r. t. x, we get

$$
\begin{aligned}
& 3^{\mathrm{x}} \log 3+3^{\mathrm{y}} \log 3^{\frac{d y}{d x}}=+3^{(\mathrm{x}+\mathrm{y})} \log 3\left(1+\frac{d y}{d x}\right) \\
& \Rightarrow 3^{\mathrm{x}}+3^{\mathrm{y}} \frac{d y}{d x}=3^{\mathrm{x}+\mathrm{y}} 3^{(\mathrm{x}+\mathrm{y})} \quad \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}\left(-3^{\mathrm{x}+\mathrm{y}}+3^{\mathrm{y}}\right)=3^{\mathrm{x}+\mathrm{y}}-3^{\mathrm{x}} \\
& \Rightarrow \frac{d y}{d x}=\frac{3^{x}\left(3^{y}-1\right)}{3^{y}\left(1-3^{x}\right)}=\frac{3^{x-y}\left(3^{y}-1\right)}{\left(1-3^{x}\right)}
\end{aligned}
$$

73. (C) Let a, b and c be in HP.

$$
\therefore \quad b=\frac{2 a c}{a+c}
$$

Now,

$$
\begin{aligned}
\frac{1}{b-a}+\frac{1}{b-c} & =\frac{1}{\frac{2 a c}{a+c}-a}+\frac{1}{\frac{2 a c}{a+c}-c} \\
& =\frac{1}{a\left(\frac{2 c-a-c}{a+c}\right)}+ \\
& \frac{1}{c\left(\frac{2 a-a-c}{a+c}\right)} \\
& =\frac{a+c}{a(c-a)}+\frac{a+c}{c(a-c)} \\
& =\left(\frac{a+c}{c-a}\right)\left(\frac{1}{a}-\frac{1}{c}\right) \\
& =\frac{a+c}{c-a} \times \frac{c-a}{c a} \\
& =\frac{a+c}{c a}=\frac{1}{a}+\frac{1}{c}
\end{aligned}
$$

Hence, a, b, c are in H.P.

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
74. (A) Total number of terms $=\left(1-\frac{x}{2}\right)^{8}=9$

$$
\left[\begin{array}{r}
\because n=8(\text { even }) \\
\text { Middle term }=\left(\frac{n}{2}+1\right) \text { th term }
\end{array}\right]
$$

\therefore Middle term is 5 th term.
Hence, $\mathrm{T}_{5}={ }^{8} \mathrm{C}_{4}(1)^{4}\left(-\frac{x}{2}\right)^{4}=\frac{70 x^{4}}{16}=\frac{35 x^{4}}{8}$
75. (A) The given equation is

$$
(2-\sqrt{3}) x^{2}-(7-4 \sqrt{3}) x+(2+\sqrt{3})=0
$$

\therefore Sum of roots $=\frac{(7-4 \sqrt{3})}{2-\sqrt{3}}$

$$
\begin{aligned}
& =\frac{(2-\sqrt{3})^{2}}{(2-\sqrt{3})} \\
& =2-\sqrt{3}
\end{aligned}
$$

76. (D) \because Combinations formed after taking 1,2 , $3, \ldots, n$ things at a time are ${ }^{n} C_{1},{ }^{n} C_{2}, \ldots,{ }^{n} C_{n}$. \therefore Total number of combinations

$$
\begin{aligned}
& ={ }^{n} C_{1}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{n} \\
& =1+{ }^{n} C_{n}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{n}-1 \\
& =2^{n}-1
\end{aligned}
$$

$$
\left[\because 2^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{n}\right]
$$

77. (B) Since, one root of $a x^{2}+b x+c=0, a \neq 0$ is positive and another root is negative which is possible only if $\mathrm{a}>0, \mathrm{~b}<0, \mathrm{c}>0$.
78. (C) $\because \frac{d y}{d x}=\frac{a x+3}{2 y+f}$
[Given]

$$
\begin{aligned}
& \Rightarrow \int(2 y+f) d y=\int(a x+3) d x \\
& \Rightarrow c+y^{2}+f y=\frac{a x^{2}}{2}+3 x \\
& \Rightarrow \frac{-a}{2} x^{2}+y^{2}-3 x+f y+\mathrm{C}=0
\end{aligned}
$$

This equation represents a circle, if the coefficient of $x^{2}=$ the coefficient of y^{2}

$$
-1=\frac{a}{2} \Rightarrow a=-2
$$

79. (D) $\because \mathrm{A}, \mathrm{B}$ and C are in AP.

$$
\begin{aligned}
\therefore & 2 \mathrm{~B} & =\mathrm{A}+\mathrm{C} \\
& \because & \mathrm{~A}+\mathrm{B}+\mathrm{C}=180^{\circ}
\end{aligned}
$$

$\Rightarrow \quad 3 B=180^{\circ} \Rightarrow \mathrm{B}=60^{\circ}$
Now, by sine rule,

$$
\begin{aligned}
& \frac{b}{c}=\frac{\sin B}{\sin C} \Rightarrow \frac{\sqrt{3}}{\sqrt{2}}\left(\because \frac{b}{c}=\frac{\sqrt{3}}{\sqrt{2}}\right) \\
\Rightarrow & \sin C=\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{\sqrt{3}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

80. (C) Since, the points with position vectors $10 i+3 j, 12 i-5 j$ and $a i+11 j$ are collinear, i.e., area of triangle formed by these positions vectors should be zero.

Therefore, $\frac{1}{2}\left|\begin{array}{ccc}10 & 3 & 1 \\ 12 & -5 & 1 \\ a & 11 & 1\end{array}\right|=0$
$\Rightarrow a(3+5)-11(10-12)+1(-50-36)=0$
$\Rightarrow 8 a+22-86=0$
$\Rightarrow 8 a=64$
$\Rightarrow \quad a=8$
81. (B) We know that the angle between the vectors $a_{1} i+b_{1} j+c_{1} k$ and ad $a_{2} i+b_{2} j+c_{2} k$ is given by

$$
\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|
$$

\therefore Angle between the vector $i+2 j+3 k$ and $-i+2 j+3 k$ is given by

$$
\begin{aligned}
\cos \theta & =\left|\frac{1 \times(-1)+2 \times 2+3 \times 3}{\sqrt{1+4+9} \sqrt{1+4+9}}\right| \\
& =\frac{-1+4+9}{14}=\frac{12}{14}=\frac{6}{7} \\
\text { Now, } \sin \theta & =\sqrt{1-\cos ^{2} \theta}
\end{aligned}
$$

$$
=\sqrt{1-\frac{36}{49}}
$$

$$
=\sqrt{\frac{49-36}{49}}
$$

$$
=\sqrt{\frac{13}{49}}
$$

$$
=\frac{\sqrt{13}}{7}
$$

Campus

KD Campus Pvt. Ltd

82. (D) $\sin \left[\sin ^{-1}\left(\frac{1}{5}\right)+\cos ^{-1} x\right]=1$

$$
\begin{aligned}
& \Rightarrow \sin \left[\sin ^{-1}\left(\frac{1}{5}\right)+\cos ^{-1} x\right]=\sin \frac{\pi}{2} \\
& \Rightarrow \sin ^{-1} \frac{1}{5}+\cos ^{-1} x=\frac{\pi}{2} \\
& \Rightarrow \cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} \frac{1}{5}=\cos ^{-1} \frac{1}{5}
\end{aligned}
$$

$$
\left(\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right)
$$

$$
\Rightarrow \quad x=\frac{1}{5}
$$

83. (B) $\log \left(a+\sqrt{a^{2}+1}\right)+\log \left(\frac{1}{a+\sqrt{a^{2}+1}}\right)$
$=\log \left(a+\sqrt{a^{2}+1}\right)+\log \left(a+\sqrt{a^{2}+1}\right)^{-1}$
$=\log \left(a+\sqrt{a^{2}+1}\right)-\log \left(a+\sqrt{a^{2}+1}\right)$
$=0$
84. (B) Number of ways when one specified book is included $\quad={ }^{9} \mathrm{C}_{4}=m$
$\Rightarrow \quad m=126$,
and number of ways when one specific book is excluded

$$
\begin{array}{rll}
& & ={ }^{9} \mathrm{C}_{5}=n \\
\Rightarrow & & n \\
\Rightarrow & =126 \\
\Rightarrow & & m
\end{array}
$$

85. (C) $\because f(x)=|x|+\mathrm{x}^{2}$
$\Rightarrow f(x)= \begin{cases}x^{2}+x & x \geq 0 \\ x^{2}-x & x<0\end{cases}$
LHL $=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)$
$=\lim _{h \rightarrow 0}(-h)^{2}+h=0$
and,

$$
\begin{aligned}
& \text { RHL }=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h) \\
&=\lim _{h \rightarrow 0}\left(+h^{2}\right)+h=0 \\
& \Rightarrow \mathrm{LHL}=\text { RHL }=f(0) \\
& \Rightarrow f(x) \text { is continuous at } x=0
\end{aligned}
$$

Now,

$$
\begin{aligned}
L f^{\prime}(0) & =\operatorname{LHD}=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+h}{-h}=\lim _{h \rightarrow 0} h+1=1 \\
& =-1 \\
R f^{\prime}(0) & =\text { RHD }=\frac{f(0+h)-f(0)=0}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+h}{h} \\
& =\lim _{h \rightarrow 0}(h+1)=1
\end{aligned}
$$

\Rightarrow LHD \neq RHD
$\Rightarrow f(x)$ is not differentiable at $x=0$.
86. (B) Let the roots of the equation $a x^{2}+b x+c=0$ be α and 2α.
$\therefore \quad \alpha+2 \alpha=\frac{-b}{a}$, and $\alpha \cdot 2 \alpha=\frac{c}{a}$
$\Rightarrow \alpha=\frac{-b}{3 a}$, and $\alpha^{2}=\frac{c}{2 a}$
$\Rightarrow\left(\frac{-b}{3 a}\right)^{2}=\frac{c}{2 a} \Rightarrow \frac{b^{2}}{9 a^{2}}=\frac{c}{2 a}$
$\Rightarrow 2 b^{2}=9 a c$
87. (C) Since, on the set of real numbers, R is a relation defined by $x R y$ if and only if $3 x+4 y=5$ for which $1 R \frac{1}{2}$ and $\frac{2}{3} R \frac{3}{4}$.
i.e., $\quad 1 \mathrm{R} \frac{1}{2} \Rightarrow 3.1+4 . \frac{1}{2}=5$,
and $\frac{2}{3} \mathrm{R} \frac{3}{4} \Rightarrow 3 \times \frac{2}{3}+\frac{3}{4} \times 4=5$
Hence, both the statements II and III are correct.
88. (C) $f(x)=k \sin x+\frac{1}{3} \sin 3 x$ (given)
$\Rightarrow \quad f^{\prime}(x)=k \cos x+\frac{3}{3} \cos 3 x$
Put $f^{\prime}(x)=0$, for maxima $k \cos x+\cos 3 x=0$

At $\quad x=\frac{\pi}{3}, k \cos \frac{\pi}{3}+\cos \pi=0$
$\Rightarrow \quad k\left(\frac{1}{2}\right)=1 \Rightarrow k=2$

Campus

KD Campus Pvt. Ltd

89. (A)Let $\mathrm{I}=\int \sin ^{-1}(\cos x) d x$

$$
\begin{aligned}
& =\int \sin ^{-1}\left[\sin \left(\frac{\pi}{2}-x\right)\right] d x \\
& =\int\left(\frac{\pi}{2}-x\right) d x \\
& =\frac{\pi x}{2}-\frac{x^{2}}{2}+C
\end{aligned}
$$

where C is a constant of integration.
90. (C) $\because \quad \alpha$ and β are the roots of the equation.

$$
\begin{gathered}
4 x^{2}+3 x+7=0 \\
\therefore \quad \alpha+\beta=-\frac{3}{4} \text { and } \alpha \beta=\frac{7}{4}
\end{gathered}
$$

Now, $\alpha^{-2}+\beta^{-2}=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$

$$
=\frac{\alpha^{2}+\beta^{2}}{(\alpha \beta)^{2}}
$$

$$
=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{(\alpha \beta)^{2}}
$$

$$
=\frac{\frac{9}{16}-\frac{7}{2}}{\frac{49}{16}}
$$

$$
=\frac{\frac{9-56}{16}}{\frac{49}{16}}
$$

$$
=\frac{-47}{16} \times \frac{16}{49}
$$

$$
=\frac{-47}{49}
$$

91. (C) The equation of line passing through $(2,-3)$ and parallel to Y-axis is $(y+3)=\tan 90(x-2)$ $\Rightarrow x-2=0 \Rightarrow x=2$.
92. (C) The given equation are

$$
\begin{aligned}
x^{2}+y^{2} & =4, \\
\text { and } x+y & =2
\end{aligned}
$$

These equations are satisfied by only $(2,0)$ and (0,2).
Hence, the required set is $\{(0,2),(2,0)\}$.
93. (A) The inverse of a square matrix, if it exists, is unique but if A and B are singular matrices of order n, then $A B$ is not a singular matrix of order n.
Hence, only statement I is correct.
94. (A) $\because 2 \times 1+3 \times(-2)+4 \times 1=0$

$$
\left(\because \cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)
$$

$\Rightarrow \cos \theta=0=\cos 90^{\circ} \Rightarrow \theta=90^{\circ}$
\therefore Angle between the lines is 90°.
95. (A) $\because f(x)=\left\{\begin{array}{cl}\frac{x^{3}-3 x+2}{(x-1)^{2}}, & \forall x \neq 1 \\ k & \forall x=1\end{array}\right.$
and $f(x)$ is continuous.
$\therefore \quad \lim _{x \rightarrow 1} \frac{x^{3}-3 x+2}{(x-1)^{2}}=k \quad\left(\because \frac{0}{0}\right.$ form $)$
By L Hospital rule
$\Rightarrow \quad k=\lim _{x \rightarrow 1} \frac{3 x^{2}-3}{2(x-1)} \quad\left(\because \frac{0}{0}\right.$ form $)$
By L Hospital rule

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{6 x}{2} \\
& =3
\end{aligned}
$$

96. (D) The given equation is

$$
\begin{aligned}
& x^{2}-2 p x+p^{2}-q^{2}+2 q r-r^{2}=0 \\
& \text { Now, } \mathrm{B}^{2}-4 \mathrm{AC}=(-2 p)^{2}-4(1)\left(p^{2}-q^{2}+2 p r-r^{2}\right) \\
& =4 p^{2}-4 p^{2}+4(q-r)^{2} \\
& =4(p-r)^{2}
\end{aligned}
$$

which is always greater than zero.
Therefoere, the roots of the given equation are rational.
97. (B) Let $\mathrm{I}=\int_{0}^{1} \frac{\tan ^{-1}}{1+x^{2}} \cdot d x$

Put $\left\{\begin{array}{l}\tan ^{-1} x=d t \\ \frac{d x}{1+x^{2}}=d t\end{array}\right.$
when $x=0$, then $t=0$

$$
\begin{aligned}
& x=1, \text { then } t=\frac{\pi}{4} \\
\therefore & \int_{0}^{\pi / 2} t d x=\left[\frac{t^{2}}{2}\right]_{0}^{\pi / 4} \\
= & \frac{1}{2}\left(\frac{\pi}{4}\right)^{2}=\frac{\pi^{2}}{32}
\end{aligned}
$$

98. (A) Let $\mathrm{I}=\int_{0}^{\pi / 2} \sin 2 x \operatorname{In}(\cot x) d x$

$$
\begin{align*}
\because \int_{0}^{a} f(x) d x & =\int_{0}^{a} f(a-x) d x \\
& =\int_{0}^{\pi / 2} \sin 2\left(\frac{\pi}{2}-x\right) \operatorname{In} \cot \left(\frac{\pi}{2}-x\right) \\
\text { I } & =\int_{0}^{\pi / 2} \sin 2 x \operatorname{In}(\tan x) d x \quad \ldots \text { (ii) } \tag{ii}
\end{align*}
$$

On adding Eqs. (i) and (ii), we get,

$$
\begin{aligned}
2 \mathrm{I} & =\int_{0}^{\pi / 2} \sin 2 x[\operatorname{In} \cot x+\operatorname{in}(\tan x)\} \cdot d x \\
& \left.=\int_{0}^{\pi / 2} \sin 2 x[\operatorname{In} \cot x+\tan x)\right] d x \\
& =\int_{0}^{\pi / 2} \sin 2 x \cdot \operatorname{In} 1 \cdot d x=0 \\
\mathrm{I} & =0
\end{aligned}
$$

99. (C)

Required area ($\mathrm{OBAB}^{\prime} \mathrm{C}$)

$$
\begin{aligned}
& =\int_{0}^{\pi} \sin x d x+\int_{\pi}^{2 \pi}-\sin x d x \\
& =[-\cos x]_{0}^{\pi}+[\cos x]_{\pi}^{2 \pi} \\
& =-(\cos \pi-\cos 0)+(\cos 2 \pi-\cos \pi) \\
& =-(-1-1)+(1+1) \\
& =4 \text { sq. units }
\end{aligned}
$$

100. (A) Let $\mathrm{I}=\int \frac{\ln x}{x} d x$

$$
\mathrm{I}=\int t d t
$$

Put $\left\{\begin{array}{c}\operatorname{In} x=t \\ \frac{1}{x} d x=d t\end{array}\right.$

$$
\mathrm{I}=\frac{t^{2}}{2}+\mathrm{C}
$$

$$
=\frac{(\operatorname{In} x)^{2}}{2}+\mathrm{C}
$$

101. (B) \therefore Required Area $=\operatorname{area}(\triangle \mathrm{OAB})$

$$
\begin{aligned}
& =\frac{1}{2} \times 4 \times 4 \\
& =8 \text { sq. units }
\end{aligned}
$$

102. (A) $\int\left(\frac{1}{\cos ^{2} x}-\frac{1}{\sin ^{2} x}\right) d x$

$$
\begin{aligned}
& =\int\left(\sec ^{2} x-\operatorname{cosec}^{2} x\right) d x \\
& =\tan x+\cot x+\mathrm{C} \\
& =\left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right)+\mathrm{C} \\
& =\frac{1}{\sin x \cdot \cos x}+\mathrm{C} \\
& =\frac{2}{\sin 2 x}+\mathrm{C} \\
& =2 \operatorname{cosec} 2 x+\mathrm{C}
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
103. (D) The power of highest derivative is 1. So, degree $=1$.
104. (B) The pairs $\left(2, \frac{3}{2}\right)$ is not feasible. Because, the degree of any differential equation cannot be rational type. If so, then we use rationization and convert it into integer.
105. (A) Given, $y=a \sin (\lambda x+\alpha)$
... (i)
On differentiating it wrt x, we get

$$
\begin{aligned}
& t \frac{d y}{d x}=\frac{d}{d x} a \sin (\lambda x+\alpha) \\
& \\
& \\
& =a \cos (\lambda x+\alpha) \lambda \\
& \frac{d y}{d x}
\end{aligned}=a \lambda \cos (\lambda x+\alpha) .
$$

Again differentiating it $w r t x$, we get

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =a \lambda \frac{d}{d x} \cos (\lambda x+\alpha) \\
& =a \lambda[-\sin (\lambda x+\alpha)] \times \lambda \\
& =-a \lambda^{2} \sin (\lambda x+\alpha) \\
\frac{d^{2} y}{d x^{2}} & =-\lambda^{2} y \quad \quad \text { [from Eq. (i)] } \\
\frac{d^{2} y}{d x^{2}} & +\lambda^{2} y=0
\end{aligned}
$$

106. (C) $y \frac{d y}{d x}+x=a, y d y+x d x=a d x$

On integrating both sides, we get

$$
\begin{aligned}
& \int y d y+\int x d x=\int a d x, \frac{y^{2}}{2}+\frac{x^{2}}{2}=a x \\
\Rightarrow & x^{2}+y^{2}-2 a x=0
\end{aligned}
$$

Which represents a set of circles.
107. (D) The given differential equation is

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)^{2}-x\left(\frac{d y}{d x}\right)+y=0 \tag{i}
\end{equation*}
$$

(a) $y=x-1 \Rightarrow \frac{d y}{d x}=1$

From equation (i),

$$
(1)^{1}-x(1)+(x-1)
$$

$$
=1-x+x-1=0
$$

So, $y=x-1$ is a solution of Eq. (i).
(b) $4 y=x^{2} \Rightarrow y=\frac{x^{2}}{4} \Rightarrow \frac{d y}{d x}=\frac{x}{2}$

From Equation (i),

$$
\begin{aligned}
& \left(\frac{x}{2}\right)^{2}-x\left(\frac{x}{2}\right)+\left(\frac{x^{2}}{4}\right) \\
= & \frac{x^{2}}{4}-\frac{x^{2}}{2}+\frac{x^{2}}{4}=\frac{x^{2}}{2}-\frac{x^{2}}{2}=0
\end{aligned}
$$

So, $4 y=x^{2}$ is a solutions of Equation (i).
(c) $y=x \Rightarrow \frac{d y}{d x}=1$

From equation (i),

$$
(1)^{2}-x(1)+x=1 \neq 0
$$

$\therefore y=-x-1$ is a solution of Eq. (i).
108. (C) Given,

$$
x^{2} d y+y^{2} d x=0, \frac{d y}{y^{2}}+\frac{d x}{x^{2}}=0
$$

On integrating, we get

$$
\begin{array}{r}
\int y^{-2} d y+\int x^{-2} d x=0 \\
\frac{y^{-2+1}}{-2+1}+\frac{x^{-2+1}}{-2+1}=C_{1}
\end{array}
$$

$$
\frac{y^{-1}}{-1}+\frac{x^{-1}}{-1}=C_{1}, \frac{-1}{y}-\frac{1}{x}=C_{1}
$$

$$
\frac{1}{x}+\frac{1}{y}=-C_{1}, x+y=C_{1} x y \frac{1}{C_{1}}(x+y)=x y
$$

$$
C(x+y)=x y, \text { where } \frac{1}{C_{1}}=C
$$

109. (D) Given, $e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$

$$
\Rightarrow \frac{e^{x}}{1-e^{x}} \cdot d x+\frac{\sec ^{2} y}{\tan y} \cdot d y=0
$$

On integrating, we get
$\Rightarrow \int \frac{e^{x} d x}{1-e^{x}}+\int \frac{\sec ^{2} y}{\tan y}=0$
$-\log \left(1-e^{x}\right)+\log \tan y=\log C$

$\log \tan y=\log C+\log \left(1-e^{x}\right)=\log C\left(1-e^{x}\right)$ $\tan y=\mathrm{C}\left(1-e^{x}\right)$
110. (D) Let the one side of rhombus be a.

Then, in $\triangle \mathrm{OEF}$,
$\sin 60^{\circ}=\frac{O F}{a} \Rightarrow O F=a \times \frac{\sqrt{3}}{2}$
We know that the diagonal of rhombus bisect each other perpendicularly.

$\because \quad \mathrm{FH}=2 \mathrm{FO}=2 a \frac{\sqrt{3}}{2}$
Again, in $\triangle \mathrm{OEF}$,

$$
\begin{aligned}
& \sin 30^{\circ}=\frac{O E}{a} \Rightarrow \mathrm{OE}=a \times \frac{1}{2} \\
\therefore & \mathrm{EG}=2 \mathrm{EO}=2 \cdot \frac{a}{2}=a
\end{aligned}
$$

Given magnitude of $\mathrm{FH}=$ magnitude of $\{m E G\}$.
$\therefore \quad a \sqrt{3}=m a$
On comparing, we get $m=\sqrt{3}$
111. (C) Given that;

$$
a \circ b=0
$$

i.e. a and b are perpendicular to each other and $a \times b=0$.
i.e. a and b are parallel to each other.

So, both conditions are possible if

$$
a=0 \text { and } b=0
$$

112. (C) Given that,

$$
a \times(b \times a)
$$

which is the vector triple product

$$
\begin{aligned}
& =(a \circ a) b-(a \circ b) a \\
& =\lambda b-u a
\end{aligned}
$$

where λ and μ are scalar quantity.
$\Rightarrow a \times(b \times a)$ is coplanar with both a and b.
113. (B) Both statements are true.

Statements 1

$4 i \times 3 i$
$=12(i \times i)$
$=12 \times 0 \quad[\because i \times i=0]$

Statements 2

$$
\frac{4 i}{3 i}=\frac{4}{3}
$$

Divisibility in vectors are not possible.
114. (A) Given,

$$
\begin{aligned}
&(\lambda i+j-k) \times(3 i-2 j+4 k) \\
&=(2 i-11 j-7 k) \\
& \Rightarrow\left|\begin{array}{ccc}
i & j & k \\
\lambda & 1 & -1 \\
3 & -2 & 4
\end{array}\right|=(2 i-11 j-7 k) \\
& \Rightarrow 2 i-(4 \lambda+3) j+(-2 \lambda-3) k \\
&=2 i-11 j-7 k
\end{aligned}
$$

On comparing the coefficient of ' f

$$
(4 \lambda+3)=11 \Rightarrow 4 \lambda=8 \Rightarrow \lambda=2
$$

115. (D) $|p(-3 i-2 j+13 k)|=1$

$$
\begin{aligned}
\Rightarrow & \sqrt{(-3 p)^{2}+(-2 p)^{2}+(13 p)^{2}} & =1 \\
\Rightarrow & \sqrt{9 p^{2}+4 p^{2}+169 p^{2}} & =1 \\
\Rightarrow & \sqrt{182 p^{2}} & =1 \\
\Rightarrow & p & =\frac{1}{\sqrt{182}}
\end{aligned}
$$

116. (B) The vector $2 j-k$ lies in the plane of $Y Z$. Because its x -coordinates is zero.
117. (D)

Since, opposite sides of parallelogram are same.

$$
\mathrm{AB}=a \Rightarrow \mathrm{CD}=-a
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
and $\mathrm{BC}=\mathrm{b} \Rightarrow \mathrm{DA}=-\mathrm{b}$
Applying addition formula in $\triangle B C D$.

$$
\begin{aligned}
\mathrm{BD} & =\mathrm{BC}+\mathrm{CD} \\
& =b-a=-a+b
\end{aligned}
$$

118. (A) The geometric mean of $1,2,4,8 \ldots \ldots$.

$$
\begin{aligned}
& =\left(1 \cdot 2 \cdot 4 \cdot 8 \ldots \ldots \cdot 2^{n}\right)^{\frac{1}{n+1}} \\
& =\left(2 \cdot 2^{2} \cdot 2^{3} \ldots \ldots .2^{n}\right)^{\frac{1}{n+1}} \\
& =\left(2^{1+2+3+} \ldots .2^{n}\right)^{\frac{1}{n+1}}=\left(2^{\Sigma^{n}}\right)^{\frac{1}{n+1}} \\
& 2^{\frac{n(n+1)}{2} \times \frac{1}{n+1}}=2^{\frac{n}{2}}
\end{aligned}
$$

119. (D)Let observations are $x_{1}, x_{2} \ldots x_{10}$ Given,
$\frac{x_{1}+x_{2}+x_{3}+\ldots \ldots \ldots x_{10}}{10}=5$
$\Rightarrow x_{1}+x_{2}+x_{3}+\ldots .+x_{10}=50$

Again, according to question
New mean

$$
=\frac{\left[\left(x_{1}+2\right)+\left(x_{2}+2\right)+\left(x_{3}+2\right)+\ldots \ldots+\left(x_{10}+2\right)\right] \times 3}{10}
$$

$$
=\frac{(50+20) \times 3}{10}=\frac{70 \times 3}{10}=21
$$

120. (A) $1+3+5+7+9$ \qquad n term

$$
\begin{aligned}
& =\frac{n}{2}[(2 \times 1)+(n-1) 2]=\frac{n}{2} \times 2 n=n^{2} \\
& \therefore \text { Mean }=\frac{\text { Sum of } n \text { odd natural numbers }}{\text { Total numbers }} \\
& =\frac{n^{2}}{n}=n
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

NDA MATHS MOCK TEST- 66 (ANSWER KEY)

1.	(B)	26.	(A)	51.	(D)	76.	(D)	101. (B)
2.	(A)	27.	(A)	52.	(B)	77.	(B)	102. (A)
3.	(B)	28.	(A)	53.	(D)	78.	(C)	103. (D)
4.	(B)	29.	(D)	54.	(C)	79.	(D)	104. (B)
5.	(B)	30.	(C)	55.	(B)	80.	(C)	105. (A)
6.	(D)	31.	(B)	56.	(D)	81.	(B)	106. (C)
7.	(D)	32.	(D)	57.	(B)	82.	(D)	107. (D)
8.	(B)	33.	(B)	58.	(B)	83.	(B)	108. (C)
9.	(C)	34.	(B)	59.	(B)	84.	(B)	109. (D)
10.	(D)	35.	(B)	60.	(D)	85.	(C)	110. (D)
11.	(B)	36.	(C)	61.	(B)	86.	(B)	111. (C)
12.	(B)	37.	(B)	62.	(C)	87.	(C)	112. (D)
13.	(D)	38.	(C)	63.	(C)	88.	(C)	113. (B)
14.	(D)	39.	(B)	64.	(A)	89.	(A)	114. (A)
15.	(C)	40.	(D)	65.	(C)	90.	(C)	115. (D)
16.	(B)	41.	(B)	66.	(A)	91.	(C)	116. (B)
17.	(D)	42.	(C)	67.	(D)	92.	(C)	117. (D)
18.	(D)	43.	(B)	68.	(D)	93.	(A)	118. (A)
19.	(B)	44.	(D)	69.	(B)	94.	(A)	119. (D)
20.	(B)	45.	(C)	70.	(B)	95.	(A)	120. (A)
21.	(C)	46.	(B)	71.	(C)	96.	(D)	
22.	(C)	47.	(A)	72.	(B)	97.		
23.	(A)	48.	(B)	73.	(C)	98.		
24.	(A)	49.	(B)	74.	(A)			
25.	(C)	50.	(B)	75.	(A)	100		

25. (C)
26. (B)
27. (D)
28. (B)
29. (D)
30. (C)
31. (B)
32. (B)
33. (B)
34. (B)
35. (B)
36. (C)
37. (C)
38. (A)
39. (A)
40. (D)
41. (D)
42. (B)
43. (B)
44. (B)
45. (C)
46. (A)
47. (D)
48. (B)
49. (C)
50. (D)
51. (C)
52. (D)
53. (B)
54. (B)
55. (C)
56. (C)
57. (C)
58. (A)
59. (C)
60. (C)
61. (A)
62. (A)
63. (A)
64. (B)
65. (A)
66. (C)
67. (A)
68. (B)
69. (A)
70. (D)
71. (B)
72. (A)
73. (C)
74. (D)
75. (C)
76. (D)
77. (D)
78. (D)
79. (B)
80. (A)
81. (D)
82. (B)
83. (D)
84. (A)
85. (D)
86. (A)

Note : If your opinion differ regarding any answer, please message the mock test and Question number to 8860330003

Note : If you face any problem regarding result or marks scored, please contact : 9313111777

